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Abstract. This paper describes several speedups and simplifications for
XTR. The most important results are new XTR double and single ex-
ponentiation methods where the latter requires a cheap precomputation.
Both methods are on average more than 60% faster than the old methods,
thus more than doubling the speed of the already fast XTR signature
applications. An additional advantage of the new double exponentiation
method is that it no longer requires matrices, thereby making XTR easier
to implement. Another XTR single exponentiation method is presented
that does not require precomputation and that is on average more than
35% faster than the old method. Existing applications of similar methods
to LUC and elliptic curve cryptosystems are reviewed.
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1 Introduction

The XTR public key system was introduced at Crypto 2000 [10]. From a security
point of view XTR is a traditional subgroup discrete logarithm system, as was
proved in [10]. It uses a non-standard way to represent and compute subgroup
elements to achieve substantial computational and communication advantages
over traditional representations. XTR of security equivalent to 1024-bit RSA
achieves speed comparable to cryptosystems based on random elliptic curves
over random prime fields (ECC) of equivalent security. The corresponding XTR
public keys are only about twice as large as ECC keys, assuming global system
parameters – without the last requirement the sizes of XTR and ECC public
keys are about the same. Furthermore, parameter initialization from scratch for
XTR takes a negligible amount of computing time, unlike RSA and ECC.

This paper describes several important speedups for XTR, while at the same
time simplifying its implementation. In the first place the field arithmetic as
described in [10] is improved by combining the modular reduction steps. More
importantly, a new application of a method from [15] is presented that results in
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an XTR exponentiation iteration that can be used for three different purposes.
In the first place these improvements result in an XTR double exponentiation
method that is on average more than 60% faster than the double exponentiation
from [10]. Such exponentiations are used in XTR ElGamal-like signature verifica-
tions. Furthermore, they result in two new XTR single exponentiation methods,
one that is on average about 60% faster than the method from [10] but that
requires a one-time precomputation, and a generic one without precomputation
that is on average 35% faster than the old method.

Examples where precomputation can typically be used are the ‘first’ of the
two exponentiations (per party) in XTR Diffie-Hellman key agreement, XTR
ElGamal-like signature generation, and, to a lesser extent, XTR-ElGamal en-
cryption. The new generic XTR single exponentiation can be used in the ‘sec-
ond’ XTR Diffie-Hellman exponentiation and in XTR-ElGamal decryption. As
a result the runtime of XTR signature applications is more than halved, the
time required for XTR Diffie-Hellman is almost halved, and XTR-ElGamal en-
cryption and decryption can both be expected to run at least 35% faster (with
encryption running more than 60% faster after precomputation).

The method from [15] was developed to compute Lucas sequences. It can
thus immediately be applied to the LUC cryptosystem [18]. It was shown [16]
that it can also be applied to ECC. The resulting methods compare favorably
to methods that have been reported in the literature [5]. Because they are not
generally known their runtimes are reviewed at the end of this paper.

The double exponentiation method from [10] uses matrices. The new method
does away with the matrices, thereby removing the esthetically least pleasing as-
pect of XTR. For completeness, another double exponentiation method is shown
that does not require matrices. It is directly based on the iteration from [10] and
does not achieve a noticeable speedup over the double exponentiation from [10],
since the matrix steps that are no longer needed, though cumbersome, are cheap.

This paper is organized as follows. Section 2 reviews the results from [10]
needed for this paper. It includes a description of the faster field arithmetic
and matrix-less XTR double exponentiation based on the iteration from [10].
The 60% faster (and also matrix-less) XTR double exponentiation is presented
in Section 3. Applications of the method from Section 3 to XTR single expo-
nentiation with precomputation and to generic XTR single exponentiation are
described in Sections 4 and 5, respectively. In Section 6 the runtime claims are
substantiated by direct comparison with the timings from [10]. Section 7 reviews
the related LUC and ECC results.

2 XTR background

For background and proofs of the statements in this section, see [10]. Let p and
q be primes with p ≡ 2 mod 3 and q dividing p2−p+1, and let g be a generator
of the order q subgroup of F∗

p6 . For h ∈ F∗
p6 its trace Tr(h) over Fp2 is defined

as the sum of the conjugates over Fp2 of h:

Tr(h) = h+ hp
2

+ hp
4 ∈ Fp2 .
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Because the order of h divides p6 − 1 the trace over Fp2 of h equals the trace of
the conjugates over Fp2 of h:

Tr(h) = Tr(hp
2

) = Tr(hp
4

).(1)

If h ∈ 〈g〉 then its order divides p2 − p+ 1, so that

Tr(h) = h+ hp−1 + h−p

since p2 ≡ p−1 mod (p2−p+1) and p4 ≡ −p mod (p2−p+1). In XTR elements
of 〈g〉 are represented by their trace over Fp2 . It follows from (1) that XTR makes
no distinction between an element of 〈g〉 and its conjugates over Fp2 .

The discrete logarithm (DL) problem in 〈g〉 is to compute for a given h ∈ 〈g〉
the unique y ∈ {0, 1, . . . , q − 1} such that gy = h. The XTR-DL problem is to
compute for a given Tr(h) with h ∈ 〈g〉 an integer y ∈ {0, 1, . . . , q−1} such that
Tr(gy) = Tr(h). If y solves an XTR-DL problem then (p − 1)y and −py (both
taken modulo q) are solutions too. It is proved in [10, Theorem 5.2.1] that the
XTR-DL problem is equivalent to the DL problem in 〈g〉, with similar equiva-
lences with respect to the Diffie-Hellman and Decision Diffie-Hellman problems.
Furthermore, it is argued in [10] that if q is sufficiently large (which will be the
case), then the DL problem in 〈g〉 is as hard as it is in F∗

p6 . This argument is the
most commonly misunderstood aspect of XTR and therefore rephrased here.

Because of the Pohlig-Hellman algorithm [17] and the fact that p6 − 1 =
(p− 1)(p+1)(p2 + p+1)(p2 − p+1), the general DL problem in F∗

p6 reduces to
the DL problems in the following four subgroups of F∗

p6 :

– The subgroup of order p− 1, which can efficiently be embedded in Fp.
– The subgroup of order p+1 dividing p2−1, which can efficiently be embedded

in Fp2 but not in Fp.
– The subgroup of order p2 + p + 1 dividing p3 − 1, which can efficiently be

embedded in Fp3 but not in Fp.
– The subgroup of order p2 − p + 1, which cannot be embedded in any true

subfield of Fp6 .

So, to solve the DL problem in F∗
p6 in the most general case, four DL problems

must be solved. Three of these DL problems can efficiently be reformulated as
DL problems in multiplicative groups of the true subfields Fp, Fp2 , and Fp3 of
Fp6 . With the current state of the art of the DL problem in extension fields, these
latter three problems are believed to be strictly (and substantially) easier than
the DL problem in F∗

p6 . But that means that the subgroup of order p2−p+1 is,
so to speak, the subgroup that is responsible for the difficulty of the DL problem
in F∗

p6 . With a proper choice of q dividing p2− p+1, this subgroup DL problem

is equivalent to the problem in 〈g〉. This implies that the DL problem in 〈g〉 is
as hard as it is in F∗

p6 , unless the latter problem is not as hard as it is currently

believed to be. It also follows that, if the DL problem in 〈g〉 is easier than it is
in F∗

p6 , then the problem in F∗
p6 can be at most as hard as it is in F∗

p, F
∗
p2 , or

F∗
p3 . Proving such a result would require a major breakthrough.
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Thus, for cryptographic purposes and given the current state of knowledge
regarding the DL problem in extension fields, XTR and Fp6 give the same secu-
rity. For p and q of about 170 bits the security is at least equivalent to 1024-bit
RSA and approximately equivalent to 170-bit ECC.

XTR has two main advantages compared to ordinary representation of ele-
ments of 〈g〉:

– It is shorter, since Tr(h) ∈ Fp2 , whereas representing an element of 〈g〉
requires in general an element of Fp6 , i.e., three times more bits;

– It allows faster arithmetic, because given Tr(g) and u the value Tr(gu) can
be computed substantially faster than gu can be computed given g and u.

In this paper it is shown that Tr(gu) can be computed even faster than shown
in [10].

Throughout this paper, cu denotes Tr(gu) ∈ Fp2 , for some fixed p and g of
order q as above. Note that c0 = 3. In [10–12] it is shown how p, q, and c1 can
be found quickly. In particular there is no need to find an explicit representation
of g ∈ Fp6 .

2.1 Improved Fp2 arithmetic. Because p ≡ 2 mod 3, the zeros α and αp of
the polynomial (X3−1)/(X−1) = X2+X+1 form an optimal normal basis for
Fp2 over Fp. An element x ∈ Fp2 is represented as x1α+x2α

2 with x1, x2 ∈ Fp.
From α2 = αp if follows that xp = x2α + x1α

2, so that p-th powering in Fp2 is
free. In [10] the product (x1α + x2α

2)(y1α + y2α
2) is computed by computing

x1y1, x2y2, (x1 + x2)(y1 + y2) ∈ Fp, so that x1y2 + x2y1 ∈ Fp and the product

(x2y2 − x1y2 − x2y1)α+ (x1y1 − x1y2 − x2y1)α
2 ∈ Fp2

follow using four subtractions. This implies that products in Fp2 can be com-
puted at the cost of three multiplications in Fp (as usual, the small number of
additions and subtractions is not counted).

For a regular multiplication of u, v ∈ Fp the field elements u and v are
mapped to integers ū, v̄ ∈ {0, 1, . . . , p − 1}, the integer product w̄ = ūv̄ ∈ Z is
computed (the ‘multiplication step’), the remainder w̄ mod p ∈ {0, 1, . . . , p− 1}
is computed (the ‘reduction step’), and finally the resulting integer w̄ mod p is
mapped to Fp. The reduction step is somewhat costlier than the multiplication
step; the mappings between Fp and Z are negligible. The same applies if Mont-
gomery arithmetic [13] is used, but then the reduction and multiplication step
are about equally costly.

It follows that the computation of (x1α + x2α
2)(y1α + y2α

2) can be made
faster by computing, in the above notation, w̄1 = x̄2ȳ2 − x̄1ȳ2 − x̄2ȳ1 ∈ Z
and w̄2 = x̄1ȳ1 − x̄1ȳ2 − x̄2ȳ1 ∈ Z using four integer multiplications, followed
by two reductions w̄1 mod p and w̄2 mod p. This works both for regular and
Montgomery arithmetic. Because the intermediate results are at most 3p2 in
absolute value the resulting final reductions are of the same cost as the original
reductions (with additional subtraction correction in Montgomery arithmetic, at
negligible extra cost). As a result, products in Fp2 can be computed at the cost of
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just two and a half multiplications in Fp, namely the usual three multiplication
steps and just two reduction steps. If regular arithmetic is used the speedup
can be expected to be somewhat larger. It follows in a similar way that the
computation of xz − yzp ∈ Fp2 for x, y, z ∈ Fp2 can be reduced from four
multiplications in Fp to the same cost as three multiplications in Fp; refer to [10,
Section 2.1] for the details of that computation. Combining, or postponing, the
reduction steps in this way is not at all new. See for instance [4] for a much
earlier application.

This results in the following improved version of [10, Lemma 2.1.1].

Lemma 2.2 Let x, y, z ∈ Fp2 with p ≡ 2 mod 3.

i. Computing xp is free.
ii. Computing x2 takes two multiplications in Fp.
iii. Computing xy costs the same as two and a half multiplications in Fp.
iv. Computing xz − yzp costs the same as three multiplications in Fp.

Efficient computation of cu given p, q, and c1 is based on the following facts.

2.3 Facts. Fact 2b follows from Lemma 2.2 and Facts 1b and 2a. The other
facts are derived as in [10].

1. Identities involving traces of powers, with u, v ∈ Z:
(a) c−u = cup = cpu. It follows from Lemma 2.2.i that negations and p-th

powers can be computed for free.
(b) cu+v = cucv − cpvcu−v + cu−2v. It follows from Lemma 2.2.i and iv that

cu+v can be computed at the cost of three multiplications in Fp if cu,
cv, cu−v, and cu−2v are given.

(c) If cu = c̃1, then c̃v denotes the trace of the v-th power guv of gu, so that
cuv = c̃v.

2. Computing traces of powers, with u ∈ Z:
(a) c2u = c2u − 2cpu takes two multiplications in Fp.
(b) c3u = c3u − 3cp+1

u + 3 costs four and a half multiplications in Fp, and
produces c2u as a side-result.

(c) cu+2 = c1cu+1 − cp1cu + cu−1 costs three multiplications in Fp.
(d) c2u−1 = cu−1cu − cp1c

p
u + cpu+1 costs three multiplications in Fp.

(e) c2u+1 = cu+1cu − c1c
p
u + cpu−1 costs three multiplications in Fp.

Let Su denote the triple (cu−1, cu, cu+1); thus S1 = (3, c1, c
2
1 − 2cp1). The triple

S2u−1 = (c2(u−1), c2u−1, c2u) can be computed from Su and c1 by applying
Fact 2a twice to compute c2(u−1) and c2u based on cu−1 and cu, respectively, and
by applying Fact 2d to compute c2u−1 based on Su = (cu−1, cu, cu+1) and c1.
This takes seven multiplications in Fp. The triple S2u+1 can be computed in a
similar fashion from Su and c1 at the cost of seven multiplications in Fp (using
Fact 2e to compute c2u+1).

Let v be a non-negative integer, and let v =
∑r−1

i=0 vi2
i be the binary rep-

resentation of v, where vi ∈ {0, 1}, r > 0, and vr−1 = 1. It is well known that
the v-th power of an element of, say, a finite field can be computed using the
ordinary square and multiply method based on the binary representation of v.
A similar iteration can be used to compute S2v+1, given S1.
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2.4 XTR single exponentiation (cf. [10, Algorithm 2.3.7]). Let S1, c1,
and vr−1, vr−2, . . . , v0 ∈ {0, 1} be given, let y = 1 and e = 0 (so that 2e+1 = y;
the values y and e are included for expository purposes only). To compute S2v+1

with v =
∑r−1

i=0 vi2
i, do the following for i = r − 1, r − 2, . . . , 0 in succession:

Bit off If vi = 0, then compute S2y−1 based on Sy and c1, replace Sy by S2y−1

(and thus S2e+1 by S2(2e)+1 because it follows from 2e+1 = y that 2(2e)+1 =
4e + 1 = 2y − 1), replace y by 2y − 1, and e by 2e (so that the invariant
2e+ 1 = y is maintained).

Bit on Else if vi = 1, then compute S2y+1 based on Sy and c1, replace Sy by
S2y+1 (and thus S2e+1 by S2(2e+1)+1 because it follows from 2e+1 = y that
2(2e + 1) + 1 = 4e + 3 = 2y + 1), replace y by 2y + 1, and e by 2e + 1 (so
that the invariant 2e+ 1 = y is maintained).

As a result e = v. Because 2e+1 = y the final Sy equals S2v+1. Note that vr−1,
or any other vi, does not have to be non-zero.

Both the ‘bit off’ and the ‘bit on’ step of Algorithm 2.4 take seven multipli-
cations in Fp. Thus, given an odd positive integer t < q and S1, the triple
St = (ct−1, ct, ct+1) can be computed in 7 log2 t multiplications in Fp. In [10]
this was 8 log2 t because of the slower field arithmetic used there. The restriction
that t is odd and positive is easily removed: if t is even, then first compute St−1

and next apply Fact 2c, and if t is negative, then use Fact 1a.
In Algorithm 2.4, the trace c1 of g in S1 = (c0, c1, c2) = (3, c1, c

2
1 − 2cp1) can

be replaced by the trace ct of the t-th power gt of g (cf. Fact 1c): with c̃1 = ct,
S̃1 = (c̃0, c̃1, c̃2) = (3, ct, c2t) = (3, ct, c

2
t − 2cpt ), and the previous paragraph, the

triple S̃v = (c̃v−1, c̃v, c̃v+1) = (c(v−1)t, cvt, c(v+1)t) can be computed in 7 log2 v
multiplications in Fp, for any positive integer v < q.

Now let v =
∑r−1

i=0 vi2
i as above and let

v′ = 2rk + v =

s+r−1
∑

i=0

vi2
i

for some integer k ≥ 1. After the first s iterations of the application of Al-
gorithm 2.4 to S1, c1, and vs+r−1, vs+r−2, . . . , v0 the value for e equals k and
Sy = S2k+1. The remaining r iterations result in S2v′+1 = S2r+1k+2v+1, and
are the same as if Algorithm 2.4 was applied to Sy (as opposed to S1) and
vr−1, vr−2, . . . , v0. It follows that if Algorithm 2.4 is applied to S2k+1, c1, and
vr−1, vr−2, . . . , v0, then the resulting value is S2r+1k+2v+1. Note that the vi’s do
not have to be non-zero. Thus, given any (odd or even) t < 2r+1, Sk, and c1,
the triple S2r+1k+t can be computed in 7 log2 t multiplications in Fp. This leads
to the following double exponentiation method for XTR.

2.5 Matrix-less XTR double exponentiation. Let a and b be integers with
0 < a, b < q, and let Sk and c1 be given. To compute cbk+a do the following.

1. Let r be such that 2r < q < 2r+1.
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2. Compute d = b/2r+1 mod q and t = a/d mod q.
3. Compute S2r+1k+t:

– Use Facts 2a and 2e to compute S2k+1 based on Sk.
– If t is odd let t′ = t, else let t′ = t− 1.
– Let t′ = 2v + 1.
– Let v =

∑r−1
i=0 vi2

i with vi ∈ {0, 1} (and vr−1, vr−2, . . . possibly zero).
– Apply Algorithm 2.4 to S2k+1, c1, and vr−1, vr−2, . . . , v0, resulting in
S2r+1k+t′ .

– If t is odd then S2r+1k+t = S2r+1k+t′ , else use Fact 2c to compute
S2r+1k+t = S2r+1k+t′+1 based on S2r+1k+t′ .

4. Let c̃1 = c2r+1k+t.
5. Compute S̃1 = (c̃0, c̃1, c̃2) = (3, c̃1, c̃

2
1 − 2c̃p1) (cf. Fact 1c).

6. Apply Algorithm 2.4 to S̃1, c̃1 and the bits containing the binary represen-
tation of d, resulting in S̃d = (c̃d−1, c̃d, c̃d+1).

7. The resulting c̃d equals cd(2r+1k+t) mod q = cbk+a.

Algorithm 2.5 takes about 14 log2 q multiplications in Fp. This is a small con-
stant number of multiplications in Fp better than [10, Algorithm 2.4.8] (assum-
ing the faster field arithmetic is used there too). For realistic choices of q the
speedup achieved using Algorithm 2.5 is thus barely noticeable. Nevertheless,
it is a significant result because the fact that the matrices as required for [10,
Algorithm 2.4.8] are no longer needed, facilitates implementation of XTR. In
Section 3 of this paper a more substantial improvement over the double expo-
nentiation method from [10] is described that does not require matrices either.

3 Improved double exponentiation

In this section it is shown how cbk+a can be computed based on Sk and c1
(or, equivalently, based on Sk−1 = (ck−2, ck−1, ck) and c1, cf. Fact 2.3.1b) in a
single iteration, as opposed to the two iterations in Algorithm 2.5. For greater
generality, it is shown how cbk+a` is computed, based on ck, c`, ck−`, and ck−2`.

A rough outline of the new XTR double exponentiation method is as follows.
Let u = k, v = `, d = b, and e = a. It follows that ud + ve = bk + a` and that
cu, vv, cu−v, and cu−2v are known. The values of d and e are decreased, while
at the same time u and v (and thereby cu, cv, cu−v, and cu−2v) are updated,
in order to maintain the invariant ud + ve = bk + a`. The changes in d and
e are effected in such a way that at a given point d = e. But if d = e, then
bk+a` = ud+ve = d(u+v), so that cbk+a` follows by computing cu+v and next
cd(u+v) (cf. Fact 2.3.1c).

There are various ways in which d and e can be changed. The most efficient
method to date was proposed by P.L. Montgomery in [15], for the computation
of second degree recurrent sequences. The method below is an adaptation of [15,
Table 4] to the present case of third degree sequences.

3.1 Simultaneous XTR double exponentiation. Let a, b, ck, c`, ck−`, and
ck−2` be given, with 0 < a, b < q. To compute cbk+a` do the following.
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1. Let u = k, v = `, d = b, e = a, cu = ck, cv = c`, cu−v = ck−`, cu−2v = ck−2`,
f2 = 0, and f3 = 0 (u and v are carried along for expository purposes only).

2. As long as d and e are both even, replace (d, e) by (d/2, e/2) and f2 by f2+1.
3. As long as d and e are both divisible by 3, replace (d, e) by (d/3, e/3) and

f3 by f3 + 1.
4. As long as d 6= e replace (d, e, u, v, cu, cv, cu−v, cu−2v) by the 8-tuple given

below.
(a) If d > e then

i. if d ≤ 4e, then (e, d− e, u+ v, u, cu+v, cu, cv, cv−u).
ii. else if d is even, then ( d2 , e, 2u, v, c2u, cv, c2u−v, c2(u−v)).

iii. else if e is odd, then ( d−e2 , e, 2u, u+ v, c2u, cu+v, cu−v, c−2v).
iv. optional:

else if d ≡ e mod 3, then ( d−e3 , e, 3u, u+ v, c3u, cu+v, c2u−v, cu−2v).
v. else (e is even), then ( e2 , d, 2v, u, c2v, cu, c2v−u, c2(v−u)).

(b) Else (if e > d)
i. if e ≤ 4d, then (d, e− d, u+ v, v, cu+v, cv, cu, cu−v).
ii. else if e is even, then ( e2 , d, 2v, u, c2v, cu, c2v−u, c2(v−u)).

iii. else if d is odd, then ( e−d2 , d, 2v, u+ v, c2v, cu+v, cv−u, c−2u).
iv. optional:

else if e ≡ 0 mod 3, then ( e3 , d, 3v, u, c3v, cu, c3v−u, c3v−2u).
v. optional:

else if e ≡ d mod 3, then ( e−d3 , d, 3v, u+ v, c3v, cu+v, c2v−u, cv−2u).

vi. else (d is even), then ( d2 , e, 2u, v, c2u, cv, c2u−v, c2(u−v)).
5. Apply Fact 2.3.1b to cu, cv, cu−v, and cu−2v, to compute c̃1 = cu+v.
6. Apply Algorithm 2.4 to S̃1 = (3, c̃1, c̃1 − 2c̃p1), c̃1, and the binary represen-

tation of d, resulting in c̃d = cd(u+v) (cf. Fact 2.3.1c). Alternatively, and on
average faster, apply Algorithm 5.1 described below to compute c̃d = cd(u+v)

based on c̃1 (note that this results in a recursive call to Algorithm 3.1).
7. Compute c2f2d(u+v) based on cd(u+v) by applying Fact 2.3.2a f2 times.
8. Compute c3f32f2d(u+v) based on c2f2d(u+v) by applying Fact 2.3.2b f3 times.

The asymmetry between Steps 4a and 4b is caused by the asymmetry between
u and v, i.e., cu−2v is available but cv−2u is not. As a consequence, the case ‘d ≡
0 mod 3’ is slower than the case ‘e ≡ 0 mod 3’ (Step 4(b)iv), and its inclusion
would slow down Algorithm 3.1.

Steps 4(a)i and 4(b)i each require a single application of Fact 2.3.1b at the
cost of three multiplications in Fp. Steps 4(a)v and 4(b)ii each require two appli-
cations of Fact 2.3.2a at the cost of 2+2 = 4 multiplications in Fp. Steps 4(a)ii,
4(a)iii, 4(b)iii, and 4(b)vi each require an application of Fact 2.3.1b and two
applications of Fact 2.3.2a at the cost of 3+2+2 = 7 multiplications in Fp. The
three optional steps 4(a)iv, 4(b)iv, and 4(b)v each require two applications of
Fact 2.3.1b and one application of Fact 2.3.2b for a total cost of 3+3+4.5 = 10.5
multiplications in Fp.

In Table 1 the number of multiplications in Fp required by Algorithm 3.1 is
given, both with and without optional steps 4(a)iv, 4(b)iv, and 4(b)v. Each set
of entries is averaged over the same collection of 220 randomly selected t’s, a’s,
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and b’s, with t of the size specified in Table 1 and a and b randomly selected from
{1, 2, . . . , t − 1}. For regular double exponentiation t ≈ q, but t ≈ √

q for the
application in Section 4. It follows from Table 1 that inclusion of the optional
steps leads to an overall reduction of more than 6% in the expected number of
multiplications in Fp. For the optional steps it is convenient to keep track of the
residue classes of d and e modulo 3. These are easily updated if any of the other
steps applies, but require a division by 3 if either one of the optional steps is
carried out. It depends on the implementation and the platform whether or not
an overall saving is obtained by including the optional steps. In most software
implementations it will most likely be worthwhile.

Table 1. Empirical performance of Algorithm 3.1, with 0 < a, b < t.

multiplications in Fp

including steps 4(a)iv, 4(b)iv, and 4(b)v without steps 4(a)iv, 4(b)iv, and 4(b)v
dlog2 te standard standard

= T average deviation σ σ/
√
T average deviation σ σ/

√
T

60 350.01 = 5.83T 20.5 = 0.34T 2.65 372.89 = 6.21T 30.0 = 0.50T 3.88
70 410.42 = 5.86T 22.2 = 0.32T 2.65 437.41 = 6.25T 32.6 = 0.47T 3.89
80 470.84 = 5.89T 23.7 = 0.30T 2.65 501.94 = 6.27T 34.8 = 0.44T 3.90
90 531.21 = 5.90T 25.2 = 0.28T 2.66 566.36 = 6.29T 37.0 = 0.41T 3.90

100 591.63 = 5.92T 26.5 = 0.27T 2.65 630.85 = 6.31T 39.1 = 0.39T 3.91

110 652.03 = 5.93T 27.8 = 0.25T 2.65 695.40 = 6.32T 41.1 = 0.37T 3.92
120 712.39 = 5.94T 29.1 = 0.24T 2.66 759.87 = 6.33T 43.0 = 0.36T 3.93
130 772.78 = 5.94T 30.2 = 0.23T 2.65 824.31 = 6.34T 44.6 = 0.34T 3.92
140 833.19 = 5.95T 31.5 = 0.22T 2.66 888.91 = 6.35T 46.4 = 0.33T 3.92
150 893.66 = 5.96T 32.5 = 0.22T 2.65 953.34 = 6.36T 48.1 = 0.32T 3.93

160 953.98 = 5.96T 33.6 = 0.21T 2.66 1017.79 = 6.36T 49.7 = 0.31T 3.93
170 1014.42 = 5.97T 34.7 = 0.20T 2.66 1082.36 = 6.37T 51.3 = 0.30T 3.93
180 1074.84 = 5.97T 35.7 = 0.20T 2.66 1146.88 = 6.37T 52.7 = 0.29T 3.93
190 1135.19 = 5.97T 36.6 = 0.19T 2.66 1211.34 = 6.38T 54.3 = 0.29T 3.94
200 1195.58 = 5.98T 37.6 = 0.19T 2.66 1275.82 = 6.38T 55.7 = 0.28T 3.94

210 1256.05 = 5.98T 38.5 = 0.18T 2.66 1340.23 = 6.38T 57.1 = 0.27T 3.94
220 1316.42 = 5.98T 39.5 = 0.18T 2.66 1404.75 = 6.39T 58.5 = 0.27T 3.94
230 1376.87 = 5.99T 40.3 = 0.18T 2.66 1469.36 = 6.39T 59.7 = 0.26T 3.94
240 1437.25 = 5.99T 41.2 = 0.17T 2.66 1533.89 = 6.39T 61.1 = 0.25T 3.94
250 1497.61 = 5.99T 42.0 = 0.17T 2.66 1598.22 = 6.39T 62.3 = 0.25T 3.94

260 1558.00 = 5.99T 42.9 = 0.17T 2.66 1662.80 = 6.40T 63.7 = 0.24T 3.95
270 1618.47 = 5.99T 43.8 = 0.16T 2.66 1727.31 = 6.40T 64.9 = 0.24T 3.95
280 1678.74 = 6.00T 44.5 = 0.16T 2.66 1791.85 = 6.40T 66.1 = 0.24T 3.95
290 1739.17 = 6.00T 45.3 = 0.16T 2.66 1856.32 = 6.40T 67.2 = 0.23T 3.94
300 1799.57 = 6.00T 46.1 = 0.15T 2.66 1920.88 = 6.40T 68.4 = 0.23T 3.95

Conjecture 3.2 Given integers a and b with 0 < a, b < q and trace values ck,
c`, ck−`, and ck−2`, the trace value cbk+a` can on average be computed in about
6 log2(max(a, b)) multiplications in Fp using Algorithm 3.1.

It follows that XTR double exponentiation using Algorithm 3.1 is on average
faster than the XTR single exponentiation from [10] (given in Algorithm 2.4),
and more than twice as fast as the previous methods to compute cbk+a` ([10,
Algorithm 2.4.8 and Theorem 2.4.9] and Algorithm 2.5). An additional advan-
tage of Algorithm 3.1 is that, like Algorithm 2.5, it does not require matrices.
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These advantages have considerable practical consequences, not only for the
performance of XTR signature verification (Section 6), but also for the accessi-
bility and ease of implementation of XTR. In Sections 4 and 5 consequences of
Algorithm 3.1 for XTR single exponentiation are given.

Based on Table 1 the expected practical behavior of Algorithm 3.1 is well
understood, and the practical merits of the method are beyond doubt. However,
a satisfactory theoretical analysis of Algorithm 3.1, or the second degree original
from [15], is still lacking. The iteration in Algorithm 3.1 is reminiscent of the
binary and subtractive Euclidean greatest common divisor algorithms. Iterations
of that sort typically exhibit an unpredictable behavior with a wide gap between
worst and average case performance; see for instance [1, 7, 19] and the analysis
attempts and open problems in [15].

This is further illustrated in Figure 1. There the average number of multi-
plications for dlog2 te = 170 is given as a function of the value of the constant
in Steps 4(a)i and 4(b)i of Algorithm 3.1. The value 4 is close to optimal and
convenient for implementation. However, it can be seen from Figure 1 that a
value close to 4.8 is somewhat better, if one’s sole objective is to minimize the
number of multiplications in Fp, as opposed to minimizing the overall runtime.
The curves in Figure 1 were generated for constants ranging from 2 to 8 with
stepsize 1/16, per constant averaged over the same collection of 220 randomly
selected t’s, a’s, and b’s. The remarkable shape of the curves – both with at least
four local minima – is a clear indication that the exact behavior of Algorithm 3.1
will be hard to analyse. It is of no immediate importance for the present paper
and left as a subject for further study.

Remark 3.3 As shown in Appendix A other small improvements can be ob-
tained by distinguishing more different cases than in Algorithm 3.1. The version
presented above represents a good compromise that combines reasonable over-
head with decent performance. In practical circumstances the performance of
Algorithm 3.1 is on average close to optimal.

Remark 3.4 If Algorithm 3.1 is implemented using the slower field arithmetic
from [10, Lemma 2.1.1], as opposed to the improved arithmetic from 2.1, it
can on average be expected to require 7.4 log2(max(a, b)) multiplications in Fp.
This is still more than twice as fast as the method from [10] (using the slower
arithmetic), but more than 20% slower than Conjecture 3.2.

Remark 3.5 Unlike the XTR exponentiation methods from [10], different in-
structions are carried out by Algorithm 3.1 for different input values. This makes
Algorithm 3.1 inherently more vulnerable to environmental attacks than the
methods from [10] (cf. [10, Remark 2.3.9]). If the possibility of such attacks is a
concern, then utmost care should be taken while implementing Algorithm 3.1.

4 Single exponentiation with precomputation

Suppose that for a fixed c1 several cu’s for different u’s, with 0 < u < q, have to
be computed. In this section it is shown that, after a small amount of precom-
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Fig. 1. Dependence on the value of the constant.

putation, this can be done using Algorithm 3.1 in less than half the number of
multiplications in Fp that would be required by Algorithm 2.4.

Let t = 2d(log2 q)/2e, and suppose that St−1 = (ct−2, ct−1, ct) has been pre-
computed based on c1. For any u ∈ {0, 1, . . . , q− 1} non-negative integers a and
b of at most 1 + (log2 q)/2 bits can simply be computed such that u = bt + a.
Given St−1 and c1, the value cu can then be computed using Algorithm 3.1 with
k = t and ` = 1. This leads to the following precomputation and XTR single
exponentiation with precomputation.

4.1 Precomputation. Let c1 be given. To precompute values t and St−1 =
(ct−2, ct−1, ct) do the following.

1. Let t = 2d(log2 q)/2e, v = (t − 2)/2, and let vr−1, vr−2, . . . , v0 be the binary
representation of v (so vi = 1 for 0 ≤ i < r for t = 2[log2 q)/2]).

2. Apply Algorithm 2.4 to S1 = (3, c1, c
2
1 − 2cp1), c1, and vr−1, vr−2, . . . , v0 to

compute S2v+1 = St−1.

The value St−1 computed by Algorithm 4.1 consists of the traces of three consec-
utive powers of the subgroup generator corresponding to c1. Algorithm 4.1 takes
essentially a single application of Algorithm 2.4, and thus about 3.5 log2 q multi-
plications in Fp, since log2 t ≈ (log2 q)/2. Improved XTR single exponentiation
Algorithm 5.1 given below would require more than a single application, because
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it produces just the trace of a single power, and not its two ‘nearest neighbors’
as well. With [11, Theorem 5.1], which for most t’s allows fast computation of
ct+1 given c1, ct−1, and ct, two applications of Algorithm 5.1 would suffice. But
that is still expected to be slower than a single application of Algorithm 2.4, as
follows from Corollary 5.3.

4.2 XTR single exponentiation with precomputation. Let u, c1, t, and
St−1 be given, with 0 < u < q. To compute cu, do the following.

1. Compute non-negative integers a and b such that u = bt + a mod q and a
and b are at most about

√
q:

– If log2(t mod q) ≈ (log2 q)/2 (as in 4.1), then use long division to com-
pute a and b such that u = b(t mod q) + a.

– Otherwise, use the lattice-based method described in 4.4. With the proper
choice of t this results in a and b that are small enough.

2. If b = 0, then compute ca = cu using either Algorithm 2.4 or Algorithm 5.1,
based on c1.

3. Otherwise, if a = 0, then compute c̃b = ctb = cu using either Algorithm 2.4
or Algorithm 5.1, based on c̃1 = ct.

4. Otherwise, if a 6= 0 and b 6= 0, then do the following:
– Let k = t, ` = 1, so that St−1 = (ck−2`, ck−`, ck) and c` = c1.
– Use Algorithm 3.1 to compute cbk+a` = cu based on a, b, ck, c`, ck−`,

and ck−2`.

Obviously, any t of about the same size as
√
q will do. A power of 2, however,

facilitates the computation of a and b in Step 1 of Algorithm 4.2. Algorithm 4.2
allows easy implementation and, apart from the precomputation, the perfor-
mance overhead on top of the call to Algorithm 2.4, 5.1, or 3.1 is negligible. The
expected runtime of Algorithm 4.2 follows from Conjecture 3.2.

Corollary 4.3 Given integers u and t with 0 < u < q and log2 t ≈ (log2 q)/2
and trace values c1, ct, ct−1, and ct−2, the trace value cu can on average be
computed in about 3 log2 u multiplications in Fp using Algorithm 4.2.

This is more than 60% faster than Algorithm 2.4 as described in [10] using the
slower field arithmetic. It can be used in the first place by the owner of the XTR
key containing c1. Thus, XTR signature generation can on average be done more
than 60% faster than before [10, Section 4.3]. It can also be used by shared users
of an XTR key, such as in Diffie-Hellman key agreement. However, it only affects
the first exponentiation to be carried out by each party: party A’s computation
of ca given c1 and a random a can be done on average more than 60% faster,
but the computation of cab based on the value cb received from party B is not
affected by this method. See Section 5 how to speedup the computation of cab
as well.

The precomputation scheme may also be useful for XTR-ElGamal encryption
[10, Section 4.2]. In XTR-ElGamal encryption the public key contains two trace
values, c1 and ck, where k is the secret key. The sender (who does not know k)
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picks a random integer b, computes cb based on c1, computes cbk based on ck, uses
cbk to (symmetrically) encrypt the message, and sends the resulting encryption
and cb to the owner of k. If the sender uses XTR-ElGamal encryption more than
once with the same c1 and ck, then it is advantageous to use precomputation.
In this application two precomputations have to be carried out, once for c1 and
once for ck. The recipient has to compute cbk based on the value cb received (and
its secret k). Because cb will not occur again, precomputation based on cb does
not make sense for the party performing XTR-ElGamal decryption.

4.4 Fast precomputation. It is shown that the choice t = p leads to a faster
precomputation, while only marginally slowing down Step 1 of Algorithm 4.2.
The triple Sp−1 = (cp−2, cp−1, cp) follows from cp = cp1 (Fact 2.3.1a), cp−1 = c1
(because if g is a root with trace c1, then g

p2 = gp−1 is one of its conjugates and
has the same trace), and from the fact that, according to [12, Proposition 5.7],
cp−2 can be computed at the cost of a square-root computation in Fp. Here it is
assumed that the public key containing p, q, and c1 contains an additional single
bit of information to resolve the square-root ambiguity1. Thus, if p ≡ 3 mod 4
recipients of XTR public key data with p and q of the above form can do the
precomputation of Sp−1 at a cost of at most ≈ 1.3 log2 p multiplications in Fp,
assuming the owner of the key sends the required bit along. The storage overhead
(on top of c1) for Sp−1 is just a single element of Fp2 , as opposed to three elements
for St−1 as in 4.1.

If p mod q ≈ √q, then non-negative a and b of order about
√
q in Step 1 of

Algorithm 4.2 can be found at the cost of a division with remainder. This is, for
instance, the case if p and q are chosen as r2 + 1 and r2 − r + 1, respectively,
as suggested in [10, Section 3.1]. However, usage of such primes p and q is not
encouraged in [10] because of potential security hazards related to the use of
primes p of a ‘special form’.

Interestingly, and perhaps more surprisingly, sufficiently small a and b exist
and can be found quickly in the general case as well. Let L be the two-dimensional
integral lattice {(e1, e2)T ∈ Z2 : e1 + e2p ≡ 0 mod q}. If (e1, e2)T ∈ L, then

(e1 + e2)− e1p ≡ −e2p+ e2 + e2p
2 = e2(p

2 − p+ 1) ≡ 0 mod q

so that (e1 + e2,−e1)T ∈ L. Let v1 = (e1, e2)
T be the shortest non-zero vector

of L (using the L2-norm). It may be assumed that e1 ≥ 0. It follows that e2 ≥ 0,
because otherwise (e1+e2,−e1)T or (−e2, e1+e2)T ∈ L would be shorter than v1.
If v2 is the shortest of (e1 + e2,−e1)T , (−e2, e1 + e2)

T ∈ L, then |v2| < 2|v1| and
{v1, v2} is easily seen to be a shortest basis for L, with e2

1 + e1e2 + e22 = q and
e1, e2 ≤

√
q. This implies that given {v1, v2} and any integer vector (−u, 0)T ,

there is a vector (a, b)T with 0 ≤ a, b ≤ 2
√
q such that (−u + a, b)T ∈ L. It

follows that −u+ a+ bp ≡ 0 mod q, i.e., u ≡ bp+ a mod q as desired. Using the
initial basis {(q, 0)T , (−p, 1)T }, the vector v1 can be found quickly [3, Algorithm

1 The statement in [12, Proposition 5.7] that this requires a square-root computation
in Fp2 , as opposed to Fp, is incorrect. This follows immediately from the proof of [12,
Proposition 5.7].
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1.3.14], and for any u the vector (a, b)T can easily be computed. In [6, Section 4] a
similar construction was independently developed for ECC scalar multiplication.

Corollary 4.5 Given an integer u with 0 < u < q and trace values c1 and cp−2,
the trace value cu can on average be computed in about 3 log2 u multiplications
in Fp using Algorithm 4.2.

The owner of the key must explicitly compute cp−2 in order to compute the
ambiguity-resolving bit. Thus, the owner cannot take advantage of fast precom-
putation. This adds a minor cost to the key creation.

5 Improved single exponentiation

In this section it is shown how Algorithm 3.1 can be used to obtain an XTR
single exponentiation method that is on average more than 25% faster than
Algorithm 2.4. That is 35% faster than the single exponentiation from [10] based
on the slower field arithmetic. Using Algorithm 3.1 to obtain an on average faster
XTR single exponentiation is straightforward: to compute cu with 0 < u < q
based on c1 just apply Algorithm 3.1 to k = ` = 1 and any positive a, b with
a+ b = u, then a speedup of more than 14% over Algorithm 2.4 can be expected
according to Table 1.

The 25% faster method uses this same approach, but exploits the freedom of
choice of a and b: if a and b, i.e., d and e in Algorithm 3.1, can be selected in such
a way that the iteration in Step 4 of Algorithm 3.1 favors the ‘cheap’ steps, while
still quickly decreasing d and e, then Algorithm 3.1 should run faster than for
randomly selected a and b. Given the various substeps of Step 4 of Algorithm 3.1
and the associated costs, a good way to split up u in the sum of positive a and

b seems to be such that b/a is close to the golden ratio φ = 1+
√

5
2 , i.e., the

asymptotic ratio between two consecutive Fibonacci numbers. This can be seen
as follows. If the initial ratio between d and e is close to φ, then Step 4(a)i applies
and d, e is replaced by e, d − e. This corresponds to a ‘Fibonacci-step back’ so
that the ratio between the new d and e (i.e., e and d− e) can again be expected
to be close to φ. Furthermore, the sum of d and e is reduced by a factor φ,
which is a relatively good drop compared to the low cost of Step 4(a)i (namely,
three multiplications in Fp). This leads to the following improved XTR single
exponentiation.

5.1 Improved XTR single exponentiation. Let u and c1 be given, with
0 < u < q. To compute cu, do the following.

1. Let a = round( 3−
√

5
2 u) and b = u− a (where round(x) is the integer closest

to x). As a result b/a ≈ φ as above.

2. Let k = ` = 1, ck = c` = c1, ck−` = c0 = 3, ck−2` = c−1 = cp1 (cf.
Fact 2.3.1a).

3. Apply Algorithm 3.1 to a, b, ck, c`, ck−`, and ck−2`, resulting in cbk+a` = cu.
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Proposition 5.2 In the call to Algorithm 3.1 in Step 3 of Algorithm 5.1, the
values of d and e in Step 4 of Algorithm 3.1 are reduced to approximately half
their original sizes using a sequence of approximately logφ

√
u iterations using

just Step 4(a)i.

Proof. Letm = round(logφ u). Asymptotically form→∞ the values a and b in
Algorithm 5.1 satisfy b/a = φ+ε1 with |ε1| = O(2−m). Furthermore, for n→∞,
the n-th Fibonacci number Fn satisfies Fn

Fn−1
= φ + ε2 with |ε2| = O(2−n). It

follows that a = Fm−1

Fm
b+ ε3, where |ε3| is bounded by a small positive constant.

Define (d0, e0) = (b, a) and (di, ei) = (ei−1, di−1 − ei−1) for i > 0. With

induction it follows from a = Fm−1

Fm
b+ ε3 that

di =
Fm−i
Fm

b− (−1)iFiε3(2)

for 0 ≤ i < m. Algorithm 3.1 as called from Algorithm 5.1 will perform Fibonacci
steps as long as ei < di < 2ei. But as soon as di > 2ei this nice behavior will be
lost. From ei = di+1 and (2) it follows that di > 2ei is equivalent to

Fm−i−3

Fm
b < (−1)i−1Fi+3ε3.

Because Fm/b and |ε3| are both bounded by small positive constants, the first
time this condition will hold is when Fm−i−3 and Fi+3 are of the same order of
magnitude, i.e., m − i − 3 ≈ i + 3. Thus, the Fibonacci behavior is lost after
about m/2 = logφ

√
u iterations, at which point di ≈

√
u (this follows from (2)).

This completes the proof of Proposition 5.2.

Based on Proposition 5.2, a heuristic average runtime analysis of Algorithm 5.1
follows easily. The Fibonacci part consists of about logφ

√
u iterations consisting

of just Step 4(a)i of Algorithm 3.1, at a total cost of 3 logφ
√
u ≈ 2.2 log2 u

multiplications in Fp. Once the Fibonacci behavior is lost, the remaining d and
e are assumed to behave as random integers of about the same order of magnitude
as
√
u, so that, according to Conjecture 3.2, the remainder can on average be

expected to take about 6 log2

√
u = 3 log2 u multiplications in Fp.

Corollary 5.3 Given an integer u with 0 < u < q and a trace value c1, the
trace value cu can on average be computed in about 5.2 log2 u multiplications in
Fp using Algorithm 5.1.

This corresponds closely to the actual practical runtimes. It is more than 25%
better than Algorithm 2.4. Without the optional steps in Algorithm 3.1 the
speedup is reduced to about 22%.

Remark 5.4 If insufficient precision is used in the computation of a and b in
Step 1 of Algorithm 5.1, then ε3 in the proof of Proposition 5.2 is no longer
bounded by a small constant. It follows that di > 2ei already holds for a smaller
value of i, implying that the Fibonacci behavior is lost earlier. A precise analysis
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of the expected performance degradation as a function of the lack of precision
is straightforward. In practice this effect is very noticeable.

If a and b happen to be such that all steps are Fibonacci steps, then the cost
would be 4.3 log2 u. This is fewer than log2 u multiplications in Fp better than
the average behavior obtained.

6 Timings

To make sure that the methods introduced in this paper actually work, and to
discover their runtime characteristics, all new methods were implemented and
tested. In this section the results are reported, in such a way that the results
can easily and meaningfully be compared to the timings reported in [10].

Algorithm 2.5 was implemented, tested for correctness, and it was confirmed
that the speedup over the double exponentiation from [10] is negligible. However,
implementing Algorithm 2.5 was shown to be significantly easier than it was for
the matrix-based method from [10]. Thus, Algorithm 2.5 may still turn out to
be valuable if Algorithm 3.1 cannot be used (Remark 3.5).

The methods from Sections 3, 4, and 5 were implemented as well, and incor-
porated in cryptographic XTR applications along with the old methods from [10].
The resulting runtimes are reported in Table 2. Each runtime is averaged over
100 random keys and 100 cryptographic applications (on randomly selected data)
per key. The timings for the XTR single exponentiations with precomputation
do not include the time needed for the precomputations. The latter are given in
the last two rows. All times are in milliseconds on a 600 MHz Pentium III NT
laptop, and are based on the use of a generic and not particularly fast software
package for extended precision integer arithmetic [8]. More careful implementa-
tion should result in much faster timings. The point of Table 2 is however not
the absolute speed, but the relative speedup over the methods from [10].

The RSA timings are included to allow a meaningful interpretation of the
timings: if the RSA signing operation runs x times faster using one’s own soft-
ware and platform, then most likely XTR will also run x times faster compared
to the figures in Table 2. For each key an odd 32-bit RSA public exponent was
randomly selected. ‘CRT’ stands for ‘Chinese Remainder Theorem’. For a theo-
retical comparison of the runtimes of RSA, XTR, ECC, and various other public
key systems at several security levels, refer to [9].

7 Application to LUC and ECC

The exponentiations in LUC [18] and ECC when using the curve parameteri-
zation proposed in [14] can be evaluated using second degree recurrences. For
LUC this is described in detail in [15]. For ECC it is described in [16] and fol-
lows by combining [14] and [15]. For ease of reference the resulting runtimes are
summarized in this section.



Speeding up XTR 141

Table 2. RSA, old XTR, and new XTR runtimes.

method key selection signing verifying encrypting decrypting

1020-bit RSA with CRT 908 ms 40 ms 5 ms 5 ms 40 ms
without CRT 123 ms 123 ms

170-bit XTR old 64 ms 10 ms 21 ms 21 ms 10 ms
new, no precomputation 62 ms 7.3 ms 8.6 ms 15 ms 7.3 ms

new, with precomputation 4.3 ms 8.6 ms
precomputation 4.1 4.4 ms 8.8 ms

fast precomputation 4.4 1.6 ms 6.0 ms

7.1 LUC. Let p and q be primes such that q divides p + 1, and let g be a
generator of the order q subgroup of F∗

p2 . In LUC elements of 〈g〉 are represented
by their trace over Fp. Let vn ∈ Fp denote the trace over Fp of gn.

Conjecture 7.2 (cf. Conjecture 3.2) Given integers a and b with 0 < a, b < q
and trace values vk, v`, and vk−`, the trace value vbk+a` can on average be
computed in about 1.49 log2(max(a, b)) multiplications and 0.33 log2(max(a, b))
squarings in Fp, using the method implied by [15, Table 4].

Corollary 7.3 (cf. Corollary 4.3) Given integers u and t with 0 < u < q and
log2 t ≈ (log2 q)/2 and trace values v1, vt, and vt−1, the trace value vu can on
average be computed in about 0.75 log2 u multiplications and 0.17 log2 u squarings
in Fp using a generalization of Algorithm 4.2.

Corollary 7.4 (cf. Corollary 5.3) Given an integer u with 0 < u < q and a
trace value v1, the trace value vu can on average be computed in about 1.47 log2 u
multiplications and 0.17 log2 u squarings in Fp using a generalization of Algo-
rithm 5.1.

7.5 ECC. Let E be an elliptic curve over a prime field Fp, let E(Fp) be the
group of points of E over Fp, and let G ∈ E(Fp) be a point of prime order q.
As usual, the group operation in E(Fp) is written additively.

Conjecture 7.6 (cf. Conjecture 3.2) Given integers a and b with 0 < a, b < q
and points kG, `G, and (k − `)G, the x-coordinate of the point (bk + a`)G can
on average be computed in approximately 7 log2(max(a, b)) multiplications and
3.7 log2(max(a, b)) squarings in Fp, using the method implied by [15, Table 4]
combined with the elliptic curve parameterization from [14].

Corollary 7.7 (cf. Corollary 4.3) Given integers u and t with 0 < u < q and
log2 t ≈ (log2 q)/2 and points G, tG, and (t− 1)G, the x-coordinate of the point
uG can on average be computed in about 3.5 log2 u multiplications and 1.8 log2 u
squarings in Fp using a generalization of Algorithm 4.2.

Corollary 7.8 (cf. Corollary 5.3) Given an integer u with 0 < u < q and a
point G, the x-coordinate of the point uG can on average be computed in about
6.4 log2 u multiplications and 3.3 log2 u squarings in Fp using a generalization of
Algorithm 5.1.
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The single scalar multiplication algorithms are competitive with the ones de-
scribed in the literature [5]. The double scalar multiplication algorithm from [16]
(and as slightly adapted to obtain Conjecture 7.6) is substantially better than
other ECC double scalar multiplication methods reported in the literature [2].
For appropriate elliptic curves Corollary 7.7 can be combined with the method
proposed in [6], so that the runtime of Corollary 7.7 would hold for Corollary 7.8.

8 Conclusion

The XTR public key system as published in [10] is one of the fastest, most com-
pact, and easiest to implement public key systems. In this paper it is shown that
it is even faster and easier to implement than originally believed. The matrices
from [10] can be replaced by the more general iteration from Section 3. This re-
sults in 60% faster XTR signature applications, substantially faster encryption,
decryption, and key agreement applications, and more compact implementations.

Acknowledgment. The authors thank Peter Montgomery from Microsoft Re-
search whose remarks [16] stimulated this research.
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A Further improved double exponentiation

Almost 2% can be saved compared to Algorithm 3.1 by distinguishing more cases
in Step 4. This is done by replacing Step 4 of Algorithm 3.1 by the following:

4. As long as d 6= e replace (d, e, u, v, cu, cv, cu−v, cu−2v) by the 8-tuple given
below.
(a) If d > e then

i. if d ≤ 5.5e, then (e, d− e, u+ v, u, cu+v, cu, cv, cv−u).
ii. else if d and e are odd, then ( d−e2 , e, 2u, u+ v, c2u, cu+v, cu−v, c−2v).
iii. else if d ≤ 6.4e, then (e, d− e, u+ v, u, cu+v, cu, cv, cv−u).
iv. else if d ≡ e mod 3, then ( d−e3 , e, 3u, u+ v, c3u, cu+v, c2u−v, cu−2v).

v. else if d is even, then ( d2 , e, 2u, v, c2u, cv, c2u−v, c2(u−v)).
vi. else if d ≤ 7.5e, then (e, d− e, u+ v, u, cu+v, cu, cv, cv−u).
vii. else if de ≡ 2 mod 3, then ( d−2e

3 , e, 3u, 2u+v, c3u, c2u+v, cu−v, c−u−2v).
viii. else (e is even), then ( e2 , d, 2v, u, c2v, cu, c2v−u, c2(v−u)).

(b) Else (if e > d)
i. if e ≤ 5.5d, then (d, e− d, u+ v, v, cu+v, cv, cu, cu−v).
ii. else if e is even, then ( e2 , d, 2v, u, c2v, cu, c2v−u, c2(v−u)).

iii. else if e ≡ d mod 3, then ( e−d3 , d, 3v, u+ v, c3v, cu+v, c2v−u, cv−2u).

iv. else if de ≡ 2 mod 3, then (d, e−2d
3 , u+2v, 3v, cu+2v, c3v, cu−v, cu−4v).

v. else if e ≤ 7.4d, then (d, e− d, u+ v, v, cu+v, cv, cu, cu−v).
vi. else if d is odd, then ( e−d2 , d, 2v, u+ v, c2v, cu+v, cv−u, c−2u).
vii. else if e ≡ 0 mod 3, then ( e3 , d, 3v, u, c3v, cu, c3v−u, c3v−2u).

viii. else (d is even), then ( d2 , e, 2u, v, c2u, cv, c2u−v, c2(u−v)).

Steps 4(a)vii and 4(b)iv require 13.5 and 12.5 multiplications in Fp, respectively.
The cost of the other steps is as in Section 3. The average cost to compute
cbk+a` turns out to be about 5.9 log2(max(a, b)) multiplications in Fp. Omission
of Steps 4(a)iii, 4(a)vi, and 4(b)v, combined with a constant 4 instead of 5.5 in
Steps 4(a)i and 4(b)i leads to an almost 1% speedup over Algorithm 3.1.


