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Abstract. This paper describes truncated and impossible differential
cryptanalysis of the 128-bit block cipher Camellia, which was proposed
by NTT and Mitsubishi Electric Corporation. Our work improves on
the best known truncated and impossible differential cryptanalysis. As
a result, we show a nontrivial 9-round byte characteristic, which may
lead to a possible attack of reduced-round version of Camellia without
input/output whitening, FL or FL−1 in a chosen plain text scenario.
Previously, only 6-round differentials were known, which may suggest a
possible attack of Camellia reduced to 8-rounds. Moreover, we show a
nontrivial 7-round impossible differential, whereas only a 5-round im-
possible differential was previously known. This cryptanalysis is effective
against general Feistel structures with round functions composed of S-D
(Substitution and Diffusion) transformation.

Keywords: Block Cipher Camellia, Truncated Differential Cryptanaly-
sis, Impossible Differential Cryptanalysis

1 Introduction

Camellia is a 128-bit block cipher proposed by NTT and Mitsubishi Electric
Corporation [1]. It was designed to withstand all known cryptanalytic attacks
and to provide a sufficient headroom to allow its use over the next 10−20 years.
Camellia supports 128-bit block size and 128-, 192-, and 256-bit key lengths, i.e.
the same interface specifications as the Advanced Encryption Standard (AES).
Camellia was proposed in response to the call for contributions from ISO/IEC
JTC 1/SC27 with the aim of it being adopted as an international standard.
Camellia was also submitted to NESSIE (New European Schemes for Signature,
Integrity, and Encryption). Furthermore, Camellia was submitted to CRYP-
TREC (CRYPTography Research & Evaluation Committee) in Japan and it is
now being evaluated.
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Like E2 [5], which was submitted to AES, Camellia uses a combination
of a Feistel structure and the SPN-(Substitution and Permutation Network)-
structure, but it also includes new features such as the use of improved linear
transformation in SPN-structures, the change of SPN-structures from three lay-
ers into two, and the use of input/output whitening, FL and FL−1. The result
is improved immunity against truncated differential cryptanalysis, which was
applied successfully against reduced-round version of E2 by Matsui and Tokita
[12].
Truncated differential cryptanalysis was introduced by Knudsen [4], as a

generalization of differential crypanalysis [3]. He defined them as differentials
where only a part of the differential can be predicted. The notion of truncated
differentials as introduced by him is wide, but with a byte-oriented cipher such
as E2 or Camellia, it is natural to study byte-wise differentials as truncated
differentials.
The initial analysis of the security of Camellia and its resistance to the trun-

cated and impossible differential cryptanalysis is given in [1], [6]. They state
that Camellia with more than 11 rounds is secure against truncated differential
cryptanalysis, though they did not indicate the effective truncated differentials.
Up to now, the effective cryptanalysis applicable to Camellia has been the higher
order differential cryptanalysis proposed by Kawabata, et al.[7], which utilizes
non-trivial 6-round higher order differentials, and the differential crypatanalysis
which utilizes a 7-round differential [2].
Our analysis improves on the best known truncated and impossible crypt-

analysis against Camellia. Our cryptanalysis finds a nontrivial 9-round truncated
differential, which may lead to a possible attack of Camellia reduced to 11-rounds
without input/output whitening, FL, or FL−1 by a chosen plain text scenario.
Moreover, we show a nontrivial 7-round impossible differential, whereas only a
5-round impossible differentials were previously known.
The contents of this paper are as follows. In Section 2, we describes the struc-

tures of block ciphers, truncated differential probabilities, impossible differential
cryptanalysis and the block cipher Camellia. In Section 3, we describe the previ-
ous work on the security of block cipher Camellia. In Section 4, we cryptanalyze
Camellia by truncated differential cryptanalysis. In Section 5, we cryptanalyze
Camellia by impossible differential cryptanalysis. Section 6 concludes this paper.

2 Preliminaries

In this section, we describe the general structures of block ciphers, truncated dif-
ferential probabilities, impossible differential cryptanalysis and the block cipher
Camellia.

2.1 Feistel structures

Associate with a function f : GF(2)n → GF(2)n, a function D2n,f (L,R) =
(R ⊕ f(L), L) for all L,R ∈ GF(2)n. D2n,f is called the Feistel transformation
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associated with f . Furthermore, for functions f1, f2, · · · , fs : GF(2)
n → GF(2)n,

define ψn(f1, f2, · · · , fs) = D2n,fs
◦· · ·◦D2n,f2◦D2n,f1 . We call F (f1, f2, · · · , fs) =

ψn(f1, f2, · · · , fs) the s-round Feistel structure. At this time, we call the functions
f1, f2, · · · , fs the round functions of the Feistel structure F (f1, f2, · · · , fs).

2.2 SPN-structures [9]

This structure consists of two kinds of layers: nonlinear layer and linear layer.
Each layer has different features as follows.

Nonlinear (Substitution) layer: This layer is composed ofm parallel n-bit
bijective nonlinear transformations.

Linear (Diffusion) layer: This layer is composed of linear transformations
over the field GF(2n) (especially in the case of E2 and Camellia, GF(2)), where
inputs are transformed linearly to outputs per word (n-bits).
Next for positive integer s, we define the s-layer SPN-structure that consists

of s layers. First is a nonlinear layer, second is a linear layer, third is a nonlinear
layer, · · · .

2.3 Word characteristics

We define a word characteristic function χ : GF(2n)m → GF(2)m,
(a1, · · · , am) 7−→ (b1, · · · , bm) by

bi =

{

0 if ai = 0
1 otherwise,

Hereafter, we call χ(a) the word characteristic of a ∈ GF(2n)m. Especially in
the case of n = 8, we call χ(a) the byte characteristic.

2.4 Truncated differential probability

Definition 1. Let ∆x,∆y ∈ GF(2n)m denote the input and output differences
of the function f , respectively.

∆x = (∆x1,∆x2, · · · ,∆xm)

∆y = (∆y1,∆y2, · · · ,∆ym)

We define the input and output truncated differential (δx, δy) ∈ (GF(2)m)2 of
the function f , where

δx = (δx1, δx2, · · · , δxm)

δy = (δy1, δy2, · · · , δym)

by δx = χ(∆x), δy = χ(∆y).
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Let pf (δx, δy) denote the transition probability of the truncated differential
induced by function f . pf (δx, δy) is defined on the truncated differential (δx, δy).
Truncated differential probability pf (δx, δy) is defined by

pf (δx, δy) = 1/c
∑

χ(∆x)=δx,χ(∆y)=δy

Pr(x ∈ GF(2n)m|f(x)⊕ f(x⊕∆x) = ∆y),

where c is the number of ∆x that satisfy χ(∆x) = δx.

2.5 Block cipher Camellia

Fig. 1 shows the entire structure of Camellia. Fig. 2 shows its round functions,
and Fig. 3. shows FL-function and FL−1-function.
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Fig. 1. Block cipher Camellia
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Fig. 2. F function of Camellia

3 Previous security evaluation of Camellia

3.1 Security evaluation against truncated differential cryptanalysis
[10]

In [10], an algorithm to search for the effective truncated differentials of Feistel
ciphers was proposed. This search algorithm consists of recursive procedures.
Feistel ciphers are assumed to have S rounds and input and output block size is
2m bits.

Algorithm 1 [11]

Let ∆X(r),∆Y (r) ∈ GF(2)m be the input and output truncated difference of
the r-th round functions fr. (∆L,∆R) is the truncated difference of the plaintext.
Let Pr((∆X(0),∆X(1))|(∆L,∆R))) be the r-round truncated differential proba-
bilities.

1. Calculate all the truncated differential probabilities pf (δx, δy) of the round
function f for all truncated differentials (δx, δy) and save these probabilities
in memory.

2. Select and fix (∆L,∆R). Pr((∆X(0),∆X(1))|(∆L,∆R)) should be initialized
as 1 if (∆X(0),∆X(1)) = (∆L,∆R), otherwise as 0.
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Fig. 3. FL and FL−1 functions of Camellia

3. Utilizing the values of pf (δx, δy), calculate Pr((∆X
(r+1),∆X(r+2))|

(∆L,∆R)) for all (∆X(r+1),∆X(r+2)) from all values of Pr((∆X(r), ∆X(r+1))|(∆L,∆R)),
and save in memory. Repeat this from r = 1 to S. and save the most ef-
fective truncated differential probability in memory, where ’most effective’
means that the ratio of the obtained probability to the average probability is
the maximum.

4. Repeat 2-3 for every (∆R,∆L).
5. return the most effective truncated differential probability.

Using this procedure, we can search for all truncated differentials that lead to
possible attacks on reduced-round version of Camellia. We cannot find any such
truncated differentials for Camellia with more than 6-rounds by this algorithm.
The best 6-round truncated differential that leads to possible attacks on reduced-
round version of Camellia is shown in Fig. 4.
By this path, total probability p ' 2−88, whereas the average probability,

which can be obtained when entire round function is a random permutation, is
2−96.
This evaluation is accurate if we take the ideal approximation model as is

done in [10]. We note that this model is not always appropriate for Camellia,
especially because the round function of Camellia is a 2-layer SPN, i.e. S-D
(Substitution and Diffusion), not a 3-layer SPN, i.e. S-D-S. In [1] and [6], they
upper-bounded the truncated differential probabilities considering this gap, and
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Fig. 4. 6-round truncated differential of Camellia

no effective truncated differentials for Camellia with more than 7-rounds (with-
out input/output whitening, FL or FL−1) are known.

4 Truncated differential cryptanalysis of reduced-round
version of Camellia without input/output whitening,
FL or FL

−1

This section indicates the truncated differentials that are effective in the crypt-
analysis of reduced version of Camellia. These truncated differences cannot be
found by the algorithm described in the previous section. We define notation in
Fig. 5.
First we analyze the round function of Camellia. P -function composing F -

function is denoted as follows.

GF(28)8 → GF(28)8

(z1, z2, z3, z4, z5, z6, z7, z8) 7→ (z′1, z
′

2, z
′

3, z
′

4, z
′

5, z
′

6, z
′

7, z
′

8).

This transformation can be expressed by linear transformations represented
by matrix P .
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This transformation induces the transformation of the difference as follows.
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Next we consider the truncated differentials effective for truncated differential
cryptanalysis.

When ∆z1,∆z2 6= 0,∆z3 = ∆z4 = ∆z5 = ∆z6 = ∆z7 = ∆z8 = 0, then

























∆z1
∆z2
0
0
0
0
0
0

























7→

























∆z1
∆z1 ⊕∆z2
∆z1 ⊕∆z2

∆z2
∆z1 ⊕∆z2

∆z2
0

∆z1 ⊕∆z2

























When ∆z1 6= ∆z2, this can be expressed in terms of byte characteristics as

(11000000) 7→ (11111101).

In this case, this transition probability (truncated differential probability) p1 '
1.

Utilizing the value of

P−1 =
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when ∆z1,∆z2 6= 0,∆z1 6= ∆z2,∆z3 = ∆z4 = ∆z5 = ∆z1 ⊕ ∆z2,∆z6 =
∆z1,∆z7 = 0,∆z8 = ∆z2, we obtain
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which can be expressed in terms of byte characteristics as

(11111101) 7→ (11000000).

This transition probability (truncated differential probability) p2 ' 2−40

Utilizing these two transition probabilities, we can obtain a 9-round truncated
differential that contains two different paths as in Fig. 6
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Fig. 6. 9-round byte characteristic of Camellia
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In total, the first transition probability is approximately 2−112 (see the eval-
uation in Appendix).
Similarly, we consider the other path, which is as effective as the first one.

In total, this transition probability is also 2−112 (see also the evaluation in Ap-
pendix).
Summing the two probabilities, therefore, the truncated differential proba-

bility of

Pr(χ(∆L′) = (11000000), χ(∆R′) = (00000000)|

χ(∆L) = (00000000), χ(∆R) = (11000000)) ' 2.0× 2−112,

which is approximately twice as large as the average value 2−112.
Our search has not found any truncated differential more effective than this

for 9-round Camellia.

5 Impossible differential cryptanalysis of reduced-round
version of Camellia without input/output whitening,
FL or FL

−1

5.1 Impossible differential cryptanalysis

Impossible differential means the differential that holds with probability 0, or
the differential that does not exist. Using such an impossible differential, it is
possible to narrow down the subkey candidates. It is known that there is at
least one 5-round impossible differential in any Feistel structure with bijective
round functions. Since Camellia uses the Feistel structure with FL and FL−1

inserted between every 6-rounds and the round function is bijective, Camellia
has 5-round impossible differentials.

5.2 Impossible differential cryptanalysis of reduced Camellia

In [1], they state that they have not found impossible differentials for more than
5 rounds. In this subsection, we indicate one impossible differential of a 7-round
reduced-round version of Camellia without input/output whitening, FL and
FL−1 as shown in Fig. 7.
In this figure, we consider the byte characteristic

(0000000010000000) 7→ (1000000000000000),

In this case, we can prove that this is an impossible differential as follows.
First we assume χ(∆L) = (00000000), χ(∆R) = (10000000), χ(∆R′) =

(00000000), χ(∆L′) = (10000000).
This assumption implies that

∆x1 = ∆y1 = P∆y1 = 0,∆x2 = ∆R,∆x7 = ∆y7 = P∆y7 = 0,∆x6 = ∆L′.
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Fig. 7. 7-round impossible differential of Camellia

From
P∆y4 = P∆y2 ⊕ P∆y6,

it follows that
∆y4 = ∆y2 ⊕∆y6,

which implies

χ(∆x4) = χ(∆y4) =

{

(10000000) if ∆y2 6= ∆y6
(00000000) otherwise.

From the definition of P ,

χ(∆y3) = χ(∆x3) = (11101001),

where ∆y3 6= 0 because ∆x3 6= 0 follows from ∆y2 6= 0
Similarly,

χ(∆y5) = χ(∆x5) = (11101001),

where ∆y5 6= 0 because ∆x5 6= 0 follows from ∆y6 6= 0.
Since χ(∆R) = (10000000), it holds that

χ(∆x4 ⊕∆R) =

{

(10000000) if ∆x4 6= ∆R
(00000000) otherwise.
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Similarly, since χ(∆L′) = (10000000), it holds that

χ(∆x4 ⊕∆L′) =

{

(10000000) if ∆x4 6= ∆L′

(00000000) otherwise.

From Fig. 7, it holds that

P∆y3 = ∆x4 ⊕∆R,P∆y5 = ∆x4 ⊕∆L′,

however, there is no (t, s) ∈ (GF(28)8)2 such that χ(t) = (11101001), χ(s) =
(10000000), t 6= 0 and Pt = s.
Thus, the truncated differential represented by

(0000000010000000) 7→ (1000000000000000)

is impossible.

6 Conclusion

This paper evaluated the security of the block cipher Camellia against truncated
and impossible differential cryptanalysis. We introduced a nontrivial 9-round
truncated differential that leads to a possible attack of reduced-round version
of Camellia without input/output whitening, FL or FL−1 in a chosen plain
text scenario. Prior studies showed only a 6-round truncated differential for a
possible attack against 8-round Camellia. Moreover, we showed a nontrivial 7-
round impossible differential, whereas only a 5-round impossible differentials
were previously known.
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Appendix: Evaluation of truncated differential probability
of Camellia

First we evaluate the transition probability of the first path in Fig. 6.

Pr(χ(P∆y(1)) = (00000000)|χ(∆x(1)) = (00000000)) = 1

Pr(χ(∆x(2)) = (11000000)|χ(P∆y(1)) = (00000000),

χ(∆R) = (11000000)) = 1

Pr(χ(P∆y(2)) = (11111101)|χ(∆x(2)) = (11000000)) ' 1

Pr(χ(∆x(3)) = (11111101)|χ(P∆y(2)) = (11111101)),

χ(∆L) = (00000000)) = 1

Pr(χ(P∆y(3)) = (11000000)|χ(∆x(3)) = (11111101)) ' 2−40
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Pr(χ(∆x(4)) = (11000000)|χ(∆x(2)) = χ(P∆y(3)) = (11000000)) ' 1

Pr(χ(P∆y(4)) = (11111101)|χ(∆x(4)) = (11000000)) ' 1

Pr(χ(∆x(5)) = (00000000))|χ(∆x(4)) = χ(∆x(2)) = (11000000),

χ(∆x(1)) = (00000000))

= Pr(∆y(4) = ∆y(2)|χ(∆x(4)) = χ(∆x(2)) = (11000000)) ' 2−16

Pr(χ(P∆y(5)) = (00000000)|χ(∆x(5)) = (00000000)) = 1

Pr(χ(∆x(6)) = (11000000)|χ(P∆y(5)) = (00000000),

χ(∆x(4)) = (11000000)) = 1

Pr(χ(P∆y(6)) = (11111101)|χ(∆x(6)) = (11000000)) ' 1

Pr(χ(∆x(7)) = (11111101)|χ(P∆y(6)) = (11111101),

χ(∆x(5)) = (00000000)) = 1

Pr(χ(P∆y(7)) = (11000000)|χ(∆x(7)) = (11111101)) ' 2−40

Pr(χ(∆x(8)) = (11000000)|χ(P∆y(7)) = (11000000),

χ(∆x(6)) = (11000000)) ' 1

Pr(χ(P∆y(8)) = (11111101)|χ(∆x(8)) = (11000000)) ' 1

Pr(χ(∆x(9)) = (00000000)|χ(∆x(8)) = χ(∆x(6)) = (11000000),

χ(∆x(5) = (00000000))

= Pr(χ(P∆y(8)⊕∆x(7)) = (00000000)|

χ(∆x(8)) = χ(∆x(6)) = (11000000))

= Pr(∆y(8) = ∆y(6)|χ(∆x(8)) = χ(∆x(6)) = (11000000)) ' 2−16

Pr(χ(P∆y(9)) = (00000000)|χ(∆x(9)) = (00000000)) = 1

Pr(χ(∆x(10)) = (11000000)|χ(P∆y(9)) = (00000000),

χ(∆x(8)) = (11000000)) = 1

In total, the transition probability is approximately 2−112.
Similarly, we consider the other path in Fig. 6, which is as effective as the

first one.

Pr(χ(P∆y(1)) = (00000000)|χ(∆x(1)) = (00000000)) = 1

Pr(χ(∆x(2)) = (11000000)|χ(P∆y(1)) = (00000000),

χ(∆R) = (11000000)) = 1

Pr(χ(P∆y(2)) = (11111101)|χ(∆x(2)) = (11000000)) ' 1

Pr(χ(∆x(3)) = (11111101)|χ(P∆y(2)) = (11111101)),

χ(∆R) = (00000000)) = 1

Pr(χ(P∆y(3)) = (11111111)|χ(∆x(3)) = (11111101)) ' 1

Pr(χ(∆x(4)) = (11111111)|χ(∆x(2)) = (11000000),

χ(P∆y(3)) = (11111111)) ' 1

Pr(χ(P∆y(4)) = (11111101)|χ(∆x(4)) = (11111111)) ' 2−8

Pr(χ(∆x(5)) = (11111101))|χ(P∆y(4)) = χ(∆x(3)) = (11111101)) ' 1
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Pr(χ(P∆y(5)) = (11111101)|χ(∆x(5)) = (11111111)) ' 1

Pr(χ(∆x(6)) = (11111111)|χ(P∆y(5)) = (11111111),

χ(∆x(4)) = (11111111)) ' 1

Pr(χ(P∆y(6)) = (11111101)|χ(∆x(6)) = (11111111)) ' 2−8

Pr(P−1
∆x(7) ∈ {x ∈ GF(28)8|χ(x) = (11000000)}|

χ(∆y(2)) = (11000000), χ(∆y(4)) = χ(∆y(6)) = (11111111),

χ(P∆y(4)) = χ(P∆y(6)) = (11111101))

= Pr(∆y(4)⊕∆y(6) ∈ {x ∈ GF(28)8|χ(x) = (11000000)}|

χ(∆y(2)) = (11000000), χ(∆y(4)) = χ(∆y(6)) = (11111111),

χ(P∆y(4)) = χ(P∆y(6)) = (11111101)) ' 2−40

Pr(χ(P∆y(7)) = (11111111)|χ(∆x(7)) = (11111101)) ' 1

Pr(χ(∆x(8) = (11000000)|χ(∆R) = (11000000),

χ(∆y(3)) = χ(∆y(5)) = χ(∆y(7)) = (11111101))

= Pr(∆y(3)⊕∆y(5)⊕∆y(7) ∈ P−1{x ∈ GF(28)8|

χ(x) = (11000000)}|

χ(∆y(3)) = χ(∆y(5)) = χ(∆y(7)) = (11111101)) ' 2−40

Pr(χ(P∆y(8)) = (11111101)|χ(∆x(8)) = (11000000)) ' 1

Pr(χ(∆x(9)) = (00000000)|χ(∆y(8)) = (11000000),

P
−1
∆x(7) ∈ {x ∈ GF(28)8|χ(x) = (11000000)}) ' 2−16

Pr(χ(P∆y(9)) = (00000000)|χ(∆x(9)) = (00000000)) = 1

Pr(χ(∆x(10)) = (11000000)|χ(P∆y(9)) = (00000000),

χ(∆x(8) = (11000000)) = 1

In total, this transition probability is also approximately 2−112.


