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Abstract. Within the security architecture of the 3GPP system there is
a standardised encryption mode f8 based on the block cipher KASUMI.
In this work we examine the pseudorandomness of the block cipher KA-
SUMI and the provable security of f8. First we show that the three
round KASUMI is not a pseudorandom permutation ensemble but the
four round KASUMI is a pseudorandom permutation ensemble under
the adaptive distinguisher model by investigating the properties of the
round functions in a clear way. Second we provide the upper bound on
the security of f8 mode under the reasonable assumption from the first
result by means of the left-or-right security notion.

1 Introduction

There is a standardised encryption algorithm f8 within the security architecture
of the 3GPP(3rd Generation Partnership Project) system and this algorithm is
based on the block cipher KASUMI that produces a 64-bit output from a 64-bit
input under the control of an 128-bit key[12]. To guarantee the message confi-
dentiality over a radio access link of W-CDMA IMT-2000, f8 encryption mode
with KASUMI has been proposed. The purpose of this work is to investigate the
pseudorandomness of the block cipher KASUMI and the provable security of f8.
A block cipher can be regarded as a family of permutations on a message

space indexed by a secret key. Luby-Rackoff[7] introduced a theoretical model
for the security of block ciphers by using the notion of pseudorandom and super-
pseudorandom permutations. A pseudorandom permutation can be interpreted
as a block cipher that no attacker with polynomially many encryption queries
can distinguish between the block cipher and the perfect random permutation.
In [7], Luby and Rackoff used the DES-type transformation in order to construct
a pseudorandom permutation from a pseudorandom function. They showed that
the DES-type transformation with three rounds yielded 2n-bit pseudorandom
permutation under the assumption that each round function was an n-bit pseu-
dorandom function. Sakurai-Zheng[11] showed that the three round MISTY-type
transformation was not a pseudorandom permutation ensemble. MISTY-type
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transformation[8, 9] was another two-block structure different from DES-type.
Recently, Gilbert-Minier[4] and Kang et al.[6] showed independently that the
four round MISTY-type transformation was a pseudorandom permutation.

The overall structure of KASUMI is the DES-type, but its round function FO
composed of three round MISTY-type transformation which is not a pseudoran-
dom function. Thus we cannot straightforwardly apply the Luby-Rackoff’s result
to KASUMI. FO function within KASUMI has FI function as its component
function which is composed of four round unbalanced MISTY-type transforma-
tion. We show that this is a pseudorandom permutation. And we prove that the
three round KASUMI is not a pseudorandom permutation but the four round
KASUMI is a pseudorandom permutation. In [6], the authors investigated the
pseudorandomness of KASUMI for non-adaptive distinguishers. In this paper we
consider the security model for adaptive distinguishers similar to the approach
of Naor and Reingold[10] and investigate the properties of the round function of
KASUMI more precisely than the previous results like [4] and [6].

On the other hand f8 is one of the modes of operation for block ciphers. Sev-
eral modes of operation for block ciphers have been proposed to encrypt plain-
text blocks more than one block and to fulfil varying application requirements.
As standardized modes of operation, ECB(electronic codebook), CBC(cipher
block chaining), CFB(cipher feedback) and OFB(output feedback) are known[3].
3GPP f8 encryption mode can be seen as a variant of OFB mode.

Proving the security of modes of operation started by Bellare et al.[1] in
1994 who analyzed the security of CBC MAC mode. In 1997, Bellare et al.[2]
introduced the security notions of the symmetric encryption scheme and proved
the security of CTR mode and CBC mode. Recently, Alkassar et al.[13] analyzed
the security of CFB mode and proposed the OCFB mode which improved the
performance of CFB mode. In this paper we show that 3GPP f8 encryption
mode is secure by means of the left-or-right security notion. To prove this fact
we should have the assumption that the underlying block cipher KASUMI is
secure. This assumption is reasonable since by the first our result we already
obtain that KASUMI is a pseudorandom permutation ensemble.

2 Pseudorandomness of the block cipher KASUMI

2.1 Preliminaries

Let In denote the set of all n-bit strings and Pn be the set of all permuta-
tions from In to itself where n is a positive integer. That is, Pn = {π : In →
In | π is a bijection}. We define an n-bit perfect random permutation as an
uniformly drawn element of Pn.

Definition 1. Pn is called the UPE(uniform permutation ensemble) if all per-
mutations in Pn are uniformly distributed. That is, for any permutation π ∈ Pn,
Pr(π) = 1

2n! .
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We consider the following security model. Let D be a computationally un-
bounded distinguisher with an oracle O. The oracle O chooses randomly a per-
mutation π from the UPE Pn or from a permutation ensemble Λn ⊂ Pn. For
an n-bit block cipher, Λn is the set of permutations determined by all the secret
keys. The purpose of the distinguisher D is to distinguish whether the oracle O
implements the UPE Pn or Λn.

Definition 2. Let D be a distinguisher, Pn be the UPE, and Λn be a permuta-
tion ensemble obtained from a block cipher. Then the advantage ADVD of D is
defined by

ADVD = |Pr(D outputs 1 | O ← Pn)− Pr(D outputs 1 | O ← Λn)| ,

where O ← Pn and O ← Λn denote that O implements Pn and Λn, respectively.

Assume that the distinguisher D is restricted to make at most poly(n) queries
to the oracle O, where poly(n) is some polynomial in n. We call D is a pseudo-
random distinguisher if it queries x and the oracle answers y = π(x), where π is
a randomly chosen permutation by O. We say that D is a super-pseudorandom
distinguisher if it is a pseudorandom distinguisher and also makes a query y and
receives x = π−1(y) from the oracle O.

Definition 3. A function h : N→ R is called negligible if for any constant c > 0
and all sufficiently large n ∈ N, h(n) < 1

nc .

Definition 4. Let Λn be an efficiently computable permutation ensemble. Then
Λn is called a PPE(pseudorandom permutation ensemble) if ADVD is negligible
for any pseudorandom distinguisher D.

Definition 5. Let Λn be an efficiently computable permutation ensemble. Then
we call Λn is a SPPE(super-pseudorandom permutation ensemble) if ADVD is
negligible for any super-pseudorandom distinguisher D.

In Definition 4 and 5, a permutation ensemble is efficiently computable if
all permutations in the ensemble can be computed efficiently. See [10] for the
rigorous definition of this. It is reasonable assumption that Λn is an efficiently
computable permutation ensemble if it is obtained from an n-bit block cipher.
Hence we assume that any permutation ensemble obtained from a block cipher
is efficiently computable.
We define two transformations, DES-type and MISTY-type, which are ob-

tained from two representative structures of current block ciphers. Let Fn denote
the set of all functions from In to itself. We call briefly f is an n-bit function(resp.
permutation) where f ∈ Fn(resp. f ∈ Pn).

Definition 6. For any n-bit function f ∈ Fn, 2n-bit DES-type permutation
Df ∈ P2n is defined by Df (L,R) = (R,L⊕ f(R)), where L,R ∈ In.

Definition 7. For any n-bit permutation f ∈ Pn, 2n-bit MISTY-type permuta-
tion Mf ∈ P2n is defined by Mf (L,R) = (R, f(L)⊕R), where L,R ∈ In.
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Several noticeable results about the pseudorandomness of DES-type and
MISTY-type transformations are as follows. It is aware that PFE(pseudorandom
function ensemble) can be similarly defined as Definition 4 by considering func-
tion space instead of permutation space.

– Df2 ◦Df1 is not a 2n-bit PPE and Df3 ◦Df2 ◦Df1 is not a 2n-bit SPPE,
although all fi’s(i = 1, 2, 3) are independently chosen from an n-bit PFE[7].

– Df3 ◦Df2 ◦Df1 is a 2n-bit PPE and Df4 ◦Df3 ◦Df2 ◦Df1 is a 2n-bit SPPE
if all fi’s(i = 1, 2, 3, 4) are independently chosen from an n-bit PFE[7].

– Mf3 ◦Mf2 ◦Mf1 is not a 2n-bit PPE and Mf4 ◦Mf3 ◦Mf2 ◦Mf1 is not
a 2n-bit SPPE, although each fi(i = 1, 2, 3, 4) is chosen independently from
an n-bit PPE[4, 11].

– Mf4 ◦Mf3 ◦Mf2 ◦Mf1 is a 2n-bit PPE andMf5 ◦Mf4 ◦Mf3 ◦Mf2 ◦Mf1 is
a 2n-bit SPPE, where all fi’s(i = 1, 2, 3, 4, 5) are independently chosen from
an n-bit PPE[4–6].

On the other hand KASUMI is a modified version of the block cipher MISTY1[9]
and we can classify the permutation of KASUMI into the following three stages:

– The overall permutation of KASUMI is a 64-bit permutation composed of
the eight round DES-type permutation with the two round permutation FO
and FL.

– FO function is a 32-bit permutation composed of the three round MISTY-
type transformation with the round permutation FI.

– FI function is a 16-bit permutation which is composed of the four round
unbalanced MISTY-type transformation obtained from 7-bit S-box S7 and
9-bit S-box S9.

First we show that FI function is a 16-bit PPE by examining the pseudo-
randomness of unbalanced MISTY-type transformation. Second we prove that
three round KASUMI is not a 64-bit PPE but four round KASUMI is a 64-bit
PPE on the base of the first result. Note that FO function is not a 32-bit PPE,
so it doesn’t seem that the three round DES-type permutation of KASUMI is a
64-bit PPE as the Luby-Rackoff cipher. Since the FL function is to round key
mixing, we can omit FL function in order to analyze the pseudoranomness of
KASUMI.

2.2 Pseudorandomness of the unbalanced MISTY-type
transformation

We describe simple but useful two lemmas which their proofs are given in [6].

Lemma 1. Let π be a permutation chosen from the UPE Pn. Then for any
x1 6= x2, y ∈ In,

Pr(π(x1)⊕ π(x2) = y) =

{
1

2n−1 if y 6= 0 ,

0 otherwise.
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Lemma 2. Let π1 and π2 be two permutations independently chosen from the
UPE Pn. Then for any a, b, c, d, y ∈ In,

Pr (π1(a)⊕ π1(b)⊕ π2(c)⊕ π2(d) = y) <
1

2n−1
, for n ≥ 2.

Now we define two unbalanced MISTY-type transformations to examine ac-
curately the pseudorandomness of FI function.

Definition 8. Let n and m be two positive integers such that m ≤ n. Then for
any n-bit permutation f and m-bit permutation g, two (n +m)-bit unbalanced

MISTY-type transformations Mf ∈ Pn+m and M̂g ∈ Pn+m are defined by

Mf (L,R) = (R, f(L)⊕R) ∈ Im × In , ∀(L,R) ∈ In × Im

and

M̂g(L,R) = (R, g(L)⊕ R̂) ∈ In × Im , ∀(L,R) ∈ Im × In ,

where for any n-bit vector x, x̂ denotes the m-bit value obtained by discarding
the n −m most-significant end and for any m-bit vector y, y denotes the n-bit
value obtained by adding n−m zero bits to the most-significant end.

Note that the FI function of KASUMI can be represented as 16-bit permutation

M̂f4 ◦Mf3 ◦M̂f2 ◦Mf1 , where f1, f3 are 9-bit permutations and f2, f4 are 7-bit
permutations. The pseudorandomness of the FI function is guaranteed by the
following theorem.

Theorem 1. Let for any positive integer n and m such that m ≤ n, f1, f3 ∈
Pn and f2, f4 ∈ Pm be independently chosen from two n-bit and m-bit PPEs,

respectively. Then the four round unbalanced MISTY-type transformation M̂f4 ◦

Mf3 ◦ M̂f2 ◦Mf1 is an (n+m)-bit PPE.

Recall that a pseudorandom distinguisher D can make query x and the or-
acle O answers y = π(x), where π is a randomly chosen permutation by O.
Now we assume that D makes exactly q queries and refer to the sequence
{(x(1), y(1)), · · · , (x(q), y(q))} of all query-answer pairs as the D-transcript, where
q = poly(n). We consider an adaptive pseudorandom distinguisher as the follow-
ing definition.

Definition 9. D is called an adaptive pseudorandom distinguisher if it has a
transcript {(x(1), y(1)), · · · , (x(q), y(q))} and a function CD of D-transcript such
that for every 2 ≤ i ≤ q,

x(i) = CD({(x
(1), y(1)), · · · , (x(i−1), y(i−1))})

and

the ouput of D = CD({(x
(1), y(1)), · · · , (x(q), y(q))}) .
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Under the adaptive distinguisher model, for any i-th query of D is fully deter-
mined by the first i − 1 query-answer pairs and D’s output is a function of its
transcript. Throughout this paper we assume that all queries are distinct.
To prove the Theorem 1, we formally define a bad event and estimate its

probability.

Definition 10. For any n-bit permutation f1 andm-bit permutation f2, BAD(f1, f2)
is defined as the set of all D-transcripts σ = {(x(1), y(1)), · · · , (x(q), y(q))} satis-
fying: ∃1 ≤ i < j ≤ q such that

f1(x
(i)
L )⊕ x

(i)
R = f1(x

(j)
L )⊕ x

(j)
R

or

f2(x
(i)
R )⊕

̂
f1(x

(i)
L )⊕ x

(i)
R = f2(x

(j)
R )⊕

̂
f1(x

(j)
L )⊕ x

(j)
R ,

where x(i) = (x
(i)
L , x

(i)
R ) ∈ In × Im for all 1 ≤ i ≤ q.

Lemma 3. Let f1 and f2 be chosen independently from UPE Pn and UPE Pm,
respectively. Then for any D-transcript σ = {(x(1), y(1)), · · · , (x(q), y(q))} and
n ≥ m ≥ 2,

Pr(σ ∈ BAD(f1, f2)) < (q
2 − q)

(
1

2n
+
1

2m

)
.

Proof. By definition, σ ∈ BAD(f1, f2) if there exist 1 ≤ i < j ≤ q such that
either

f1(x
(i)
L )⊕ x

(i)
R = f1(x

(j)
L )⊕ x

(j)
R

or

f2(x
(i)
R )⊕

̂
f1(x

(i)
L )⊕ x

(i)
R = f2(x

(j)
R )⊕

̂
f1(x

(j)
L )⊕ x

(j)
R .

For any given i and j, we estimate probabilities of these two events. We have
the following three cases.

Case 1: x
(i)
L 6= x

(j)
L and x

(i)
R = x

(j)
R . Since f1 is a permutation,

Pr
(
f1(x

(i)
L )⊕ x

(i)
R = f1(x

(j)
L )⊕ x

(j)
R

)
= Pr

(
f1(x

(i)
L ) = f1(x

(j)
L )
)
= 0 .

Observe that, by the similar result to Lemma 1

Pr

(
f2(x

(i)
R )⊕

̂
f1(x

(i)
L )⊕ x

(i)
R = f2(x

(j)
R )⊕

̂
f1(x

(j)
L )⊕ x

(j)
R

)

= Pr

(
̂
f1(x

(i)
L ) =

̂
f1(x

(j)
L )

)
= 2n ·

2n−m · (2n − 2)!

2n!
=
2n−m

2n − 1
.

Case 2: x
(i)
L = x

(j)
L and x

(i)
R 6= x

(j)
R . In this case the probability of the first event

is equal to Pr(x
(i)
R = x

(j)
R ) = 0. By Lemma 1, the probability of the second event

is estimated as

Pr
(
f2(x

(i)
R )⊕ f2(x

(j)
R ) = x

(i)
R ⊕ x

(j)
R

)
=

1

2m − 1
.
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Case 3: x
(i)
L 6= x

(j)
L and x

(i)
R 6= x

(j)
R . By Lemma 1, the probability of the first

event is estimated as

Pr
(
f1(x

(i)
L )⊕ f1(x

(j)
L ) = x

(i)
L ⊕ x

(j)
L

)
=

1

2n − 1
.

Similarly, by Lemma 2, the probability of the second event is also estimated as

Pr

(
̂
f1(x

(i)
L )⊕

̂
f1(x

(j)
L )⊕ f2(x

(i)
R )⊕ f2(x

(j)
R ) = x

(i)
R ⊕ x

(j)
R

)
<

1

2m − 1
,

since n ≥ m ≥ 2.

Hence, for any case, we obtain that

Pr
(
f1(x

(i)
L )⊕ x

(i)
R = f1(x

(j)
L )⊕ x

(j)
R

)
<

1

2n−1

and

Pr

(
f2(x

(i)
R )⊕

̂
f1(x

(i)
L )⊕ x

(i)
R = f2(x

(j)
R )⊕

̂
f1(x

(j)
L )⊕ x

(j)
R

)
<

1

2m−1
.

Therefore

Pr (σ ∈ BAD(f1, f2)) <

(
q

2

)(
1

2n−1
+

1

2m−1

)
< (q2 − q)

(
1

2n
+
1

2m

)
. ¤

Definition 11. Let Λn+m be the (n + m)-bit permutation ensemble obtained

from Λn+m(f1, f2, f3, f4) = M̂f4 ◦Mf3 ◦ M̂f2 ◦Mf1 . Then TPn+m
and TΛn+m

are defined by the random variables such that TPn+m
is the D-transcript when

the oracle O implements the UPE Pn+m and TΛn+m
is the D-transcript when

the oracle O implements the permutation ensemble Λn+m.

Lemma 4. Let Λn+m be the (n+m)-bit permutation ensemble of all Λn+m(f1, f2,
f3, f4) such that f1, f3 ∈ Pn and f2, f4 ∈ Pm are independently chosen from the
n-bit and m-bit UPEs, respectively. Then for any D-transcript σ = {(x(1), y(1)),
· · · , (x(q), y(q))},

∣∣Pr
(
TΛn+m

= σ | σ /∈ BAD(f1, f2)
)
− Pr

(
TPn+m

= σ
)∣∣ < εn,m,q ,

where

εn,m,q =
1

2n+m(2n − 1)(2m − 1) · · · (2n − q + 1)(2m − q + 1)
.

Proof. For any possible D-transcript we have that

Pr
(
TPn+m

= σ
)
=
(2n+m − q)!

2n+m!
.
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Consider any specific n-bit permutation f1 and m-bit permutation f2 such that
σ /∈ BAD(f1, f2). Note that TΛn+m

= σ if and only if for all 1 ≤ i ≤ q, y(i) =

Λn+m(x
(i)). Since Λn+m = M̂f4 ◦Mf3 ◦ M̂f2 ◦Mf1 ,

y(i) = Λn+m(x
(i))⇔ f3(L

(i)
2 ) = y

(i)
L ⊕R

(i)
2 ∈ In and f4(R

(i)
2 ) = ŷ

(i)
L ⊕ y

(i)
R ∈ Im ,

where (L
(i)
2 , R

(i)
2 ) = M̂f2 ◦Mf1(x

(i)
L , x

(i)
R ). By definition of BAD(f1, f2), if σ /∈

BAD(f1, f2), then L
(i)
2 6= L

(j)
2 and R

(i)
2 6= R

(j)
2 for all 1 ≤ i 6= j ≤ q. Therefore,

since f3 and f4 are independently chosen from the UPEs Pn and Pm, respectively,
we obtain that

Pr
(
TΛn+m

= σ | σ /∈ BAD(f1, f2)
)
=
(2n − q)!

2n!
·
(2m − q)!

2m!
,

which complete the assertion. ¤

Proof of Theorem 1: It suffices to show the assertion under the assumption that
f1, f3 ∈ Pn and f2, f4 ∈ Pm be independently chosen from two n-bit and m-bit
UPEs, respectively. Let Λn+m be the (n +m)-bit permutation ensemble of all

Λn+m(f1, f2, f3, f4) = M̂f4◦Mf3◦M̂f2◦Mf1 and Θ be the set of all D-transcripts
σ such that the output of D is CD(σ) = 1. Then

ADVD

=
∣∣Pr

(
CD(TΛn+m

) = 1
)
− Pr

(
CD(TPn+m

) = 1
)∣∣

≤
∑

σ∈Θ

Pr(σ /∈ BAD(f1, f2))

·
∣∣Pr

(
TΛn+m

= σ | σ /∈ BAD(f1, f2)
)
− Pr

(
TPn+m

= σ
)∣∣ (1)

+
∑

σ∈Θ

Pr
(
TΛn+m

= σ, σ ∈ BAD(f1, f2)
)

(2)

+
∑

σ∈Θ

Pr (σ ∈ BAD(f1, f2)) · Pr(TPn+m
= σ). (3)

By Lemma 4, the term (1) is bounded above by εn,m,q and by Lemma 3, the
value of (3) is bounded by

max
σ∈Θ

Pr(σ ∈ BAD(f1, f2)) · Pr
(
∪σ∈Θ{TPn+m

= σ}
)
< (q2 − q)

(
1

2n
+
1

2m

)
.

On the other hand, by Lemma 3, the value of (2) is estimated as

∑

σ∈Θ

Pr
(
TΛn+m

= σ, σ ∈ BAD(f1, f2)
)

=
∑

σ∈Θ

Pr(TΛn+m
= σ) · Pr

(
σ ∈ BAD(f1, f2) | TΛn+m

= σ
)

< (q2 − q)

(
1

2n
+
1

2m

)
.
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Therefore we can conclude that

ADVD < 2(q2 − q)

(
1

2n
+
1

2m

)
+ εn,m,q ,

which is negligible. ¤

2.3 Pseudorandomness of KASUMI

From Theorem 1, it becomes a reasonable assumption that FI function of KA-
SUMI is a PPE. In order to investigate the pseudorandomness of KASUMI, we
use a simplified figure of KASUMI. The four round simplified KASUMI is il-
lustrated in Figure 1, where x = (x1, x2, x3, x4) denotes a 4n-bit input value,
w = (w1, w2, w3, w4), y = (y1, y2, y3, y4), and z = (z1, z2, z3, z4) denote corre-
sponding outputs of the two, three, and four round KASUMI, respectively. Each
of xi, wi, yi, and zi is an n-bit value. By the following theorem, we obtain the

z z z z

y y y y

w w w w

x x x x

fff

f

f

fff

ff

ff

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

12 11 10

9 8 7

6 5 4

3 2 1

Fig. 1. Simplified four round KASUMI

fact that three round of KASUMI is insufficient to be a PPE.
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Theorem 2. The three round simplified KASUMI is not a 4n-bit PPE though
fi’s(i = 1, · · · , 9) of Figure 1 are independently chosen from an n-bit PPE.

Proof. Let Λ4n be the set of all permutations over I4n obtained from the three
round simplified KASUMI. Consider a distinguisher D such as follows:

1. D chooses four 4n-bit queries x(1), x(2), x(3), and x(4) such that

x(1) = (0, 0, x3, x4) , x(2) = (x1, 0, x3, x4) ,

x(3) = (0, x2, x3, x4) , x(4) = (x1, x2, x3, x4) ,

where x1 6= 0 6= x2 and x3, x4 are fixed n-bit values.
2. D sends these four queries to the oracle O and receives the corresponding

answers (y
(i)
1 ,y

(i)
2 , y

(i)
3 ,y

(i)
4 )(i = 1, 2, 3, 4) from the oracle.

3. D outputs 1 if and only if

y
(1)
2 ⊕ y

(2)
2 ⊕ y

(3)
2 ⊕ y

(4)
2 = 0 .

If the oracle implements the UPE P4n, then we obtain that

Pr(D outputs 1 | O ← P4n) ≤
24n(24n − 1)(24n − 2)23n(24n − 4)!

24n!

=
23n

24n − 3
≤

1

2n−1
.

On the other hand, if O implements Λ4n, then for x
(1) = (0, 0, x3, x4), x

(2) =
(x1, 0, x3, x4), x

(3) = (0, x2, x3, x4), and x(4) = (x1, x2, x3, x4), we can see from
Figure 1 that the corresponding 2n-bit inputs of the second round are

(F1(x3, x4)|L, F1(x3, x4)|R) , (F1(x3, x4)|L, x1 ⊕ F1(x3, x4)|R) ,

(x2 ⊕ F1(x3, x4)|L, F1(x3, x4)|R) , (x1 ⊕ F1(x3, x4)|L, x2 ⊕ F1(x3, x4)|R)

respectively, where F1 = Mf3 ◦Mf2 ◦Mf1 and (x|L, x|R) denote the left and
right n-bit block of 2n-bit value x. Thus we obtain by the similar argument of
Sakurai-Zheng[11] that

y
(1)
2 ⊕ y

(2)
2 ⊕ y

(3)
2 ⊕ y

(4)
2 = 0

with probability 1.
Consequently we obtain that

ADVD = |Pr(D outputs 1 | O ← P4n)− Pr(D outputs 1 | O ← Λ4n)|

≥ 1−
1

2n−1
,

which is non-negligible. ¤

The following theorem guarantees that the four or more round KASUMI is
a pseudorandom permutation ensemble.
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Theorem 3. If fi’s(i = 1, 2, · · · , 12) in Figure 1 are independently chosen from
an n-bit PPE, then the four round KASUMI is a 4n-bit PPE.

From Figure 1, we can see that the second round output w3 and w4 are
depend on f1, · · · , f6 and f1, · · · , f5, respectively. So we set

w3 = wf1,··· ,f6
3 (x) and w4 = wf1,··· ,f5

4 (x) ,

where x = (x1, x2, x3, x4) ∈ I4n is an input value of KASUMI. As the similar
work to previous section, we define bad event needed to prove Theorem 3.

Definition 12. For every n-bit permutations f1, · · · , f6, BAD(f1, · · · , f6) is
defined as the set of all D-transcripts σ = {(x(1),y(1)), · · · , (x(q),y(q))} satis-
fying: ∃1 ≤ i < j ≤ q such that

wf1,··· ,f6
3 (x(i)) = wf1,··· ,f6

3 (x(j)) or wf1,··· ,f5
4 (x(i)) = wf1,··· ,f5

4 (x(j)) .

Lemma 5. Let f1, · · · , f6 be chosen independently from UPE Pn. Then for any
D-transcript σ = {(x(1),y(1)), · · · , (x(q),y(q))},

Pr(σ ∈ BAD(f1, · · · , f6)) ≤
q2 − q

2n − 1
.

Proof. Let α
(i)
k be the n-bit input value of fk(k = 1, · · · , 6) when the query of D

is x(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 )(i = 1, · · · , q). For example,

α
(i)
3 = x

(i)
3 ⊕ f1(x

(i)
4 ) ,

α
(i)
5 = x

(i)
1 ⊕ x

(i)
3 ⊕ f1(x

(i)
4 )⊕ f2(x

(i)
3 )⊕ f3(x

(i)
3 ⊕ f1(x

(i)
4 )) .

Then it is easy to show that if α
(i)
k 6= α

(j)
k for some k = 1, · · · , 6, by Lemma 1

Pr
(
wf1,··· ,f6

3 (x(i)) = wf1,··· ,f6
3 (x(j))

)
≤

1

2n − 1
,

otherwise (α
(i)
k = α

(j)
k , for all k = 1, · · · , 6) we obtain that this probability is

zero, since in this case wf1,··· ,f6
3 (x(i)) = wf1,··· ,f6

3 (x(j)) implies to x(i) = x(j)

which contradicts to the assumption that all queries are distinct. By the similar
argument we can also show that Pr(wf1,··· ,f5

4 (x(i)) = wf1,··· ,f5
4 (x(j)) has the same

upper bound. ¤

Lemma 6. Let Λ4n be the 4n-bit permutation ensemble obtained from the four
round KASUMI of Figure 1 where all fi’s(i = 1, · · · , 12) are independently
chosen from the n-bit UPE. Then for any D-transcript σ = {(x(1),y(1)), · · · ,
(x(q),y(q))},

|Pr (TΛ4n
= σ | σ /∈ BAD(f1, · · · , f6))− Pr (TP4n

= σ)| < ε′n,q ,

where

ε′n,q =
1

24n(2n − 1)4 · · · (2n − q + 1)4
.
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Proof. For any possible D-transcript we have that

Pr (TP4n
= σ) =

(24n − q)!

24n!
.

In Figure 1, by considering four paths w3 → f8 → z2, w3 → f8 → f10 → f12 →
z3, w4 → f7 → f9 → z1, and w4 → f7 → f9 → f11 → z4, we can obtain that

Pr (TΛ4n
= σ | σ /∈ BAD(f1, · · · , f6)) =

(
(2n − q)!

2n!

)4

,

which complete the proof of this lemma. ¤

Proof of Theorem 3: From Lemma 5 and 6, Theorem 3 is proved straightfor-
wardly by the similar process in the proof of Theorem 1. ¤

3 Provable security of the encryption mode f8

To guarantee the message confidentiality over the wireless link of W-CDMA
for 3GPP, f8 encryption mode has been proposed, which is based on the block
cipher KASUMI[12]. In this section we examine the provable security of the
3GPP encryption mode f8 under the assumption that the underlying block
cipher is a pseudorandom permutation. Note that this assumption is reasonable
from the result of previous section.

3.1 Notions of security for a symmetric encryption mode

Symmetric encryption scheme is defined as a triple of algorithms, (K, E ,D),
where K is the probabilistic algorithm for key generation, E is the probabilis-
tic algorithm which encrypts the plaintext M with the key K and outputs the
ciphertext C, and D is the the deterministic algorithm which decrypts the ci-
phertext C with the key K and outputs the corresponding plaintextM . HereM
is selected in a set of messages. Bellare et al.[2] considered four notions for secu-
rity of symmetric encryption modes. “Real-or-random indistinguishability” and
its variant “left-or-right indistinguishability” were first introduced. “Find-then-
guess security” and “semantic security” which are the notions for the asymmetric
encryption scheme, were adapted to the symmetric setting. They also investi-
gated the relation among these notions of security[2]. Real-or-random and left-
or-right indistinguishability were equivalent up to a small constant factor in the
reduction. Also these notions had a security-preserving reduction to find-then-
guess security. However the reduction from find-then-guess security to left-or-
right indistinguishability was not security-preserving. It had security-preserving
reductions between find-then-guess and semantic security.
Here we analyze the security of 3GPP f8 mode by applying the notion of

left-or-right indistinguishability, since the left-or-right security implies good re-
ductions to the other three definitions as described above. Left-or-right indis-
tinguishability is a strong form of chosen-plaintext security. It considers two
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different games. In either game a query is a pair (x1, x2) of equal-length strings
from the given message space. In either game a random key a ∈ K is selected
at random and fixed for duration of the game. In Game 1, an oracle receiving
(x1, x2) responds with Ea(x1). In Game 2, it responds with Ea(x2). Thus Game
1 provides a “left” oracle and Game 2 provides a “right” oracle. An encryption
scheme is secure if a reasonable adversary cannot obtain significant advantage
in distinguishing Game 1 and 2.

Definition 13 (Left-or-right indistinguishability[2]). Encryption scheme
(K, E ,D) is said to be (t, q, µ; ε)-secure, in left-or-right sense, if for any adversary
A who runs in time at most t and makes at most q oracle queries, totaling at
most µ bits,

ADV lr
A

def
=
∣∣∣Pra←K

(
AEa(O(1,(·,·))) = 1

)
− Pra←K

(
AEa(O(2,(·,·))) = 1

)∣∣∣ ≤ ε .

Encryption scheme (K, E ,D) is (t, q, µ; ε)-break, in left-or-right sense, if for an
adversary A who runs in time at most t and makes at most q oracle queries,
totaling at most µ bits, ADV lr

A > ε.

In the above definition AEa(O(1,(·,·))) and AEa(O(2,(·,·))) indicate A with an oracle
O which returns y = Ea(x1) and y = Ea(x2), respectively, in response to query
(x1, x2). And Pra←K(A

Ea(O(i,(·,·))) = 1) (i = 1, 2) denotes the probability that
the adversary A with an oracle O(i, (·, ·)) (i = 1, 2) outputs 1 when a key a is
chosen randomly from the key space K.
The encryption mode f8 is based on the block cipher KASUMI and this is

a pseudorandom permutation ensemble by referring to last section. Let Bl be
the function family obtained from a block cipher with l-bit input/output values.
To analyze the provable security of f8 mode, we need more rigorous definition
about PPE than Definition 4.

Definition 14. A permutation family Bl is said to be a (t, q; ε)-secure PPE if
for any distinguisher D who makes at most q oracle queries and runs in time at
most t, ADVD ≤ ε.

3.2 Security of f8 encryption mode

In this subsection, we prove the security of 3GPP f8 encryption mode by using
the notion of left-or-right security. The underlying function of the encryption
mode is fixed to a PPE Bl with l-bit input/output length. Let a ∈ K be the key
shared between the two parties who run the encryption scheme. It will be used
to specify the function g = Bl[a] and g

′ = Bl[a⊕KM ] determined by the key a
and a⊕KM , respectively, where KM is an 128-bit fixed constant. We describe
rigorously the encryption mode f8 as the following scheme. This scheme is also
illustrated in Figure 2.
The scheme f8g(x) works as follows:

Function f8g(x)
IV ← g′(Count||Direction||Bearer||0 . . . 0)
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Reg1 = IV
for i = 1, . . . , n do

oi = g(Regi)
yi = oi ⊕ xi
Regi+1 = IV ⊕ i⊕ oi

return (y1 . . . yn)

Fig. 2. 3GPP f8 encryption mode

In the above scheme Count is an encryption sequence number of 32-bit length
depending on the time, Bearer is a 5-bit bearer identifier, Direction is an 1-bit
direction identifier, and 0 . . . 0 denotes the padding so that the length of the
input is an l-bit. The difference between OFB and f8 mode is that an initial
nonce ctr = (Count||Direction||Bearer||0 . . . 0) is not sent to the receiver and
g′(ctr) is applied to the underlying function g, instead of ctr in a cleartext.

We consider two function family. f8Pl is the set of all functions f8g, where
g is chosen from the UPE Pl, and f8Bl is the set of all functions f8g, where
g is chosen from the PPE Bl. We first derive an upper bound on the success
of any adversary trying to break the f8Pl in the left-or-right sense. Next we
examine the security of f8Bl . The basic idea for proving the security of f8 is
that left-or-right security breaks down at the first repetition of the value of Reg.
If Regi = Regj for i 6= j, then also oi = oj . Hence yi ⊕ yj = xbi ⊕ xbj (b = 1, 2).

Thus b is revealed if x1
i ⊕ x1

j 6= x2
i ⊕ x2

j .
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Lemma 7. Let A be any adversary attacking f8Pl in the left-or-right sense,
making at most q queries, totaling at most µ bits. Then

ADV lr
A ≤ δf8Pl

def
=

µ/l · (µ/l − 1)

2l+1
.

Proof. Let (x1
1, x

2
1), . . . , (x

1
q , x

2
q) be the oracle queries of the adversary A, each

consisting of a pair of equal length messages. These queries are random variables
that depend on the coin tosses of A and responses of the oracle to previous
queries. Let ctri = (Counti||Directioni||Beareri||0 . . . 0) and IVi = g′(ctri) ∈
{0, 1}l, associated to (x1

i , x
2
i ) as computed by the oracle, for i = 1, . . . , q. Let ni

be the number of blocks in the i-th query, xbi = xbi [1] · · ·x
b
i [ni] (b ∈ {1, 2}) be

the i-th query message, and yi = yi[1] · · · yi[ni] be the response of the oracle to
the i-th query message. Regi = Regi[1] · · ·Regi[ni] is the contents of the register
Reg in the i-th query, where Regi[j] (j ∈ {1, . . . , ni}) denotes the content of the
register corresponding to the j-th block of the i-th query message. We set oi[j]
is a value computed by applying Regi[j] to the function g. Let Pr1(·) denote
the probability in Game 1 providing the adversary A with the left oracle, and
Pr2(·) denote the probability in Game 2 providing the adversary A with the
right oracle.
Let C be the collision event, i.e., Regi[k] = Regj [k

′] whenever (i, k) 6= (j, k′),
for all i, j = 1, . . . , q and k = 1, . . . , ni and k

′ = 1, . . . , nj . The event C
c, comple-

ment of C, depends on IVi, oi[k] and k for each query. Since g and g
′ are chosen

from the UPE Pl, IVi and oi[k] are random and independent of the message
given to the oracle. Thus the collision probability does not depend on b, and the
following equation holds:

Pr1(C
c) = Pr2(C

c) . (4)

For the same reason, if no collision occurs, the adversary outputs 1 with the
same probability for Game 1 and Game 2 because each ciphertext block given to
the adversary is independent of any previous ciphertext blocks and of message
blocks. Namely, the following holds:

Pr1 (A = 1 | C
c) = Pr2 (A = 1 | C

c) . (5)

Therefore, by using the equation (4) and (5), we can write the adversary’s ad-
vantage as follows:

ADV lr
A =

∣∣Pr1(A = 1)− Pr2(A = 1)
∣∣

=
∣∣Pr1(A = 1 | C) · Pr1(C) + Pr1(A = 1 | C

c) · Pr1(C
c)

−Pr2(A = 1 | C) · Pr2(C)− Pr2(A = 1 | C
c) · Pr2(C

c)
∣∣

=
∣∣(Pr1(A = 1 | C)− Pr2(A = 1 | C))Pr1(C)

∣∣
≤ Pr1(C) .

Given the equation (4) we drop the subscript in talking about the probability
of C and write the above just as Pr(C). Now we want to compute the upper
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bound of Pr(C). The adversary does not know the contents of the register Reg
because she does not know IVi = g(ctri). Hence the adversary does not identify
the collision Regi[k] = Regj [k

′] ((i, k) 6= (j, k′) for all i, j = 1, . . . , q and k =
1, . . . , ni and k

′ = 1, . . . , nj). However the adversary knows the values oi[k] since
she knows the queried message block xi[k] and the answered ciphertext block
yi[k]. Then she can identity oi[k] = oj [k

′]. Since g is a permutation, the output
collision, oi[k] = oj [k

′], implies the following:

oi[k] = oj [k
′] ⇔ g(Regi[k]) = g(Regj [k

′]) ⇔ Regi[k] = Regj [k
′] .

Thus, to compute the upper bound of Pr(C) we compute the probability of
the output collision event, T , i.e., oi[k] = oj [k

′] whenever (i, k) 6= (j, k′), for all
i, j = 1, . . . , q and k = 1, . . . , ni and k

′ = 1, . . . , nj . We define the stream B as

B = o1[1] . . . o1[n1]o2[1] . . . o2[n2] . . . oq[1] . . . oq[nq].

That is, B is the output values of g until the nq-th encryption of the last q-th
query. The length of B is Q = l ·

∑q
i=1 ni ≤ µ bits. We first compute the number

of streams with a collision oi[k] = oj [k
′] for every possible pair (i, k) and (j, k′)

((i, k) 6= (j, k′), 1 ≤ i, j ≤ q, k = 1, . . . , ni, k
′ = 1, . . . , nj). As oi[k] = oj [k

′], there
are 2l possible values for the both values. The remaining Q− 2l bits have 2Q−2l

possibilities. Thus the number of streams with a collision is 2Q−l. There are
(µ/l)(µ/l− 1)/2 possible pairs (i, k) and (j, k′). Hence the number η of streams
B with at least one collision is less than (µ/l)(µ/l − 1)2Q−l−1. The stream B
has 2Q possibilities. Thus

Pr(T c) =
(2Q − η)

2Q
≥ 1−

(µ/l)(µ/l − 1)

2l+1
.

This implies the following because of Pr(C) = Pr(T ):

Pr(C) ≤
(µ/l)(µ/l − 1)

2l+1
. ¤

In the practical situation, because the underlying block cipher g is modeled
as a pseudorandom permutation, we prove the security of 3GPP f8 mode using
a pseudorandom permutation. This is derived from the Lemma 7.

Theorem 4. Let Bl be a (t
′, q′; ε′)-secure PPE with l-bit input/output length.

Then f8Bl scheme is (t, q, µ; ε)-secure in the left-or-right sense. Here q = q′,
µ = q′l, t = t′ − cµl (l + l) and ε = 2ε′ + δf8Pl , where c > 0 is a small constant

and δf8Pl =
(µ/l)(µ/l−1)

2l+1 .

Proof. The details of this proof are omitted since it is similar to the proof of
Theorem 12 in [2] by replacing pseudorandom function with pseudorandom per-
mutation. ¤



Provable Security of 3GPP Algorithms 273

4 Conclusion

In this work we examined the pseudorandomness of the block cipher KASUMI
and the provable security of f8. We proved that FI function within KASUMI
composed of four round unbalanced MISTY-type structure was a pseudorandom
permutation. And we showed that the three round KASUMI was not a permu-
tation ensemble but the four round KASUMI was a pseudorandom permutation
ensemble under the adaptive distinguisher model. Moreover we provided the
upper bound on the security of f8 encryption mode under the reasonable as-
sumption from the first result by means of the left-or-right security notion.
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