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Abstract. We apply autocorrelation and Walsh coefficients for the in-
vestigation of correlation immune and resilient Boolean functions. We
prove new lower bound for the absolute indicator of resilient functions
that improves significantly (for m > (n − 3)/2) the bound of Zheng
and Zhang [18] on this value. We prove new upper bound for the num-
ber of nonlinear variables in high resilient Boolean function. This result
supersedes the previous record. We characterize all possible values of re-
siliency orders for quadratic functions and give a complete description of
quadratic Boolean functions that achieve the upper bound on resiliency.
We establish new necessary condition that connects the number of vari-
ables, the resiliency and the weight of an unbalanced nonconstant cor-
relation immune function and prove that such functions do not exist for
m > 0.75n−1.25. For high orders ofm this surprising fact supersedes the
well-known Bierbrauer–Friedman bound [8], [1] and was not formulated
before even as a conjecture. We improve the upper bound of Zheng and
Zhang [18] for the nonlinearity of high order correlation immune unbal-
anced Boolean functions and establish that for high orders of resiliency
the maximum possible nonlinearity for unbalanced correlation immune
functions is smaller than for balanced.

Keywords: Boolean functions, stream ciphers, correlation immunity, re-
siliency, nonlinearity, balancedness, Walsh Transform, autocorrelation coefficients,
global avalanche characteristics, bounds.

1 Introduction

Different types of ciphers use Boolean functions. So, LFSR based stream ciphers
use Boolean functions as a nonlinear combiner or a nonlinear filter, block ci-
phers use Boolean functions in substitution boxes and so on. Boolean functions
used in ciphers must satisfy some specific properties to resist different attacks.
One of the most important desired properties of Boolean functions in LFSR
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based stream ciphers is correlation immunity introduced by Siegenthaler [13].
Another important properties are nonlinearity, algebraic degree and so on. For
Boolean functions used in block ciphers the most important properties are non-
linearity and differential (or autocorrelation) characteristics (propagation degree,
avalanche criterion, the absolute indicator and so on) based on the autocorre-
lation coefficients of Boolean functions. Note that in recent research differential
characteristics are considered as important for stream ciphers too.

Correlation immunity (or resiliency) is the property important in cryptogra-
phy not only in stream ciphers. This is an important property if we want that
the knowledge of some specified number of input bits does not give a (statistical)
information about the output bit. In this respect such functions are considered
in [6], [3] and other works.

Many works (see for example [5]) demonstrate that correlation immunity and
autocorrelation characteristics are in strong contradiction. Some of results in our
paper confirm it. Nevertheless, it appears that autocorrelation coefficients of a
Boolean function is a power tool for the investigation of correlation immunity
and other properties even without a direct relation to differential characteristics.
The results of our paper demonstrate it.

In Section 2 we give preliminary concepts and notions. In Section 3 we prove

new lower bound ∆f ≥
(

2m−n+3
n+1

)

2n for the absolute indicator of resilient func-

tions that improves significantly (for m > (n − 3)/2) the bound of Zheng and
Zhang [18] on this value. In Section 4 we prove that the number of nonlinear vari-
ables in n-variable (n−k)-resilient Boolean function does not exceed (k−1)2k−2.
This result supersedes the previous record n ≤ (k − 1)4k−2 of Tarannikov and
Kirienko [16]. As a consequence we give the sufficient condition on m and n that
the absolute indicator of n-variablem-resilient function is equal to the maximum
possible value 2n. In Section 5 we characterize all possible values of resiliency
orders for quadratic functions, i. e. functions with algebraic degree 2 in each
variable. In Section 6 we give a complete description of quadratic n-variable
m-resilient Boolean functions that achieve the bound m ≤ n

2 − 1. In Section 7
we establish new necessary condition that connects m, n and the weight of an
n-variable unbalanced nonconstant mth order correlation immune function and
prove that such functions do not exist for m > 0.75n−1.25. For high orders of m
this surprising fact supersedes the well-known Bierbrauer–Friedman bound [8],
[1] and was not formulated before even as a conjecture. In Section 8 we prove
that for m ≥ 1
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− 1, n ≥ 12, the nonlinearity of an
unbalanced mth order correlation immune function of n variables does not ex-
ceed 2n−1−2m+1, and for m ≥ 1
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−2,
n ≥ 24, this nonlinearity does not exceed 2n−1− 2m+2. These facts improve sig-
nificantly correspondent results of Zheng and Zhang [18] and demonstrate that
for higher orders of resiliency the maximum possible nonlinearity for balanced
functions is greater than for unbalanced.

Along all paper we apply actively autocorrelation and Walsh coefficients for
the investigation of correlation immune and resilient Boolean functions. Our new
results demonstrate the power of this approach.
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2 Preliminary concepts and notions

We consider F2
n, the vector space of n-tuples of elements from F2. An n-variable

Boolean function is a map from F2
n into F2. The weight of a vector x is the

number of ones in x and is denoted by |x|. We say that the vector x precedes to
the vector y and denote it as x ¹ y if xi ≤ yi for each i = 1, 2, . . . , n. The scalar

product of vectors x and u is defined as < x, u >=
n
∑

i=1

xiui.

The weight wt(f) of a function f on F2
n is the number of vectors x on F2

n

such that f(x) = 1. A function f is said to be balanced if wt(f) = wt(f ⊕ 1) =
2n−1. A subfunction of the Boolean function f is a function f ′ obtained by
substituting some constants for some variables in f .

It is well known that a function f on F2
n can be uniquely represented by

a polynomial on F2 whose degree in each variable in each term is at most 1.
Namely,

f(x1, . . . , xn) =
⊕

(a1,...,an)∈F2
n

g(a1, . . . , an)x
a1
1 . . . xan

n

where g is also a function on F2
n. This polynomial representation of f is called

the algebraic normal form (briefly, ANF) of the function and each xa1
1 . . . xan

n

is called a term in ANF of f . The algebraic degree of f , denoted by deg(f),
is defined as the number of variables in the longest term of f . The algebraic
degree of variable xi in f , denoted by deg(f, xi), is the number of variables in
the longest term of f that contains xi. If deg(f, xi) = 1, we say that f depends
on xi linearly. If deg(f, xi) 6= 1, we say that f depends on xi nonlinearly. A
term of length 1 is called a linear term. If deg(f) ≤ 1 then f is called an affine
function. If f is an affine function and f(0) = 0 then f is called a linear function.

Definition 1. We say that the Boolean function f is quadratic if an algebraic
degree of each variable in f is 2, i. e. if deg(f, xi) = 2 for each i = 1, 2, . . . , n.

The Hamming distance d(x1, x2) between two vectors x1 and x2 is the number
of components where vectors x1 and x2 differ. For two Boolean functions f1 and
f2 on F2

n, we define the distance between f1 and f2 by d(f1, f2) = #{x ∈
F2

n|f1(x) 6= f2(x)}. It is easy to see that d(f1, f2) = wt(f1 ⊕ f2). The minimum
distance between f and the set of all affine functions is called the nonlinearity
of f and denoted by nl(f).

Definition 2. The Walsh Transform of a Boolean function f is an integer-
valued function over F2

n that can be defined as

Wf (u) =
∑

x∈F2
n

(−1)f(x)+<u,x>.

Walsh coefficients satisfy Parseval’s equation
∑

u∈F2
n

W 2
f (u) = 2

2n.
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Lemma 1. Let f be an arbitrary Boolean function on F2
n. Then

wt(f) = 2n−1 − 1
2
Wf (0).

It is well known that nl(f) = 2n−1 − 1
2 maxu∈Fn

2

|Wf (u)|.
A Boolean function f on F2

n is said to be correlation immune of order m,
with 1 ≤ m ≤ n, if the output of f and any m input variables are statistically
independent. This concept was introduced by Siegenthaler [13]. In equivalent
non-probabilistic formulation the Boolean function f is called correlation im-
mune of order m if wt(f ′) = wt(f)/2m for any its subfunction f ′ of n − m
variables. A balanced mth order correlation immune function is called an m-
resilient function. In other words the Boolean function f is called m-resilient if
wt(f ′) = 2n−m−1 for any its subfunction f ′ of n − m variables. In [9] a char-
acterization of correlation immune functions by means of Walsh coefficients is
given:

Theorem 1. [9] A Boolean function f on F2
n is correlation-immune of order

m if and only if Wf (u) = 0 for all vectors u ∈ F2
n such that 1 ≤ |u| ≤ m.

Theorem 2. [12] If f is an mth order correlation immune function on F2
n,

m ≤ n − 1, then Wf (u) ≡ 0 (mod 2m+1). Moreover, if f is m-resilient, m ≤
n− 2, then Wf (u) ≡ 0 (mod 2m+2).

Definition 3. Let f be a Boolean function on F2
n. For each u ∈ F2

n the auto-

correlation coefficient of the function f at the vector u is defined as

∆f (u) =
∑

x∈F2
n

(−1)f(x)+f(x+u).

Zhang and Zheng [17] proposed the idea of Global Avalanche Characteristics
(GAC). One of important indicators of GAC is the absolute indicator.

Definition 4. Let f be a Boolean function on F2
n. The absolute indicator of f

is defined as

∆f = max
x∈F2

n\{0}
|∆f (x)|.

3 New lower bound for the absolute indicator of resilient

functions

In this section we prove new lower bound for the absolute indicator of resilient
functions. At first, we establish an important technical formula. Note that this
formula can be deduced from the relation W 2

f (x) =
∑

u∈F2
n

(−1)<x,u>∆f (u) given

in [5] and [4] but we prefer to give a direct proof in the Appendix A.
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Theorem 3.

∆f (u) = −2n + 21−n
∑

x∈F2
n

<x,u>≡0 (mod 2)

W 2
f (x).

We denote by ei the vector of the length n that has an one in ith component
and zeroes in all other components.

Lemma 2. Let f be an m-resilient Boolean function on F2
n. Then

∆f ≥
(

2m− n+ 2

n

)

2n.

Proof. We form the matrix B with n column writing in rows of B each
binary vector u ∈ F2

n exactlyW 2
f (u) times. By Parseval’s equality the matrix B

contains exactly 22n rows. By Xiao Guo-Zhen–Massey spectral characterization
[9] each row of the matrix B contains at most n−m− 1 zeroes. It follows that
the total number of zeroes in B is at most (n−m−1)22n. Therefore, there exists
some ith column in B that contains at most (n−m−1)22n

n zeroes. By construction

it follows that
∑

x∈F2
n

xi=0

W 2
f (x) ≤

(n−m−1)22n

n . Then by Theorem 3 we have

∆f (ei) = −2n+21−n
∑

x∈F2
n

xi=0

W 2
f (x) ≤ −2n+

(n−m− 1)
n

2n+1 ≤ (n− 2m− 2)
n

2n.

It follows that ∆f ≥
(

2m−n+2
n

)

2n. ut
In the next theorem we improve the lower bound of Lemma 2.

Theorem 4. Let f be an m-resilient Boolean function on F2
n. Then ∆f ≥

(

2m−n+3
n+1

)

2n.

Proof. Suppose that in the proof of Lemma 2 the matrix B contains exactly
h22n rows with less than n−m− 1 zeroes. Then repeating the arguments from
the proof of Lemma 2 we have

∆f ≥
(

2m− n+ 2 + 2h

n

)

2n. (1)

At the same time it is not hard to see that

∆f (1 . . . 1) = −2n + 21−n
∑

x∈F2
n

|x|≡0 (mod 2)

W 2
f (x)

and

∆f ≥ |∆f (1 . . . 1)| ≥ (1− 2h)2n. (2)
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The right part in (1) is increasing on h whereas the right part in (2) is decreasing
on h. The right parts in (1) and (2) are equal when h = n−m−1

n+1 . Therefore,

∆f ≥
(

2m−n+3
n+1

)

2n. ut
In [19] Zheng and Zhang proved that for balanced mth order correlation

immune function f on F2
n the bound ∆f ≥ 2n

2n−m−1 holds. It follows that ∆f ≥
2m + 2. Our Theorem 4 improves significantly this result for m > (n− 3)/2.

4 Upper bound for the number of nonlinear variables in

high order resilient functions

In this section we prove the new upper bound for the number of nonlinear vari-
ables in high order resilient functions.
The next lemma is well-known.

Lemma 3. [11] Let f be a Boolean function on F2
n, deg(f) ≥ 1. Then

2n−deg(f) ≤ wt(f) ≤ 2n − 2n−deg(f).

The next lemma is obvious.

Lemma 4. Let f be a Boolean function on F2
n, deg(f) ≥ 1. Then deg(f(x)⊕

f(x+ ei)) ≤ deg(f(x))− 1.
Lemma 5. Let f be a Boolean function on F2

n, deg(f, xi) ≥ 2. Then
∑

u∈F2
n

ui=0

W 2
f (u) ≥ 22n−deg(f)+1.

Proof. By Theorem 3 using Lemmas 3 and 4 we have

−2n + 21−n
∑

u∈F2
n

ui=0

W 2
f (u) = ∆f (ei) =

∑

x∈F2
n

(−1)f(x)+f(x+ei) =

2n − 2wt(f(x)⊕ f(x+ ei)) ≥ 2n − 2
(

2n − 2n−(deg(f)−1)
)

= −2n + 2n−deg(f)+2.

It follows that
∑

u∈F2
n

ui=0

W 2
f (u) ≥ 22n−deg(f)+1. ut

Theorem 5. Let f be an (m = n−k)-resilient Boolean function on F2
n, k ≥ 2,

and deg(f, xi) ≥ 2 for each i = 1, . . . , n. Then n ≤ (k − 1)2deg(f)−1.

Proof. We form the matrix B with n column writing in rows of B each
binary vector u ∈ F2

n exactlyW 2
f (u) times. By Parseval’s equality the matrix B

contains exactly 22n rows. By Xiao Guo-Zhen–Massey spectral characterization
[9] each row of the matrix B contains at most k − 1 zeroes. It follows that the
total number of zeroes in B is at most (k − 1)22n. By Lemma 5 each column
of B contains at least 22n−deg(f)+1 zeroes. Therefore n ≤ (k−1)22n

22n−deg(f)+1 = (k −
1)2deg(f)−1. ut
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Theorem 6. Let f be an (m = n−k)-resilient Boolean function on F2
n, k ≥ 2,

and deg(f, xi) ≥ 2 for each i = 1, . . . , n. Then n ≤ (k − 1)2k−2.

Proof. By Siegenthaler’s Inequality [13] we have deg(f) ≤ k − 1. This fact
together with Theorem 5 follow the result. ut
In [16] it is proved that n ≤ (k−1)4k−2. Our Theorem 6 improves significantly

this result. Note that there exists (n−k)-resilient function on F2
n, n = 3·2k−2−2,

that depends nonlinearly on all its n variables (see constructions in [14]).

Corollary 1. Let f be an m-resilient Boolean function on F2
n. If n ≥ (n−m−

1)2n−m−2 then ∆f = 2
n.

Proof. If n > (n−m− 1)2n−m−2 then by Theorem 6 the function f depends
on some variable linearly, hence, ∆f = 2

n. If n = (n − m − 1)2n−m−2 and f
depends on all its variables nonlinearly then according to the proofs of Theorems
5 and 6 we have that each row of the matrix B contains exactly n−m−1 zeroes.
But in this case |∆f (1 . . . 1)| = 2n, so, ∆f = 2

n. ut

5 Resiliency orders of quadratic functions

In the next two sections we apply the autocorrelation coefficients for the analysis
of quadratic Boolean functions, i. e. functions with algebraic degree 2 in each
variable.

Lemma 6. For any Boolean function g on F2
n−1 the function f(x1, x2, x3,

. . . , xn) = g(x1 ⊕ x2, x3, . . . , xn)⊕ x1 is balanced.

Proof.We combine all vector from F2
n into pairs (y′, y′′) such that y′ and y′′

differ only in first and second components and coincide in all other components.
Then f(y′) = f(y′′)⊕ 1 and wt(f) = ∑

(y′,y′′)

(f(y′) + f(y′′)) = 2n−1. ut

Lemma 7. For each function g(y1, . . . , yn) on F2
n the function f(x1, . . . , x2n) =

g(x1 ⊕ xn+1, x2 ⊕ xn+2, . . . , xn ⊕ x2n)⊕ x1 ⊕ x2 ⊕ . . .⊕ xn is (n− 1)-resilient.
Proof. Consider an arbitrary subfunction f ′ obtained from f by substitution

of n− 1 constants for some n− 1 variables. Then there exists j such that both
variables xj and xn+j remain free. Then f ′ has the form f ′ = g′(. . . , xj ⊕
xn+j , . . .)⊕ xj and by Lemma 6 the function f is balanced. Hence, f is (n− 1)-
resilient. ut
Theorem 7. Quadratic m-resilient functions of n variables exist if and only if
m ≤ n

2 − 1.
Proof. Substitutuing to Theorem 5 the value deg(f) = 2 we have n ≤

2(n−m− 1). It follows that m ≤ n
2 − 1. Now suppose that m ≤ n

2 − 1. Consider
the function f(x1, . . . , x2(n−m−1)) = g(x1 ⊕ xn−m, x2 ⊕ xn−m+1, . . . , xn−m−1 ⊕
x2(n−m−1)) ⊕ x1 ⊕ x2 ⊕ . . . ⊕ xn−m−1 where g is some quadratic function. By
Lemma 7 the function f is a (2(n−m−1))-variable (n−m−2)-resilient quadratic
function. It is easy to check that if we substitute some constants for the vari-
ables xn+1, . . . , x2(n−m−1) in f then we obtain a desired n-variable m-resilient
function. ut
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6 Complete description of quadratic Boolean functions

with maximum resiliency order

In this section we give a complete description of quadratic resilient Boolean
functions that achieve the bound m ≤ n

2 −1. It is obvious that for such functions
n is even. Therefore in this section we consider for convenience (N = 2n)-variable
(m = n− 1)-resilient functions.

Definition 5. The notation f(x1, . . . , xn)
σ
= g(x1, . . . , xn) means that the Boole-

an functions f and g are equal up to permutation of indices of variables.

Theorem 8. Let f be an (N = 2n)-variable (m = n − 1)-resilient quadratic
function. Then Wf (u) 6= 0 only if |u| = n.

Proof. By Theorem 1 we have that Wf (u) 6= 0 only if |u| ≥ m+ 1 = n.
We form the matrix B with N columns writing in rows of B each binary

vector u ∈ F2
N exactly W 2

f (u) times. By Parseval’s equality B contains exactly

22N = 24n rows. Each row has at most n zeroes, therefore the matrix B contains
at most n24n zeroes.
On the other hand, by Lemma 5 each column of the matrix B contains at least

22N−deg(f)+1 = 24n−1 zeroes, i. e. the matrix B contains at least 2n24n−1 = n24n

zeroes.
Thus the matrix B contains exactly n24n zeroes and each row of B has

exactly n zeroes and n ones. ut

Lemma 8. Let epq = (0, . . . , 0, 1
p
, 0, . . . , 0, 1

q
, 0, . . . , 0) ∈ F2

n, p 6= q, and f is a

quadratic function on F2
n. Then ∆f (epq) ∈ {0,±2n} and the next statements

hold:

∆f (epq) = 2
n ⇐⇒ f(x) = g(. . . , xp ⊕ xq, . . .), g is quadratic,

∆f (epq) = −2n ⇐⇒ f(x) = g(. . . , xp ⊕ xq, . . .)⊕ xp, g is quadratic .

Proof.

We write the function f in the form f(x) =
⊕

1≤i<j≤n

aijxixj ⊕
⊕

1≤i≤n

bixi ⊕ c

where aij = aji and aii = 0.

Then ∆f (epq) =
∑

x∈F2
n

(−1)

⊕

i6=p,q

(api ⊕ aqi)xi ⊕ apq(xp ⊕ xq ⊕ 1)⊕ bp ⊕ bq
.

If the expression
⊕

i6=p,q

(api⊕aqi)xi⊕apq(xp⊕xq⊕1)⊕bp⊕bq contains at least

one linear term xk then we have ∆f (epq) = 0. If this expression does not contain
linear terms, it means that api = aqi for all i. Then ∆f (epq) = 2

n(−1)bp⊕bq and
the function f can be represented in the form

f(x) =
⊕

i<j
i,j 6=p,q

aijxixj ⊕
⊕

i6=p,q

bixi⊕ c⊕
(

⊕

i6=p,q

apixi⊕ bq

)

(xp⊕ xq)⊕ (bp⊕ bq)xp,

that completes the proof. ut
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Theorem 9. Let f(x1, . . . , x2n) be a quadratic function on F2
2n. Then

∑

1≤p<q≤2n

∆f (epq) = −n22n if and only if

f
σ
= g(x1 ⊕ xn+1, . . . , xn ⊕ x2n)⊕ x1 ⊕ . . .⊕ xn

where g(y1, . . . , yn) is a quadratic function on F2
n.

Proof. Consider an arbitrary quadratic function f on F2
2n. At the set of

vertices V = {1, . . . , 2n} we construct the graph G = (V,E) by the next rule:
(p, q) ∈ E if and only if ∆f (epq) 6= 0.
Each connected component H t = (V t, Et) of this graph is a complete graph

since by Lemma 8 we have that (p, q) ∈ Et if and only if api = aqi for all i.
We divide V t into two subsets V t

0 t V t
1 such that i ∈ V t

bi
. Let us denote

vt0 := |V t
0 |, vt1 := |V t

1 |.
Then for p and q from the same subset of V t by Lemma 8 we have ∆f (epq) =

22n and for p and q from different subsets we have ∆f (epq) = −22n.
Let us estimate the sum

∑

(p,q)∈Et

∆f (epq) = 2
2n

(

vt0(v
t
0 − 1)
2

+
vt1(v

t
1 − 1)
2

)

− 22nvt0vt1 =

= 22n−1((vt0 − vt1)
2 − (vt0 + vt1)) ≥ −22n−1|V t|.

The equality is achieved only for vt0 = vt1 = vt.
Hence,

∑

1≤p<q≤2n

∆f (epq) ≥ −22n−1
∑

t
|V t| = −n22n, moreover, the equality

is achieved only if vt0 = vt1 for all t.
Thus, if we have the equality

∑

∆f (epq) = −n22n then it is possible to divide
the set of all variables into the pairs (itk, j

t
k) where i

t
k ∈ V t

0 , j
t
k ∈ V t

1 . Then the
function will be represented in the form f(x1, . . . , x2n) = g(xi11 ⊕ xj11 , . . . , xi1v1

⊕
xj1

v1
, . . .)⊕ xi11 ⊕ . . .⊕ xi1

v1
⊕ . . ., i. e. in desired form.

Now suppose that the function has the form g(x1 ⊕ xn+1, . . . , xn ⊕ x2n) ⊕
x1 ⊕ . . . ⊕ xn. Then after the construction of the graph G and the partitioning
it into components, we have i ∈ V t

bi
and i+ n ∈ V t

bi⊕1 for all i, i ≤ n. It follows
that vt0 = vt1 for all t. ut
Theorem 10. Let f(x1, . . . , x2n) be an (2n)-variable (n− 1)-resilient quadratic
function. Then there exists a quadratic function g(y1, . . . , yn) such that

f(x1, . . . , x2n)
σ
= g(x1 ⊕ xn+1, . . . , xn ⊕ x2n)⊕ x1 ⊕ . . .⊕ xn.

Proof. Substitute the equation from Theorem 3 into Theorem 9:

∑

1≤p<q≤2n

∆f (epq) =
∑

p<q

(

−22n + 21−2n
∑

x∈F2
2n

<x,epq>≡0 (mod 2)

W 2
f (x)

)

=

= −n(2n− 1)22n + 21−2n
∑

p<q

∑

xp=xq

W 2
f (x).
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By Theorem 8 for |x| 6= n we have Wf (x) = 0, hence

∑

p<q

∑

xp=xq

W 2
f (x) =

∑

p<q

∑

xp=xq

|x|=n

W 2
f (x) =

∑

|x|=n



W 2
f (x)

∑

p<q : xp=xq

1



 =

= (n2 − n)
∑

|x|=n

W 2
f (x) = (n

2 − n)24n.

Therefore,
∑

1≤p<q≤2n

∆f (epq) = −n(2n− 1)22n + 21−2n(n2 − n)24n = −n22n.

It follows by Theorem 9 that all (2n)-variable (n − 1)-resilient quadratic
functions have the given form. ut

7 Nonexistence of unbalanced nonconstant mth order

correlation immune Boolean functions on F2

n for

m > 0.75n− 1.25

In this section we prove that unbalanced nonconstant mth order correlation
immune Boolean functions on F2

n do not exist for m > 0.75n − 1.25. Similar
statements are known for multioutputs functions (see [2], [10]) but for usual
Boolean functions until now statements of such type were not formulated even
as conjectures.

Theorem 11. Let f be an arbitrary Boolean function on F2
n. Let w ∈ F2

n\{0}.
Then

∑

x∈F2
n

<x,w>=0

W 2
f (x) = 2

n−|w|
∑

u∈F2
n

u¹w

∆f (u).

Proof. Summing ∆f (u) over all u, u ¹ w, by Theorem 3 we have

∑

u∈F2
n

u¹w

∆f (u) =
∑

u∈F2
n

u¹w






−2n + 21−n

∑

x∈F2
n

<x,u>≡0 (mod 2)

W 2
f (x)






=

−2n+|w| + 21−n
∑

u∈F2
n

u¹w

∑

x∈F2
n

<x,u>≡0 (mod 2)

W 2
f (x) =

−2n+|w| + 21−n






2|w|

∑

x∈F2
n

<x,w>=0

W 2
f (x) + 2

|w|−1
∑

x∈F2
n

<x,w> >0

W 2
f (x)






=

−2n+|w| + 21−n






2|w|−1 · 22n + 2|w|−1

∑

x∈F2
n

<x,w>=0

W 2
f (x)






= 2|w|−n

∑

x∈F2
n

<x,w>=0

W 2
f (x).
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ut

Theorem 12. Let f be an arbitrary Boolean function on F2
n. Then

∑

u∈F2
n

u¹w

∆f (u) =
∑

f ′

(

2|w| − 2wt(f ′)
)2

where the last sum is taken over all 2n−|w| subfunctions f ′ of |w| variables ob-
tained from f by substituting constants for all xi such that wi = 0.

Proof.

∑

u∈F2
n

u¹w

∆f (u) =
∑

u∈F2
n

u¹w

∑

x∈F2
n

(−1)f(x)+f(x+u) =

∑

x∈F2
n

∑

u∈F2
n

u¹w

(−1)f(x)+f(x+u) =
∑

f ′

∑

x,y of f ′
(−1)f(x)+f(y) =

∑

f ′

(

wt2(f ′) + (2|w| − wt(f ′))2 − 2wt(f ′)(2|w| − wt(f ′)
)

=
∑

f ′

(

2|w| − 2wt(f ′)
)2

.

ut

Corollary 2. Let f be an arbitrary Boolean function on F2
n. Then

∑

x∈F2
n

<x,w>=0

W 2
f (x) = 2

n−|w|+2
∑

f ′

(

2|w|−1 − wt(f ′)
)2

where the last sum is taken over all 2n−|w| subfunctions f ′ of |w| variables ob-
tained from f by substituting constants for all xi such that wi = 0.

Proof. It follows immediately from Theorems 11 and 12. ut

Remark 1. If f is an (n − k)th order nonaffine correlation immune Boolean
function on F2

n then by (2) we have Wf (0) ≡ 0 (mod 2n−k+1). Therefore
Wf (0) ≡ 2n−i (mod 2n−i+1) for some i, i ∈ {1, 2, . . . , k − 1}.

Theorem 13. Let f be an unbalanced nonconstant (n − k)th order correlation
immune Boolean function on F2

n. Let Wf (0) = ±p · 2n−i where p is some odd
positive integer, i ∈ {1, 2, . . . , k − 1}. Then

(n

i

)

≤ (22i − p2)

(

k − 1
i

)

. (3)

Proof. By Lemma 1 we have that
∣

∣2n−1 − wt(f)
∣

∣ = p · 2n−i−1. Let w ∈ F2
n

be an arbitrary vector such that |w| = i. Then

∑

f ′

∣

∣2i−1 − wt(f ′)
∣

∣ ≥
∣

∣2n−1 − wt(f)
∣

∣ = p · 2n−i−1
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where the sum is taken over all 2n−i subfunctions f ′ of i variables obtained from
f by substituting constants for all xi such that wi = 0. All terms in the sum are
integer. It follows that

∑

f ′

(

2i−1 − wt(f ′)
)2 ≥

(

(

p+ 1

2

)2

+

(

p− 1
2

)2
)

· 2n−i−1.

Therefore by Corollary 2 we have

∑

x∈F2
n

<x,w>=0

W 2
f (x) ≥ 2n−i+2 ·

(

p2 + 1

2

)

· 2n−i−1 = (p2 + 1) · 22n−2i.

Hence,
∑

x∈F2
n

<x,w>=0

W 2
f (x)−W 2

f (0) ≥ 22n−2i. (4)

Next, we form the matrix B with n columns writing in rows of B each
binary vector x ∈ F2

n exactly W 2
f (x) times. By Parseval’s equality the matrix

B contains exactly 22n rows. The total number of nonzero rows of B is 22n −
p2 ·22n−2i. By Xiao Guo-Zhen–Massey spectral characterization [9] each nonzero
row of the matrix B contains at most k − 1 zeroes. It follows that each nonzero
row in B contains at most

(

k−1
i

)

subsets of i zeroes. All nonzero rows in B

contain at most (22n − p2 · 22n−2i)
(

k−1
i

)

subsets of i zeroes. At the same time

by (4) for any i columns in B there exist at least 22n−2i nonzero rows that
contain only zeroes in these i columns. Therefore,

(22n − p2 · 22n−2i)
(

k−1
i

)

22n−2i
≥
(n

i

)

.

ut
Corollary 3. Let f be an mth order correlation immune Boolean function on
F2

n. Let wt(f) = u · 2h where u is odd positive integer, h is integer. Then
(

n

h+ 1

)

≤ u(2n−h − u)

(

n−m− 1
h−m

)

.

Proof. It follows immediately from Theorem 13 and Lemma 1. ut
Theorem 14. Let f be an unbalanced nonconstant (n − k)th order correlation
immune Boolean function on F2

n. Then n ≤ 4k − 5.
Proof. By Remark 1 we can assume that Wf (0) ≡ 2n−i (mod 2n−i+1) for

some i, i ∈ {1, 2, . . . , k − 1}. Then by Theorem 13 we have

n(n− 1) . . . (n− i+ 1) ≤ (22i − 1)(k − 1)(k − 2) . . . (k − i). (5)

Suppose that n ≥ 4(k−1). Then n(n−1) . . . (n−i+1) ≥ 22i(k−1)(k−2) . . . (k−i)
that contradicts to (5). ut
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Corollary 4. For m > 0.75n− 1.25 there do not exist unbalanced nonconstant
mth order correlation immune Boolean functions on F2

n.

It is easy to check that the 3-variable function f that takes the value 1 only
at two vectors (0, 0, 0) and (1, 1, 1) is correlation immune of order 1. Therefore
the bound in Corollary 4 is tight.

Remark 2. Until now Bierbrauer–Friedman bound [8], [1]

wt(f) ≥ 2n 2(m+ 1)− n

2(m+ 1)
(6)

was the best known lower bound for the weight of high order correlation immune
nonconstant functions. If we substitutem > 0.75n−1.25 to (6) we obtain wt(f) >
2n n−1

3n−1 . In fact, our Corollary 4 follows that in this case wt(f) = 2
n−1.

8 Tradeoff between correlation immunity and

nonlinearity for unbalanced Boolean functions

In [12] Sarkar and Maitra proved (this result was obtained independently also
in [14] and [18]) that for an n-variable mth order correlation immune Boolean
function f , n−m ≥ 1, the inequality nl(f) ≤ 2n−1− 2m holds. Moreover, if f is
balanced (i. e. m-resilient), n−m ≥ 2, then nl(f) ≤ 2n−1− 2m+1. In [18] Zheng
and Zhang proved that for unbalanced Boolean functions, m ≥ 0.6n − 0.4, the
nonlinearity 2n−1−2m can not be achieved. Therefore for an n-variablemth order
correlation immune Boolean function f , 0.6n− 0.4 ≤ m ≤ n− 1, the inequality
nl(f) ≤ 2n−1 − 2m+1 holds. (Note that by our Corollary 4 for m > 0.75n− 1.25
unbalanced n-variable mth order correlation immune functions do not exist at
all!) At the same time in [15] Tarannikov gives the constructions of n-variable
m-resilient Boolean functions with the nonlinearity 2n−1 − 2m+1 for 0.6n− 1 ≤
m ≤ n− 2. Thus, although the upper bound in [12] for unbalanced functions is
higher than for balanced, nevertheless, at least for 0.6n − 0.4 ≤ m ≤ n − 2 the
maximum possible nonlinearity of m-resilient Boolean functions is not less than
the maximum possible nonlinearity ofmth order correlation immune unbalanced
Boolean functions. In this section we continue the investigations in this direction
and give new improvements of upper bounds for the nonlinearity of high order
correlation immune unbalanced Boolean functions. In our investigation we use
the inequality (3) obtained in Theorem 13.

Theorem 15. Let f be an unbalanced mth order correlation immune function
on F2

n. Suppose that Wf (0) ≡ 2m+1 (mod 2m+2). Then for n ≥ 12 the in-
equality

m <
1

2
n+

1

2
log2 n+ const

holds where const = 1
2 log2

(

π
2 e

8/9
)

− 1.

The proof of Theorem 15 is given in the Appendix B.
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Corollary 5. Let f be an unbalanced mth order correlation immune function on
F2

n. If m ≥ 1
2n+

1
2 log2 n+

1
2 log2

(

π
2 e

8/9
)

−1, n ≥ 12, then nl(f) ≤ 2n−1−2m+1.

Proof. By Theorem 15 we have Wf (0) 6≡ 2m+1 (mod 2m+2). It follows that
|Wf (0)| ≥ 2m+2. Therefore, nl(f) = 2n−1− 1

2 maxx∈F2
n
|Wf (x)| ≤ 2n−1− 1

2 |Wf (0)| ≤
2n−1 − 2m+1. ut

Theorem 16. Let f be an unbalanced mth order correlation immune function
on F2

n. Suppose that Wf (0) ≡ 2m+2 (mod 2m+3). Then for n ≥ 24 the in-
equality

m <
1

2
n+

3

2
log2 n+ log2

(

1

4
+
1

n

)

+ const

holds where const = 1
2 log2

(

π
2 e

8/9
)

− 2.

The proof of Theorem 16 is given in the Appendix C.

Corollary 6. Let f be an unbalanced mth order correlation immune function
on F2

n. If m ≥ 1
2n+

3
2 log2 n+ log2

(

1
4 +

1
n

)

+ 1
2 log2

(

π
2 e

8/9
)

− 2, n ≥ 24, then
nl(f) ≤ 2n−1 − 2m+2.

Proof. By Theorems 15 and 16 we have that |Wf (0)| ≥ 2m+3. Therefore,
nl(f) ≤ 2n−1 − 1

2 |Wf (0)| ≤ 2n−1 − 2m+2. ut
Thus, we see that although the upper bounds in [12] for the nonlinearity

of unbalanced functions is higher than for balanced, nevertheless, for higher m
balanced functions are ”better” than unbalanced in this respect.
The authors are grateful to Oktay Kasim-Zadeh for valuable advices on the

analysis of inequality (7).
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A Proof of Theorem 3

If u = 0 then obviously∆f (u) = 2
n, and

∑

x∈F2
n

<x,u>≡0 (mod 2)

W 2
f (x) =

∑

x∈F2
n

W 2
f (x) =

22n, therefore, the equality holds. So, we can assume that u 6= 0. Next,

∑

x∈F2
n

<x,u>≡0 (mod 2)

W 2
f (x) =

∑

x∈F2
n

<x,u>≡0 (mod 2)





∑

y∈F2
n

(−1)f(y)+<x,y>





2

=
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∑

x∈F2
n

<x,u>≡0 (mod 2)



2n +
∑

y′ 6=y′′∈F2
n

(−1)f(y′)+f(y′′)+<x,y′+y′′>



 = 22n−1 +

∑

y′ 6=y′′∈F2
n

(−1)f(y′)+f(y′′)
∑

x∈F2
n

(

1

2
+
1

2
(−1)<x,u>

)

(−1)<x,y′+y′′> = 22n−1 +

1

2

∑

y′ 6=y′′∈F2
n

(−1)f(y′)+f(y′′)

(

∑

x∈F2
n

(−1)<x,y′+y′′> +
∑

x∈F2
n

(−1)<x,u+y′+y′′>

)

=

22n−1 +
1

2

∑

y′,y′′∈F2
n

y′+y′′=u

(−1)f(y′)+f(y′′)

(

0 +
∑

x∈F2
n

1

)

=

22n−1 + 2n−1
∑

y∈F2
n

(−1)f(y)+f(y+u) = 22n−1 + 2n−1∆f (u).

ut

B Proof of Theorem 15

For i = k − 1 = n−m− 1 in (3) we have
(n

i

)

< 4i. (7)

For each i, 0 < i < n, we have
(

n
i

)

> (ni )
i. It follows that if for some i the

inequality (7) holds then the inequality (ni )
i < 4i holds too. Therefore n

i < 4
and n

4 < i. Thus, we obtain the simplest bound on i: i > n
4 .

By means of the lower and upper bounds for n! (see[7])

√
2πnn+1/2e−ne(12n+1)−1

< n! <
√
2πnn+1/2e−ne(12n)−1

it is easy to deduce the inequality

(

n

i

)

>
2H( i

n
)n

√

2πn i
n (1− i

n )
e
− 1

12n i
n

(1− i
n

) , (8)

that holds for any 0 < i < n.

(Here H(x) = −x log2 x− (1− x) log2(1− x) is the entropy of x, 0 < x < 1).

If n4 < i < n
2 then

1
4 < i

n < 1
2 .

Consider the function x(1−x). If 1/4 < x < 1/2 then 3/16 < x(1−x) < 1/4.
It follows that for n

4 < i < n
2 we have

3

16
<

i

n

(

1− i

n

)

<
1

4
.
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Then
1

i
n (1− i

n )
> 4 and

1
√

i
n (1− i

n )
> 2,

i. e.
1

√

2π i
n (1− i

n )
>

2√
2π
=

√

2

π
. (9)

Next,

1
i
n (1− i

n )
<
16

3
, it follows

1

12n i
n (1− i

n )
<

16

12n · 3 =
4

9n
≤ 4
9
,

since n ≥ 1.
Therefore,

e
− 1

12n i
n

(1− i
n

) > e−
4
9 . (10)

From (8) using (9) and (10) we have for any i, n4 < i < n
2 , that

(

n

i

)

>

√

2

π
e−

4
9
2H( i

n
)n

√
n

. (11)

The inequalities (7) and (11) follow the inequality

4i >

√

2
π e
− 4

9 2H( in )n√
n

. (12)

Taking the logarithm in (12) we have

2i > H

(

i

n

)

n− 1
2
log2 n+ α

where α = log2

(√

2
π e
−4/9

)

. Dividing by n we have

2
i

n
> H

(

i

n

)

− 1

2n
log2 n+

α

n
.

Denoting x = i
n we obtain the inequality

2x < H(x)− 1

2n
log2 n+

α

n
,

or
H(x)− 2x < a(n) (13)

where a(n) = 1
2n log2 n− α

n .
Thus, the problem is reduced to the obtaining of lower bound for x satisfying

(13) under the condition 1/4 < x < 1/2.
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Now put y = 1
2 − x. Then conditions on x : 1/4 < x < 1/2 transform into

conditions on y : 0 < y < 1/4. To find the lower bound for x satisfying (13) is
the same as to find the upper bound for y satisfying

H

(

1

2
− y

)

− 2
(

1

2
− y

)

< a(n),

or

H

(

1

2
− y

)

− 1 + 2y < a(n). (14)

By Taylor’s formula

H

(

1

2
− y

)

= H

(

1

2

)

−H ′
(

1

2

)

y +
1

2
H ′′(ξ)y2 (15)

where ξ is some number from the interval 1/2−y < ξ < 1/2. Taking into account
that y < 1/4 we have 1/4 < ξ < 1/2.
We differentiate and find that H ′(x) = log2

1−x
x , H

′′(x) = − 1
ln 2

1
x(1−x) .

It follows H ′( 12 ) = 0, also for 1/4 < ξ < 1/2 the inequality H ′′( 14 ) < H ′′(ξ) <
H ′′( 12 ) holds, in particular, H

′′(ξ) > − 16
3 ln 2 (the function

−1
x(1−x) increases for

0 < x < 1/2). Also we take into account that H( 12 ) = 1.
From (15) we have for any y, 0 < y < 1/4,

H

(

1

2
− y

)

> H

(

1

2

)

−H ′
(

1

2

)

y +H ′′
(

1

4

)

y2 = 1− 8

3 ln 2
y2.

Taking into account the last inequality in (14) we have

1− 8

3 ln 2
y2 − 1 + 2y < a(n),

or

0 <
8

3 ln 2
y2 − 2y + a(n). (16)

The inequality (16) is quadratic with respect to y and depends on the parame-
ter n. The coefficient in quadratic term is positive, therefore y can be determined
from the conditions y < y1 or y > y2 where y1 < y2 are roots of characteris-
tic equation. The second condition is irrelevant and does not correspond to the
sense of this problem. A discriminant is equal to

1− 8

3 ln 2
a(n).

Note that
√

2
π e
−4/9 < 1, it follows α < 0. Let β = −α > 0. Then a(n) =

1
2n log2 n+

β
n where β > 0.

Thus, it is sufficient to solve the inequality

0 < γy2 − 2y + b(n) (17)



480 Yuriy Tarannikov et al.

where γ = 8
3 ln 2 .

Positiveness of a discriminant means that 1− γb(n) > 0 or b(n) < 1/γ, i. e.

1

2n
log2 n+

β

n
<
1

γ
. (18)

The function lnx
x has the maximum for x = e. Let n ≥ 12, then 1

2n log2 n ≤
1
24 log2 12. Hence, it is sufficient to demonstrate that

1

24
log2 12 +

log2(
√

π
2 e

4/9)

12
<
3 ln 2

8

or
1

3
(2 + log2 3) +

2

3
(log2

√

π

2
e4/9) < 3 ln 2. (19)

The right part of (19) is greater than 2 since e2 < 8 = e3 ln 2. Consider the
left part of (19). It is equal to

2

3
+
log2 3

3
+
2

3

(

log2

√

π

2
e4/9

)

<
2

3
+
1

3

(

log2
3πe

2

)

.

The product πe < 10, therefore 3πe
2 < 16. Hence, the left part of (19) is less

than 2. It follows that for n ≥ 12 a discriminant of the equation (17) is positive
and required upper bound for y follows from the inequality

y < y1 =
1−

√

1− 8
3 ln 2a(n)

8
3 ln 2

≤ 1− 1 +
8

3 ln 2a(n)
8

3 ln 2

= a(n)

where y1 is a root of the equation correspondent to the inequality (16). Pointing
in a view that y = 1

2 − x = 1
2 − i

n =
1
2 − n−m−1

n = m+1
n − 1

2 we have:

m+ 1

n
− 1
2
<
1

2n
log2 n+

1

2n
log2

(π

2
e8/9

)

.

For n ≥ 12 it follows

m <
1

2
n+

1

2
log2 n+ const

where const = 1
2 log2(

π
2 e

8/9)− 1. ut

C Proof of Theorem 16

For i = k − 2 = n−m− 2 in (3) we have
(n

i

)

≤ (4i − 1)(i+ 1). (20)
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As in the previous proof we use the inequality (8), the bounds (9) and (10)
valid for sufficiently high n and the inequality (11). Combining (11) and (20) we
have

4i(i+ 1) >

√

2

π
e−

4
9
2H( i

n
)n

√
n

.

Taking the logarithm in the last inequality we have:

2i+ log2(i+ 1) > H

(

i

n

)

n− 1
2
log2 n+ α,

α = log2

(√

2
π e
− 4

9

)

.

Introducing new variable x = i
n and dividing by n we obtain

2x+
log2(x+

1
n )

n
> H(x)− 3

2

log2 n

n
+
α

n
,

Taking into account that log2(x+
1
n ) ≥ log2( 14 + 1

n ) we have:

H(x)− 2x < a(n)

where a(n) =
log2(

1
4+ 1

n
)

n + 3
2

log2 n
n − α

n .
This inequality is analogous to the inequality (13); the only difference is in

the function a(n). Using the reasonings completely analogous to the reasoning
in the previous proof we deduce the inequality

0 < γy2 − 2y + b(n) (21)

where γ = 8
3 ln 2 , y =

1
2 − x, b(n) = 3

2
log2 n
n +

log2(
1
4+ 1

n
)

n + β
n , β = −α.

The solutions of this inequality satisfy y < a(n) (see Appendix B). It means

that 1
2 −

n−(m+2)
n <

log2(
1
4+ 1

n
)

n + 3
2

log2 n
n − α

n or rewriting

m <
1

2
n+

3

2
log2 n+ log2

(

1

4
+
1

n

)

+ c,

c = −α− 2.
Now we need only to know for which n this inequality is satisfied, i. e. begin-

ning with which n a discriminant of inequality (21) is nonnegative, or b(n) < 1/γ,
or

3 log2 n

2n
+
log2(

1
4 +

1
n )

n
+
log2

(√

π
2 e

4/9
)

n
<
3 ln 2

8
.

Computer analysis shows that this inequality is true beginning with n = 24.
It completes the proof. ut


