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Abstract. Frey and Rück gave a method to transform the discrete loga-
rithm problem in the divisor class group of a curve over Fq into a discrete
logarithm problem in some finite field extension Fqk . The discrete loga-
rithm problem can therefore be solved using index calculus algorithms
as long as k is small.
In the elliptic curve case it was shown by Menezes, Okamoto and Van-
stone that for supersingular curves one has k ≤ 6. In this paper curves of
higher genus are studied. Bounds on the possible values for k in the case
of supersingular curves are given which imply that supersingular curves
are weaker than the general case for cryptography. Ways to ensure that
a curve is not supersingular are also discussed.
A constructive application of supersingular curves to cryptography is
given, by generalising an identity-based cryptosystem due to Boneh and
Franklin. The generalised scheme provides a significant reduction in band-
width compared with the original scheme.

1 Introduction

Frey and Rück [8] described how the Tate pairing can be used to map the discrete
logarithm problem in the divisor class group of a curve C over a finite field Fq
into the multiplicative group F∗

qk of some extension of the base field. This has
significant implications for cryptography as there are well-known subexponential
algorithms for solving the discrete logarithm problem in a finite field. Therefore,
there is a method for solving the discrete logarithm problem in the divisor class
group in those cases where the extension degree k is small.

The extension degree required is the smallest integer k such that the large
prime order l of the divisor class group Pic0

C(Fq) is such that l|(qk−1). In general
the value of k depends on both the field and the curve and is very large (i.e.,
log(k) ≈ log(q)).

Menezes, Okamoto and Vanstone [23] showed that for supersingular elliptic
curves the value k above is always less than or equal to 6. This important result
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implies that supersingular elliptic curves are weaker than the general case for
cryptography.

Elliptic curve cryptography was generalised to higher genus curves by Koblitz
[16]. Our main result is Theorem 3 which states that for supersingular curves
there is an upper bound, which depends only on the genus, on the values of the
extension degree k. This bound is sufficiently small (see Table 1) that supersin-
gular curves should be considered weaker than the general case for cryptography.

It is important to be able to detect these weak cases in advance, especially
when one is considering curves defined over small fields and using the zeta func-
tion to compute the group order over extension fields. Sakai, Sakurai and Ishizuka
[27] were unable to find any secure hyperelliptic curves of genus two over F2. In
Section 5 we show why the authors of [27] failed in their search and we explain
how to avoid equations for supersingular curves in characteristic two. As an il-
lustration we overcome the problem encountered in [27] and provide examples
of secure genus two curves over F2.

Recently, beginning with the work of Joux [14], the Weil pairing has found
positive applications in cryptography. In Section 3 we generalise an identity-
based cryptosystem due to Boneh and Franklin [2]. Our scheme provides a sig-
nificant improvement in bandwidth over the scheme of Boneh and Franklin.

2 The Tate pairing

In this section we summarise various known results. Throughout the paper C
is a non-singular, irreducible curve of genus g over a finite field Fq where q is a
power of a prime p. The Jacobian of the curve C is an abelian variety Jac(C) of
dimension g defined over Fq. The Fq-rational points on the Jacobian correspond
to the divisor class group of the curve over Fq, which we denote Pic0C(Fq) (for
background details see [4], [16], [29], [33]).

Those readers only interested in elliptic curves can take C to be an elliptic
curve and can think of Jac(C)(Fq) = Pic0C(Fq) = C(Fq).

2.1 The Tate pairing

Let l be a positive integer which is coprime to q. In most applications l is a prime
and l|#Pic0C(Fq). Let k be a positive integer such that the field Fqk contains the
lth roots of unity (in other words, l|(qk − 1)).

Let G = Pic0C(Fqk) and write G[l] for the subgroup of divisors of order l and
G/lG for the quotient group The Tate pairing is a mapping

〈·, ·〉 : G[l]×G/lG→ F∗
qk/(F∗

qk)
l (1)

where the right hand side is the quotient group of elements of F∗
qk modulo lth

powers. Note that all three groups G[l], G/lG and F∗
qk/(F∗

qk)
l have exponent l.

The Tate pairing satisfies the following properties [8]:
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1. (Well-defined) 〈0, Q〉 ∈ (F∗
qk)

l for all Q ∈ G and 〈P,Q〉 ∈ (F∗
qk)

l for all

P ∈ G[l] and all Q ∈ lG.
2. (Non-degeneracy) For each divisor class P ∈ G[l]−{0} there is some divisor

class Q ∈ G such that 〈P,Q〉 6∈ (F∗
qk)

l.

3. (Bilinearity) For any integer n, 〈nP,Q〉 ≡ 〈P, nQ〉 ≡ 〈P,Q〉n modulo lth
powers.

The Tate pairing is computed as follows: Let P be a divisor of order l.
There is a function f whose divisor, which we write as (f), is equal to lP .
Then 〈P,Q〉 = f(Q′) where Q′ is a divisor in the same class as Q such that
the support of Q′ is disjoint with the support of (f). This computation is easily
implemented in practice by using the double and add algorithm and evaluating
all the intermediate functions at Q′ (see [8], [9]).

The value f(Q′) lies in F∗
qk . By raising it to the power (qk − 1)/l we obtain

an lth root of unity.
One subtlety when implementing the Tate pairing is finding a divisor Q′

with support disjoint from the partial terms in the addition chain for lP . In the
elliptic curve case this is done by taking Q′ = (Q + S) − (S) where (Q) − (∞)
is the target divisor and where S is an arbitrary point (not necessarily of order
l). In the higher genus case general Riemann-Roch algorithms can be used to
give an analogous solution. In practice, it is often easier not to choose the class
Q first but to just choose two ‘random’ effective divisors E1 and E2 of degree
g and set Q′ = E1 − E2. If E1 and E2 are chosen randomly over Fqk then with
high probability we expect 〈P,Q′〉 6∈ (F∗

qk)
l.

In the case of elliptic curves one can compare the Tate pairing with the Weil
pairing. In general there is no relationship between the Tate pairing and the Weil
pairing, as they are defined on different sets. However, when E is an elliptic curve
such that l2‖#E(Fqk) and P,Q are independent points in E(Fqk)[l] then we have
el(P,Q) = 〈P,Q〉/〈Q,P 〉. A consequence of this is that the Tate pairing is not
symmetric.

The Weil pairing requires working over the field Fq(E[l]) generated by the
coordinates of all the l-division points. In general, one would expect this field
to be larger than that used for the Tate pairing, however at ECC ’97 Koblitz
observed that these fields are usually the same. Finally, the Weil pairing requires
roughly twice the computation time as the Tate pairing, although this is partly
offset by the added cost of a finite field exponentiation (to the power (qk− 1)/l)
in the case of the Tate pairing if a unique value is required.

2.2 The Frey-Rück attack

We now recall how the Tate pairing is used to attack the discrete logarithm
problem in the divisor class group of a curve (this approach is often called the
Frey-Rück attack, after [8]). Let D1, D2 ∈ Pic0C(Fq) be divisors of order l for
which we want to solve the discrete logarithm problem D2 = λD1. Let k be the
smallest integer such that the pairing is non-degenerate (hence l|(qk − 1)). The
method proceeds as follows:
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1. Choose random divisors Q ∈ Pic0C(Fqk) until 〈D1, Q〉 6∈ (F∗
qk)

l.

2. Compute ζi = 〈Di, Q〉 ∈ F∗
qk .

3. Raise ζi to the power (qk−1)/l (this stage is optional since the linear algebra
in the index calculus method below should be performed modulo l).

4. Solve the discrete logarithm problem ζ2 = ζλ1 in the finite field F∗
qk using an

index calculus method.

This strategy is practical when k is small. This leads to the following impor-
tant question for cryptography:

Question: Are there certain weak cases of curves for which k is always small?

One of the goals of this paper is to show that, as in the case of elliptic
curves, supersingular curves always have small k. Of course, there are lots of
non-supersingular curves for which the Frey-Rück attack applies (e.g., elliptic
curves over Fp with p− 1 points).

2.3 Non-degeneracy of the Tate pairing

We now discuss the non-degeneracy property a little more closely. Let P ∈ G[l].
We consider the possibilities for 〈P, P 〉. To compute 〈P, P 〉 it is necessary to
compute a divisor Q in the same class as P but which has support disjoint from
all the intermediate terms in the computation of lP . One can then compute
〈P,Q〉 to obtain the value of the pairing. If P ∈ lG then 〈P, P 〉 ∈ (F∗

qk)
l. If

P ∈ Pic0C(Fq) then 〈P, P 〉 ∈ F∗
q , but if l is prime and if l does not divide (q − 1)

then 〈P, P 〉 ∈ (F∗
qk)

l since every element of F∗
qk is an lth power in that case.

Hence to have 〈P, P 〉 nontrivial it is necessary (but not sufficient) that l|(q − 1)
and so k = 1.

The following result originates from the work of [2] and [36]. It provides a
very useful technique for finding points where the pairing is non-degenerate.

Lemma 1. Let E be an elliptic curve. Let P ∈ E(Fq) be a point of prime
order l. Let Fqk be the extension over which all points of order l are defined,
and write G = E(Fqk). Suppose that l2‖#G (i.e., that G[l] ∼= G/lG). Let ψ
be an endomorphism of E which is not defined over Fq. If ψ(P ) 6∈ E(Fq) then
〈P,ψ(P )〉(qk−1)/l 6= 1.

For the proof see the full version [11]. We refer to the maps ψ as ‘non-Fq-
rational endomorphisms’ (Verheul [36] calls them ‘distortion maps’).

In the case of curves of genus greater than one then this result is no longer
true. On the other hand, in this setting there are usually many endomorphisms
ψ available. Indeed, for supersingular abelian varieties it will generally be true

that, for all P , there is some endomorphism ψ such that 〈P,ψ(P )〉(qk−1)/l 6= 1.



Supersingular Curves in Cryptography 501

3 Identity-based cryptosystems using the Tate pairing

Identity based cryptography was proposed by Shamir [28] as a response to the
problem of managing public keys. The basic principle is that it should be possible
to derive a user’s public data only from their identity. It is therefore necessary to
have a trusted dealer who can provide a user with the secret key corresponding
to the public key which is derived from their identity. It has turned out to be
rather difficult to construct efficient and secure identity-based cryptosystems.

Recently, Boneh and Franklin [2] developed a new identity-based cryptosys-
tem using the Weil pairing on a specific supersingular elliptic curve. In this
section we show that the use of other supersingular curves leads to significant
efficiency improvements over the original scheme.

3.1 Dealer’s system parameters

The dealer sets up the scheme by choosing a finite field Fq and a curve C over
Fq of genus g such that:

1. There is a large prime l dividing the order of the group Pic0
C(Fq).

2. The degree k needed for the Tate pairing embedding of the subgroup of order
l (i.e., the smallest k such that l|(qk − 1)) is relatively small.

One approach is to take C to be a supersingular curve.
The dealer then chooses a divisor P ∈ Pic0

C(Fq) of order l and a secret
integer 1 < s < l and computes P ′ = sP . The dealer publishes q, C, l, k, P, P ′

and keeps the integer s secret. The public data for the scheme also includes two
hash functions H1 and H2 (these are called G and H in [2]). The function H1

is used to map identities to bitstrings which are then used to represent divisors
in Pic0C(Fqk). The function H2 maps elements of the subgroup of order l of
F∗
qk to bitstrings of a certain length N . Both hash functions are required to be

cryptographically strong and are modelled in the security proofs of [2] as random
oracles.

3.2 User’s public and private key

We now discuss how a user’s identity gives rise to a public key. There must be a
procedure to convert the identity of user A (such as their name or email address).
to a divisor QA ∈ G = Pic0C(Fqk) such that:

1. 〈P,QA〉 6∈ (F∗
qk)

l.
2. The process should be one-way, in the sense that it be infeasible to find an

identity which gives rise to a given point QA.
3. The points QA should be distributed uniformly in an appropriate set.

In [2] this process (which Boneh and Franklin call ‘MapToPoint’) is solved
using a cryptographically strong hash function H1 and a non-Fq-rational endo-
morphism ψ. We now sketch a generalisation of their method.
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The identity bitstring is concatenated with a padding string and then passed
through the hash function H1 (which is constructed to yield a full domain out-
put). This process is repeated using a deterministic sequence of padding strings
until the output is the x-coordinate (or a(x)-term in the higher genus case) of
an element Q of Pic0C(Fq). It is then easy to find the rest of the representation
of Q. One then sets QA = ψ(mQ) ∈ G for a suitable non-Fq-rational endomor-
phism from the available possibilities where m is the cofactor #Pic0

C(Fq)/l. This
process is repeated until 〈P,QA〉(q

k−1)/l 6= 1.
A more general scheme, which does not require non-Fq-rational endomor-

phisms, is given in [11].
To summarise, every user A has a public key consisting of the divisor QA and

everyone can obtain this public key just knowing the identity of the user. Each
user asks the dealer for a private key Q′

A = sQA. This must be transmitted to
the user using a secure channel.

3.3 Encryption and decryption

Let the message M be a bitstring of length N and suppose we want to send this
to user A. First derive the public key QA from the identity of A and obtain the
dealer’s public keys P and P ′. The remaining steps are

1. Choose a random integer 1 ≤ r ≤ l.
2. Compute R = rP .

3. Compute S =M ⊕H2(〈P ′, QA〉r(q
k−1)/l). (Recall that 〈P ′, QA〉 ∈ F∗

qk .)

4. Send (R,S).

To decrypt, user A simply uses their private key Q′
A to compute 〈R,Q′

A〉.
Recall that 〈rP, sQA〉 ≡ 〈P,QA〉rs ≡ 〈P ′, QA〉r modulo lth powers. Hence the
message is recovered from

M = S ⊕H2(〈R,Q′
A〉(q

k−1)/l).

Amore versatile encryption process is obtained by usingH2(〈P ′, QA〉r(q
k−1)/l)

as the key for a fixed symmetric encryption function.

3.4 Security

The security of this system relies on the following variant of the Diffie-Hellman
problem:

Definition 1. The Tate-Diffie-Hellman problem (TDH) is the following:
Let G and l be as above. Given divisors P, P ′ = sP,R = rP and QA ∈ G of

order l such that 〈P,QA〉(q
k−1)/l 6= 1 compute ζ = 〈P,QA〉rs(q

k−1)/l.

Let P ∈ Pic0C(Fq) be any divisor of large prime order l. We make the as-
sumption that the Tate-Diffie-Hellman problem is hard over random P ′, R,QA,
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i.e., where QA = ψ(Q) (for a suitable non-Fq-rational endomorphism) and where
P ′, R,Q ∈ 〈P 〉 are chosen uniformly at random.

If one can solve the elliptic curve Diffie-Hellman problem then one can com-
pute rsP and thus 〈rsP,QA〉. Similarly, if one can solve the Diffie-Hellman prob-
lem in F∗

qk then one can solve the TDH.

To produce a cryptosystem with strong security properties (indistinguisha-
bility of encryptions under a chosen ciphertext attack) one uses a method of
Fujisaki and Okamoto which is discussed thoroughly in [2]. First it is necessary
to establish that the basic scheme has the ‘one-way encryption’ (ID-OWE) se-
curity property (see Section 2 of [2]). The security proof for the scheme above is
completely analogous to the proof of Theorem 4.1 of [2] and it holds under the
assumptions that the hash functions H1 and H2 are random oracles and that
the TDH problem is hard.

3.5 Parameter sizes and performance

For security it is necessary that qg ≥ 2160 and qk ≥ 21024. Boneh and Franklin
[2] use g = 1 and k = 2 and so they must take q to be of size at least 512 bits1.
The whole point of our generalisation is the observation that if k can be taken
to be larger than 2 then q may be taken to be smaller. In Section 3.6 we give
the details for a curve with k = 6. Hence there are the following advantages of
the generalised scheme compared with the scheme of [2].

– The bandwidth (number of bits) of an encryption (R,S) can be reduced (see
Section 3.6 below).

– For the same reason, the dealer’s public keys also require less storage and
communication bandwidth with the new scheme.

– The dominant cost in encryption and decryption is the evaluation of the Tate
pairing. Since this involves computations in the large field Fqk the cost of
encryption and decryption is roughly comparable for both schemes, although
there are some savings available in characteristic two.

As mentioned in [2], the computation of the Weil and Tate pairings can be
made much faster by choosing the prime l of size around 160 bits.

3.6 Characteristic three example

With elliptic curves one can realise an improvement of k from 2 to 6 by taking
the elliptic curves

E1 : y2 = x3 − x+ 1 and E2 : y2 = x3 − x− 1

over F3l , which have characteristic polynomial of Frobenius PE1
(X) = X2 +

3X + 3 and PE2
(X) = X2 − 3X + 3 respectively. These curves are thoroughly

discussed by Koblitz in [18].

1 Actually, in [2] it is specified that q have 1024 bits, but 512 bits seems to be sufficient.
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A convenient non-F3-rational endomorphism for these curves is

ψ : (x, y) 7→ (−α− x, iy)

where i ∈ F32 satisfies i2 = −1 and α ∈ F33 satisfies α3 − α+ 1 = 0.

We list some values of m such that the group order of Ei(F3m) is equal to a
small cofactor c times a large prime l.

m i # bits in l c
79 2 125 1
97 1 151 7
149 1 220 7 · 15199
163 1 256 7
163 1 259 1
167 1 262 7
167 2 237 8017 · 44089
173 2 241 16420688749
193 2 306 1
239 2 379 1

Consider, say, the case m = 163 which is a 259 bit field. Since k = 6 the
size of the field Fqk is 1551 bits. If messages are of length N = 160 bits then
an encryption requires 160 + 260 = 420 bits (259 bits for the x-coordinate of
the point and one bit to specify the y-coordinate). For equivalent security using
the Boneh-Franklin scheme with k = 2 one must take p to be d1551/2e = 776
bits and so an encryption will require 160 + 776 = 936 bits (we have 776 as
the Boneh-Franklin scheme only requires sending the y-coordinate). Hence our
scheme requires less than half the bandwidth of the Boneh-Franklin scheme for
the same security level.

3.7 Characteristic two example

In characteristic two there are curves available which attain the Frey-Rück em-
bedding degree k = 4. In these cases the bandwidth improvement is not as
significant as that seen with the characteristic three example above. However, it
is easy to get an improvement in performance over the scheme in [2].

Consider the elliptic curves

E1 : y2 + y = x3 + x and E2 : y2 + y = x3 + x+ 1

over F2. Then E1 has characteristic polynomial of Frobenius PE1
(X) = X2 +

2X + 2 while E2 is the quadratic twist of E1 and has PE2
(X) = X2 − 2X + 2.

We list some values of m such that #Ei(F2m) = cl where l is a large prime
and where c is a cofactor.
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m i # bits in l c
233 1 210 5 · 3108221
239 2 239 1
241 2 241 1
271 1 252 5 · 97561
283 1 281 5
283 2 283 1
353 2 353 1
367 2 367 1
397 2 397 1
457 2 457 1

A convenient non-F2-rational endomorphism for both these curves is given
by

ψ : (x, y) 7→ (u2x+ s2, y + u2sx+ s)

where u ∈ F22 satisfies u2 +u+1 = 0 and s ∈ F24 satisfies s2 +(u+1)s+1 = 0.
We give a comparison between characteristic 2 and large characteristic p

for equivalent sized finite fields. We give the average time (in seconds) for the
computation of the Tate pairing and the finite field exponentiation using the
Magma computer algebra package. We also give a comparison of the commu-
nication bandwidth (number of bits) for the basic scheme (assuming a 160 bit
hash function H).

The first case is with 965 bit finite field security (i.e., using E2 over F2241 ,
which has a prime number of points).

Characteristic Time Bandwidth
2 2.4 402
p 4.3 642

Now for 1132 bit finite field security. This time using E1(F2283) whose number
of points is 5 times a prime.

Characteristic Time Bandwidth
2 3.4 444
p 6.1 726

Clearly, the elliptic curves used by Boneh and Franklin lead to a scheme
which requires about twice the computation time and over one and a half times
the bandwidth compared with using curves in characteristic two.

3.8 Open questions

We have seen that larger values of k help to make a more efficient identity-based
cryptosystem. The problem is therefore to find curves C which have suitable
large values of k (without being too large). This is very closely related to the
question of Section 2.2
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For supersingular curves we will show in Section 4.3 that there is an upper
bound k(g) (depending only on the genus g) for the values of k. The values of k(g)
are large enough to give good performance for the identity-based cryptosystem.
However, it seems that one cannot realise these large values for k(g) with suitable
Jacobians of curves. It seems that the supersingular elliptic curves with k = 4
and k = 6 are the optimal choice for the identity-based cryptosystem and other
applications using supersingular curves. More research is needed to clarify this.

It is not necessary to insist on using supersingular curves for the identity-
based cryptosystem, since there should exist non-supersingular elliptic curves E
over certain finite fields Fq with relatively small values of k. However, for such E
it is usually the case that the order of E(Fq) is not divisible by a large prime (one
exception is the case p = 2l+1, but these only have k = 1). This phenomenon is
indicated by the results of Balasubramanian and Koblitz [1] and is confirmed by
computer experiments. It would be extremely interesting to have a construction
for non-supersingular curves with relatively small values of k.

4 Supersingular curves over finite fields

In this section we recall some facts about supersingular curves and we give our
main result (Theorem 3). More details can be found in the full version of this
paper [11].

As before, C is a non-singular, irreducible curve of genus g over a finite
field Fq. The Frobenius endomorphism π on Jac(C) satisfies a characteristic
polynomial P (X) of degree 2g with integer coefficients. We can factor P (X)

over the complex numbers as P (X) =
∏2g
i=1(X − αi). It turns out that the

algebraic integers αi have certain remarkable properties. In particular:

1. The numbers αi satisfy |αi| =
√
q and they can be indexed such that

αiαg+i = q.
2. P (X) has the following form

X2g + a1X
2g−1 + a2X

2g−2 + · · ·+ agX
g + qag−1X

g−1 + · · ·+ qg−1a1X + qg.

3. For any integer r ≥ 1 we have #C(Fqr ) = qr + 1−∑2g
i=1 α

r
i .

4. For any integer r ≥ 1 we have #Jac(C)(Fqr ) =
∏2g
i=1(1− αri ).

The formula of property 4 for #Jac(C)(Fqr ) gives an efficient method for
computing the number of points in the divisor class group of a curve over a large-
degree extension of the field Fq once one has computed P (X) (see Appendix 1
for details about computing P (X)). For cryptography one wants a curve such
that #Jac(C)(Fqr ) is divisible by a large prime l and such that the group resists
the known attacks ([8], [26]) on the discrete logarithm problem.

A common strategy is to try values of r until one is found for which the large
prime l satisfies gcd(l, q) = 1 and qkr 6≡ 1 (mod l) for ‘small’ k. If the original
curve is supersingular then, as we will show, it is futile to try many different
values for r since the Frey-Rück attack will always work. Hence, it is important
to know that such curves should be discarded right from the start.
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4.1 Supersingularity

Recall that an elliptic curve E over Fpm is supersingular if E(Fp) has no points
of order p (see [29]).

Definition 2. (Oort [24]) An abelian variety A over Fq is called supersingular
if A is isogenous to a product of supersingular elliptic curves. A curve C over
Fq is called supersingular if Jac(C) is supersingular.

The following result follows from the work of Manin and Oort.

Theorem 1. The following conditions on an abelian variety A over Fq of di-
mension g are equivalent.

1. A is supersingular.
2. A is isogenous (over some finite extension of Fq) to Eg for some supersin-
gular elliptic curve E.

3. There is some integer k such that the characteristic polynomial of Frobenius
on A over Fqk is P (X) = (X ± qk/2)2g.

4. There is some integer k such that πk = ±qk/2.
5. For some positive integer k we have #A(Fqk) = (qk/2 ± 1)2g.

The fourth property is the one which is most important for our application.

4.2 A criterion for supersingularity

The following result follows from Proposition 1 of Stichtenoth and Xing [34]. It
gives a simple test for whether or not an abelian variety is supersingular, once
P (X) has been computed.

Theorem 2. Suppose q = pn and suppose that A is an abelian variety of di-
mension g over Fq. Let P (X) = X2g + a1X

2g−1 + · · · + agX
g + · · · + qg be

the characteristic polynomial of the Frobenius endomorphism on A. Then A is
supersingular if and only if, for all 1 ≤ j ≤ g,

pdjn/2e | aj .

4.3 The bound on the extension degree

The values of k which arise depend on properties of cyclotomic polynomials (i.e.,
irreducible factors over Z of Xm − 1 for some m). Hence we make the following
definitions.

Definition 3. For each positive integer g let Pg = {p(X) ∈ Z[X] : deg p(X) =
2g, p(X) irreducible over Z, p(X)|(Xm − 1) for some m}. For each p(X) ∈ Pg
define m(p(X)) = min{m : p(X)|(Xm − 1)}. Define k′(g) to be max{m(p(X)) :
p(X) ∈ Pg}. Define k(g) to be

max
{

lcm
(

m(p1(X)), . . . ,m(pn(X))
)

: g =
n
∑

i=1

gi, pi(X) ∈ Pgi

}

.
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We now state our main result. We emphasise that the bound k(g) depends
only on the genus and not on the abelian variety A.

Theorem 3. Let A be a supersingular abelian variety of dimension g over a
field Fq, then there exists an integer k ≤ k(g) such that, for all integers r ≥ 1,
the exponent of the group A(Fqr ) divides qkr − 1.

Proof. First, take a quadratic extension so that qr is a square, i.e., consider q0 =
q2r. Let P (X) be the characteristic polynomial of the Frobenius endomorphism
on A over Fq0 and write αi for the roots (they are the squares of the values of
the roots corresponding to A over Fq).

We follow the proof of Theorem 4.2 of Oort [24] and consider

P ′(X) = P (
√
q0X)/qg0 = X2g + (a1/

√
q0)X

2g−1 + · · ·+ 1

which has roots αi/
√
q0. By Theorem 2 the coefficients of P ′(X) are integers.

The numbers αi/
√
q0 are algebraic integers which are units but, by Theorem

4.1 of Manin [21], it follows that they are actually roots of unity. Therefore P ′(X)
is a product of cyclotomic polynomials.

By definition of k(g) there is some k ≤ k(g) such that (αi/
√
q0)

k = 1 for all i.

In other words, αki = q
k/2
0 for all i and so πk = q

k/2
0 . For all points P ∈ Pic0C(Fqr )

we have P = πr(P ) = [q
rk/2
0 ]P . It follows that the exponent of A(Fqk

0
) divides

q
k/2
0 −1 (also see Stichtenoth and Xing [34] Proposition 2). Since q

k/2
0 −1 = qrk−1

the result is proven. ut

We now consider the values of k(g). Cyclotomic polynomials Xm − 1 factor
into products of polynomials Φn(X) for each n|m (see Lang [19] VI.3). The
polynomials Φn(X) have degree ϕ(n) (this is the Euler ϕ-function) so the values
of k′(g) are related to the problem of finding the largest value of n for which
ϕ(n) = 2g. The extremal case is when n is the product of the first k primes and
so ϕ(n) = n 1

2
2
3 · · ·

pk−1
pk

(e.g., ϕ(6) = 2, ϕ(30) = 8, ϕ(210) = 48 etc). The values

of k(g) relate to the ways of taking least common multiples of the m(p(X)).

g k′(g) k(g) k(g)/g

1 6 6 6
2 12 12 6
3 18 30 = lcm(6, 10) 10
4 30 60 = lcm(10, 12) 15
5 22 120 = lcm(8, 10, 6) 24
6 42 210 = lcm(6,10,14) 30
7 ? 420 = lcm(5,7,12) 60
8 60 840 = lcm(3,5,7,8) 105

Table 1. Values of k(g). The symbol ? indicates the fact that there are no irreducible
cyclotomic polynomials of degree 14 (since there are no integers N with ϕ(N) = 14).



Supersingular Curves in Cryptography 509

Table 1 gives some values for k(g). We only list values for g ≤ 8 since there
are various algorithms (see [12]) for solving the discrete logarithm problem on
high-genus curves. The notation indicates how the maximum value is attained.
For example the case k(3) = 30 comes from the cyclotomic polynomials Φ6(X) =
X2 −X + 1 and Φ10(X) = X4 −X3 +X2 −X + 1. It follows that the smallest
degree m such that Φ6(X)Φ10(X)|(Xm − 1) is m = lcm(6, 10) = 30. Hence an
abelian variety with P (X) = q3Φ6(X/

√
q)Φ10(X/

√
q) (which must exist by the

Honda-Tate theorem [35]) would have embedding degree 30. However, we have
not found a curve whose Jacobian is isogenous to such an abelian variety.

The bounds given are sharp, in the sense that there exists an abelian variety
over some finite field Fq for which the bound k(g) is attained (note also that
we recover the bound k = 6 in the elliptic curve case). However, we are more
interested in Jacobian varieties of curves than in general abelian varieties. It is
therefore important to determine which values for k can arise as the Jacobian of
a curve. We return to this problem in Section 4.4.

What do these results tell us about the security of the discrete logarithm
problem in the divisor class group of a curve? Recall that the advantage of the
divisor class group of a curve of genus g over Fq is that, over a field Fq the
group has size approximately qg. Hence, to determine the applicability of the
subexponential algorithms for solving the discrete logarithm problem in finite
fields, we really should consider the ratio k(g)/g, which is seen in Table 1 to grow
rather slowly. This supports the notion that supersingular curves are weaker than
the general case for standard discrete logarithm based cryptosystems.

4.4 Are large values of k attained for curves?

In this section some examples of curves with relatively large values for k are
given (see Table 2). When g > 2 it is seen that the values are much smaller than
the upper bounds given in Table 1. It is an interesting open problem to find the
exact largest values of k for each genus, and we hope that this paper motivates
further work on the problem.

The fact that the maximum value of k is attained in the case of genus one
and two curves is not surprising since every elliptic curve is a Jacobian, and
every isogeny class of abelian varieties of dimension two contains a representative
which is either a product of elliptic curves or the Jacobian of a hyperelliptic curve
(possibly this process requires an extension of the ground field). However, in the
case of dimension four or more we would not necessarily expect the bounds to
be attained.

The case of dimension three is particularly interesting. Simple abelian vari-
eties of dimension three should be isogenous to a Jacobian of a genus three curve
(not necessarily hyperelliptic) over some extension field. However, we have not
found any supersingular curves giving large values of k. Further, we have not
found any supersingular hyperelliptic curves of genus three in characteristic two.

The reason for only listing curves defined over small fields is that, for elliptic
curves, one can only obtain k > 3 in characteristic two or three, and we expect
analogous results in the higher genus case.
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Field Curve Genus # points k

Fp
(1) y2 = x3 + a 1 p+ 1 2

F3 y2 = x3 + 2x± 1 1 7,1 6

F2 y2 + y = x5 + x3 2 13 12
F3 y2 = x6 + x+ 2 2 13 3
F5 y2 = x5 + 2x4 + x3 + x+ 3 2 11 5

F22 = F2(θ) x
4 + θxy3 + yz3 (2) 3 57 9

F3 y2 = x7 + 1 3 28 6
F5 y2 = x8 + 2x4 + 3x2 + 2 3 66 10
F7 y2 = x8 + x4 + 5x3 3 911 14

F2 y2 + y = x9 + x4 + 1 4 5 12

Table 2. Table of curves with large k. Notes:
(1) In the first row p must be an odd prime congruent to 2 modulo 3.
(2) This genus 3 curve is a plane quartic and is not hyperelliptic. It can be written as
the affine superelliptic curve z3 = x4 + θx2.

5 Equations of supersingular curves

For applications, especially when using subfield curves, it is very important to
know in advance which equations are likely to give rise to supersingular curves.
For instance, Sakai, Sakurai and Ishizuka [27] suggested some hyperelliptic curves
for use in cryptography. On page 172 they state that they were unable to find
any secure genus 2 curves over F2 and speculated that this was caused by their
restriction to the field F2 (instead of using F2n). In fact, the reason for this is that
they only considered equations of the form C : y2 + y = f(x) with f(x) ∈ F2[x]
monic of degree 5. We will show that all genus two curves of this form over all
fields F2n are supersingular.

The first observation is that any hyperelliptic curve in characteristic two of
the form y2+h(x)y = f(x) with 1 ≤ deg(h(x)) ≤ g+1 cannot be supersingular.
To see this note that any root x0 of h(x) gives rise to a point (x0, y0) (possibly
over a quadratic extension) of order 2, but a supersingular curve in characteristic
p has no points (even over algebraic extensions) of order p.

Therefore, curves of the form y2+y = f(x) are a poor choice in characteristic
two if one wants to avoid supersingular cases. However, the argument sketched
above does not imply that all such curves are necessarily supersingular. Indeed,
there are curves of this form which are not supersingular when the genus is three
or more. Our main result in this section is that all such curves are supersingular
in the case of genus two.

Theorem 4. Let C be a genus 2 curve over F2n of the form y2 + cy = f(x)
where f(x) is monic of degree 5 and c ∈ F∗

2n . Then C is supersingular.

Before giving the proof of the theorem it is necessary to obtain the following
result about the polynomials P (X) for curves of this form.
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Lemma 2. Let C be a genus 2 curve over F2n of the form y2+ cy = f(x) where
f(x) is monic of degree 5 and c ∈ F∗

2n . Then the coefficients a1 and a2 in the
polynomial P (X) are both even.

Proof. For equations of this form the number of points on the curve over all
extensions F2nm is odd, since apart from the point at infinity, points come in
pairs (x0, y0) and (x0, y0+c). The fact that #C(F2n) = 2n+1−a1 is odd implies
that a1 is even.

On C(F22n) there are two points for each possible x0 ∈ F2n (the correspond-
ing y-coordinates may be in F2n or F22n). For any point with x0 6∈ F2n there are
the four distinct ‘conjugates’ (x0, y0), (x0, y0+c), (π(x0), π(y0)), (π(x0), π(y0)+c)
where π is the Frobenius automorphism of F22n/F2n . It follows that #C(F22n) ≡
1 (mod 2n+1). Write t2 = 22n+1−#C(F22n). Then t2 is divisible by 4 and from
a2
1 = t2 + 2a2 it follows that a2 is even. ut

If the curve C is actually defined over F2 then Theorem 2 implies that the
curve is supersingular. In the general case we need a further argument.

Proof. (of Theorem 4) Using Lemma 2 we see that P (X) ≡ X4 (mod 2). By a
result of Manin [22] (also see Stichtenoth [32] Satz 1) it follows that Jac(C)(F2n)
has no points of order 2. In the case of dimension 2, this condition is known (see
Li and Oort [20] p. 9) to be equivalent to supersingularity. ut

An alternative proof of the above result can be given by using the theory of
the Newton polygon and some class field theory. One shows that, in genus 2, the
only polynomials P (X) which satisfy the condition of Lemma 2 also satisfy the
condition of Theorem 2 (see Rück [25] for details of this approach).

Note that both of these arguments rely heavily on the fact that we are in the
genus two case. In the case of genus three it is possible to give ‘safe’ examples.
For instance, the curve C : y2 + y = x7 of [27] has P (X) = X6 − 2X3 + 23 and
the fact that a3 is not divisible by 2d3/2e means that C is not supersingular.

We note that #C(F2) and #C(F22) being odd does not alone imply that C
is supersingular. An example is the genus two curve y2 + (x2 + x+1)y = x5 +1
which has 3 points over F2 and 7 points over F22 and so P (X) = X4 +X2 + 4
and C is not supersingular.

The authors of [27] could have considered curves of the form y2 + xy = f(x)
(with degree five f(x) ∈ F2[x]). In these cases it is clear that #C(F2n) is always
even, in which case a1 is always odd and, by Theorem 2 the curve cannot be
supersingular. Indeed, the same argument shows that curves of the form y2+xy =
f(x) with f(x) ∈ F2n [x] of odd degree are an infinite family of non-supersingular
hyperelliptic curves. It is easy to find suitable examples of genus 2 curves of this
form, for instance C : y2 + xy = x5 + x2 + 1 has P (X) = X4 − X3 − 2X + 4.
One can show that

#Jac(C)(F297) = 2 · 389 · 1747·
18473392463868826910318794676754071940716909907019619

#Jac(C)(F2103) = 2 · 47381·
1085287719049570327739050925845914539948927360923370110769
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where the large numbers are proven primes according to Magma. In both cases
the Frey-Rück embedding degree exceeds 1050.

The above arguments suggest that, in characteristic two, only curves of the
form y2 + h(x)y = f(x) where deg(h(x)) ≥ 1 should be used in cryptography.
However, this is not necessarily the conclusion one wants to draw, since equations
of the form y2 + y = f(x) give some implementation efficiency (see Smart [30]
Section 1 and [7] Theorem 14).

Another strategy would be to use genus two curves of the form y2 +h(x)y =
f(x) over F2n which always have two points at infinity (i.e., deg(h(x)) = 3 such
that h(x) has no root in the ground field). In these cases one also has a1 odd,
and so the curves are not supersingular.
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Appendix 1. Methods to compute P (X)

Very recently there have been some breakthroughs [15], [13] in algorithms
for counting points and computing P (X) on higher genus curves in the case of
small characteristic. Nevertheless there is still interest in using subfield curves.
We discuss some methods to compute P (X) for curves C defined over small
fields Fq.

First we give the most elementary method. Given a curve C/Fq of genus
g > 1 compute #C(Fqr ) for 1 ≤ r ≤ g by exhaustive search. If the curve is
given as a non-singular plane curve f(x, y) = 0 with a known number of rational
points at infinity then the exhaustive search involves trying all values x0 ∈ Fqr

and then calculating the number of roots of f(x0, y) in Fqr . From the values

tr = qr +1−#C(Fqr ) =
∑2g

i=1 α
r
i one can obtain the coefficients of P (X) using

Newton’s identities am = 1
m (−tm −

∑m−1
i=1 aitm−i) (see Cohen [5] Proposition

4.3.3). This naive algorithm takes time O(qg(log qg)c) for some constant c, which
can also be written as O(qg+ε).

One method to speed this up is to compute #C(Fqr ) for r = 1, . . . , g − 1
and then to try all values of #C(Fqg )− (qg + 1) (i.e., all integers in the interval
[−2gqg/2, 2gqg/2]) and test the correctness of the group order probabilistically
by computations on Jac(C) over Fq or over some extension Fqm . This produces
a method of complexity O(qg−1+ε).

A variation on the above strategy is to use the method of Stein and Teske
[31] which computes #Jac(C)(Fq) in time proportional to qd where d ∈ Z is
a suitable rounding of (2g − 1)/5. One computes #C(Fqr ) for r = 1, . . . , g − 1
and then computes #Jac(C)(Fq) from which it is possible to deduce P (X). This
method also has complexity O(qg−1+ε).

Similarly, one can compute #C(Fqr ) only up to r = g − 2 and then com-
pute #Jac(C)(Fq) and #Jac(C)(Fq2) using [31]. This method has the superior
complexity O(qg−2+ε) when g = 4 or g ≥ 6. This trick cannot be extended.

Appendix 2. Superelliptic curves

The case of hyperelliptic curves has been fairly thoroughly explored in the
past [16], [17], [3], [27], [30]. In particular, Buhler and Koblitz [3] mention cases
which are guaranteed to be non-supersingular.

A superelliptic curve (see [10]) is a curve given by an affine equation of
the form yn = f(x) over Fq where gcd(n, q) = 1, gcd(n,deg f(x)) = 1 and
gcd(f(x), f ′(x)) = 1. Such curves have only one point at infinity and they have
genus 1

2 (n− 1)(deg f(x)− 1).

Note that the curve y3 = f(x) over F2n has exactly 2n + 1 points when n is
odd (since in those cases 3 is coprime to the order of F∗

2n). This means that, in the
case where the ground field is an odd degree extension of F2, to compute P (X)
it is only necessary to count the number of points over even degree extensions
of the ground field. In other words, when g is odd, one can compute P (X) in
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time O(qg−1+ε). On the other hand, such curves do not have full 2-torsion and
so they are not fully general among all superelliptic curves.

Table 3 lists some non-supersingular superelliptic curves. In all cases the large
numbers l are proven primes according to Magma, and the curves are resistant to
the Frey-Rück attack. The symbol α represents a generator of the multiplicative
group of the field of definition. As usual, one must be careful about the use of
curves such as these due to the large automorphism group [6], [12].

g = 3 C : y3 = x4 + x3 + αx2 + x+ α over F22

P (X) = X6 + 3X4 + 4X3 + 12X2 + 26

#Jac(C)(F22·41) = 22 · 3 · 7 · 1231 · 12547 · 839353·
103838175651664516641765501325467649197030008300761187148661 (197 bit)

g = 3 C : y3 = x4 + x3 + αx+ 1 over F25

P (X) = X6 + 39X4 + 1248X2 + 215

#Jac(C)(F25·23) = 24 · 32 · 55 · 7 · 11 · 83·
249210979849057649603915759933900855778626741247624026770184646815
70978869983922408175831537959 (314 bit)

g = 4 C : y3 = x5 + 1 over F2

P (X) = X8 − 2X4 + 16
#Jac(C)(F243) = 3 · 5 · 4129·
96654730063895670508796204430057604912608599311 (157 bit)

g = 4 C : y3 = x5 + x+ 1 over F2

P (X) = X8 + 2X6 + 6X4 + 8X2 + 16
#Jac(C)(F243) = 3 · 11·
181403354742656313080878192304365317354825710535649 (167 bit)
#Jac(C)(F261) = 3 · 11 · 12323·
69516604910881473963537569029137158267066937810090081
343111639513643 (226 bit)

Table 3. Examples of superelliptic curves suitable for cryptography.


