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Abstract. We study a recently proposed design approach of Feistel ci-
phers which employs optimal diffusion mappings across multiple rounds.
This idea was proposed by Shirai and Shibutani at FSE2004, and the
technique enables to improve the immunity against either differential
or linear cryptanalysis (but not both). In this paper, we present a the-
oretical explanation why the new design using three different matrices
achieves the better immunity. In addition, we are able to prove conditions
to improve the immunity against both differential and linear cryptanal-
ysis. As a result, we show that this design approach guarantees at least
R(m+1) active S-boxes in 3R consecutive rounds (R ≥ 2) where m is the
number of S-boxes in a round. By using the guaranteed number of active
S-boxes, we compare this design approach to other well-known designs
employed in SHARK, Rijndael, and MDS-Feistel ciphers. Moreover, we
show interesting additional properties of the new design approach.
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1 Introduction

A Feistel structure is one of the most widely used and best studied structures
for the design of block ciphers. It was first proposed by H. Feistel in 1973;
subsequently the structure was adopted in the well-known block cipher DES [5,6].
The main advantage of the Feistel structure is its involution property, which
provides flexible designs of the underlying F-functions. During the 30 year history
of modern block ciphers, extensive studies have been made on Feistel structure [8,
11, 14]. Currently, many well-known block ciphers, e.g. Camellia [1], Misty [10],
RC6 [13], Twofish [15], employed the design of Feistel structures.

Recently, Shirai and Shibutani proposed a novel design approach of Feistel
ciphers based on the concept of optimal diffusion mappings [18]. An optimal
diffusion is a linear function with maximum branch number; the concept of opti-
mal diffusion is used in the design of AES and many other cryptographic prim-
itives [2, 4, 12, 15]. From their empirical analytic results, the immunity against
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either differential and linear cryptanalysis (but not both) would be strengthened
significantly if the linear diffusion layer of the Feistel structure satisfies special
optimal diffusion conditions across multiple rounds. In this way difference can-
cellation in the Feistel structure caused by a small number of active S-boxes will
not occur. This result opened a new line of research on the Feistel structure. A
theoretical proof of the effectiveness of the proposed design and a solution to im-
prove the immunity against both differential and linear cryptanalysis remained
unsolved.

In this paper, we will call the “Optimal Diffusion Mappings across Multi-
ple Rounds” design approach of Feistel ciphers the ODM-MR design. Our con-
tribution is that we first give a theoretical explanation of the effectiveness of
the ODM-MR design implied by Shirai and Shibutani. Second, we found new
conditions and proofs to improve the immunity of both differential and linear
cryptanalysis. Let m be the number of S-boxes in an F-function. As a result,
by combining previous and novel conditions, we finally show that Feistel ciphers
with the ODM-MR design guarantees R(m+1) active S-boxes in 3R consecutive
rounds for R ≥ 2.

In order to further investigate the properties of the ODM-MR design, we
compare the ratio of guaranteed active S-boxes to all employed S-boxes of the
ODM-MR design to other design approaches employed in MDS-Feistel, SHARK
and AES/Rijndael. All of them use optimal diffusion mappings in their linear
diffusion. Consequently, in 128-bit block and 8-bit S-box settings, we obtain a
limit of 0.371 for the active S-box ratio of ODM-MR design when the number
r of rounds goes to infinity, which means that we can guarantee 37.1% active
S-boxes with this design strategy. This result is apparently better than MDS-
Feistel’s ratio of 0.313. Moreover we show that for the number of S-boxes in an
F-function and the round number go to infinity, the converged ratio of ODM-
MR is 0.333. This is better than Rijndael-type diffusion layer’s ratio 0.250. From
these limit values, we can conclude that ODM-MR performs better than the other
approaches in certain settings.

This paper is organized as follows: in Sect. 2, we introduce some definitions
used in this paper. Previous works including ODM-MR design approach are
shown in Sect. 3. We prove in Sect. 4 the theorems regarding ODM-MR as our
main contribution. In Sect. 5, we discuss the new design by presenting some
numerical values. Finally Sect. 6 concludes the paper. The method to construct
the concrete Feistel ciphers with ODM-MR design is proposed in Appendix A.

2 Preliminaries

In this paper, we treat the typical Feistel structure, which is called a balanced
Feistel structure. It is defined as follows [14].

Definition 1. (Balanced Feistel structure)
Let E : {0, 1}b×{0, 1}k → {0, 1}b be a b-bit block cipher (for b even) with a k-bit
key. Let r be the number of rounds, ki ∈ {0, 1}k

′

be the k′-bit round key provided
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by a key scheduling algorithm and xi ∈ {0, 1}b/2 be intermediate data, and let
Fi : {0, 1}k

′

× {0, 1}b/2 → {0, 1}b/2 be the F-function of the i-th round. The
encryption and decryption algorithm of a balanced Feistel Cipher E are defined
as follows

Algorithm Feistel.EncryptK(P ) Algorithm Feistel.DecryptK(C)
input P ∈ {0, 1}b, K ∈ {0, 1}k input C ∈ {0, 1}b, K ∈ {0, 1}k

x0 ← msbb/2(P ), x1 ← lsbb/2(P ) x0 ← msbb/2(C), x1 ← lsbb/2(C)
for i = 1 to r do for i = 1 to r do

xi+1 = Fi(ki, xi)⊕ xi−1 xi+1 = Fi(kr−i+1, xi)⊕ xi−1

msbb/2(C)← xr+1, lsbb/2(C)← xr msbb/2(P )← xr+1, lsbb/2(P )← xr

return C ∈ {0, 1}b return P ∈ {0, 1}b

where msbx(y) (lsbx(y)) represents the most (least) significant x-bit of y.

Then we define SP-type F-functions which are a special type of F-function
constructions [7, 17].

Definition 2. (SP-type F-function)
Let the length of round key k′ = b/2. Let m be the number of S-boxes in a round,
and n be the size of the S-boxes, with mn = b/2. Let si,j : {0, 1}n → {0, 1}n be
the j-th S-box in the i-th round, and let Si : {0, 1}b/2 → {0, 1}b/2 be the function
generated by concatenating m S-boxes in the i-th round. Let Pi : {0, 1}b/2 →
{0, 1}b/2 be the linear Boolean function.

Then SP-type F-functions are defined as Fi(xi, ki) = Pi(Si(xi ⊕ ki)). Note
that we define the intermediate variables zi = Si(xi ⊕ ki).

Definition 3. ((m,n,r)-SPMFC)
An (m, n, r)-SPMFC is defined as an r-round Feistel cipher with SP-type round
function using m n-bit S-boxes, and for which all si,j , Pi are bijective. An mn×
mn matrix Mi (1 ≤ i ≤ r) over GF (2) denotes a matrix representation of a
linear Boolean function Pi of (m, n, r)-SPMFC.

We also give definitions of bundle weight and branch number [4].

Definition 4. (bundle weight)
Let x ∈ {0, 1}kn, where x is represented as a concatenation of n-bit values as
x = [x0x1 . . . xk−1], xi ∈ {0, 1}n, then the bundle weight wn(x) of x is defined as

wn(x) = ]{xi|xi 6= 0} .

Definition 5. (Branch Number)
Let θ : {0, 1}kn → {0, 1}ln. The branch number of θ is defined as

B(θ) = min
a6=0
{wn(a) + wn(θ(a))} .
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Remark 1. The maximum branch number is B(θ) = l+1. If a linear function has
a maximum branch number, it is called an optimal diffusion mapping [2].
It is known that an optimal diffusion mapping can be obtained from maximum
distance separable codes known as MDS codes [4].

3 Previous Work

The precise estimation of the lower bound of the number of active S-boxes of
block ciphers has been known as one of the practical means to evaluate ci-
phers, because this lower bound can be used to calculate the upper bound of
the differential characteristic probability or the linear characteristic probabil-
ity [1,3,4,7,9,17]. Shimizu has shown a conjectured lower bound of the number
of differentially and linearly active S-boxes for certain (m, n, r)-SPMFC block
ciphers, in which a unique optimal diffusion mapping is repeatedly used in all
F-functions [16]. Since such optimal diffusion mappings can be obtained from a
generation matrix of an MDS code, we call the design MDS-Feistel [2, 4, 18].

Shimizu showed the following formula.

Conjecture 1. Let A be an mn×mn matrix over GF (2) of an optimal diffusion
mapping with maximum branch number m + 1. Let E be an (m, n, r)-SPMFC
block cipher and all matrices of diffusion layers are represented by the unique
matrix Mi = A (1 ≤ i ≤ r). Then a lower bound of the differentially and linearly
active S-boxes of E is conjectured as

L(r) = br/4c(m + 2) + (r mod 4)− 1 . (1)

In Table 1, the columns indicated by ‘M1’ show the conjectured lower bounds
of number of active S-boxes, and the data of the conjectured values are plotted
on the left side of Fig. 3. This simple relation between the round number and the
guaranteed number of active S-boxes is considered as a useful tool for evaluating
similar kinds of block cipher designs. While this conjecture has not been proved,
empirically, it has been partially confirmed [18].

Recently, at FSE 2004, Shirai and Shibutani proposed a novel design ap-
proach to improve the minimum number of active S-boxes of Feistel ciphers
by employing optimal diffusion mappings across multiple round functions, the
ODM-MR design approach [18]. By carefully analyzing the difference cancella-
tions, they found the following properties:

Property 1. Let E be an (m, n, r)-SPMFC block cipher.

– For matrices Mi (1 ≤ i ≤ r), if every concatenation of two matrices Mj

and Mj+2 for all possible j, denoted by [Mj |Mj+2], is an optimal diffusion
mapping, the minimum number of differentially active S-boxes is increased
from an MDS-Feistel cipher.
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– Additionally, if each concatenation of three matrices Mj , Mj+2 and Mj+4 for
all possible j, denoted by [Mj |Mj+2|Mj+4], is an optimal diffusion mapping,
the minimum number of differentially active S-boxes is increased further
than when only satisfying the above conditions on two matrices.

– Even if the number of concatenated matrices is larger than 3, no explicit
gain of the number of active S-boxes has been observed in their simulations.

These results imply that by avoiding a linear correlation between F-functions
in round (i, i+2) or rounds (i, i+2, i+4), the ODM-MR construction guarantees
more active S-boxes.

In Table 1, the columns indicated by ‘D’ show the result of the improved min-
imum number of differentially active S-boxes when every concatenated matrix
of three matrices [Mi|Mi+2|Mi+4] is an optimal diffusion mapping. The graph
of the corresponding values are shown on the left side of Fig. 2.

This result opened a new line of research on developing more efficient Feistel
ciphers. On the other hand a theoretical justification of the gain of the proposed
construction and an explicit method to improve the immunity against both dif-
ferential and linear cryptanalysis remained unsolved.

4 Proofs of Effectiveness of the ODM-MR Design

In this section, we provide the first proofs for the effectiveness of the ODM-
MR design using three different matrices. We also show an additional condition
and some proofs in order to improve the lower bound of linearly active S-boxes
by using two different matrices. Our main contribution is to show the following
corollary which presents a simple relation between the number of rounds and the
guaranteed numbers of active S-boxes in the ODM-MR design. In the corollary,
note that tM denotes the transpose matrix of a matrix M .

Corollary 1. Let E be a (m,n,r)-SPMFC block cipher where r ≥ 6.
If [Mi|Mi+2|Mi+4] and [tM−1

j |
tM−1

j+2] are optimal diffusion mappings for any i, j
(1 ≤ i ≤ r − 4, 1 ≤ j ≤ r − 2), respectively, any 3R consecutive rounds (R ≥ 2)
in E guarantee at least R(m + 1) differentially and linearly active S-boxes.

Fig. 1 illustrates the statement of the corollary. By using the Corollary 1,
we can guarantee theoretically arbitrary number of active S-boxes by increasing
the number of rounds. Since the corollary can be immediately obtained from
two theorems, i.e. Theorem 1 and Theorem 2, the following two subsections are
devoted to the proofs of these theorems. To ease the proofs, we first introduce
an additional definition.

Definition 6. Consider a differential characteristic or linear approximation.
Let Di and Li denote the number of differentially and linearly active S-boxes
in the i-th round, respectively. These values are determined by the difference
∆xi, ∆zi or by the linear mask Γxi, Γ zi as follows.

Di = wn(∆xi) = wn(∆zi) , Li = wn(Γxi) = wn(Γzi) ,
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6-round: 2(m + 1) active S-boxes are guaranteed

6-round: 2(m + 1) active S-boxes are guaranteed

9-round: 3(m + 1) active S-boxes are guaranteed

12-round: 4(m + 1) active S-boxes are guaranteed
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Fig. 1. Guaranteed Active S-boxes by ODM-MR design

where wn(·) is the bundle weight as defined in Definition 4.

Remark 2. Note that a given difference characteristic always contains a nonzero
input difference, since any (m, n, r)-SPMFC’s F-functions are bijective. Hence
we obtain the following conditions:

(d0) Di = 0⇒ Di−2 6= 0, Di−1 6= 0, Di+1 6= 0, Di+2 6= 0 ,
(d1) Di = 0⇒ Di−1 = Di+1 .

Since a linear approximation always contains a nonzero input mask, we obtain

(l0) Li = 0⇒ Li−2 6= 0, Li−1 6= 0, Li+1 6= 0, Li+2 6= 0 ,
(l1) Li = 0⇒ Li−1 = Li+1 .

4.1 Proofs for the Lower Bound of Differentially Active S-boxes

In this section we prove Theorem 1; the proof is based on five lemmata.
Lemma 1 shows relations between Di of (m, n, r)-SPMFC when every Mi is

an optimal diffusion mapping.

Lemma 1. Let E be an (m, n, r)-SPMFC block cipher. If every Mi has maxi-
mum branch number m + 1, then E satisfies the following condition (d2).

(d2) Di+1 6= 0⇒ Di + Di+1 + Di+2 ≥ m + 1 .

Proof. From the relation between the differences ∆zi+1,∆xi and ∆xi+2 in a 3
consecutive rounds, we obtain the following equation.

Mi+1∆zi+1 = ∆xi ⊕∆xi+2 .

Since Mi has maximum branch number m + 1 we have

wn(∆zi+1) 6= 0⇒ wn(∆zi+1) + wn(∆xi ⊕∆xi+2) ≥ m + 1 . (2)

Eq. (2) and the inequality wn(∆xi)+wn(∆xi+2) ≥ wn(∆xi⊕∆xi+2) yield (d2).
ut
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Remark 3. By combining Remark 2 and (d2), we can obtain additional under-
lying conditions (d3) and (d4).

(d3) Di = 0,⇒ Di+1 + Di+2 ≥ m + 1 ,
(d4) Di+2 = 0,⇒ Di + Di+1 ≥ m + 1 .

Equations (d3) and (d4) mean that if round k has no active S-boxes, any 2
consecutive rounds next to round k always contain more than m + 1 active
S-boxes.

Next, we show the property of (m, n, r)-SPMFC in which every [Mi|Mi+2] is
an optimal diffusion mapping. This is true for the ODM-MR.

Lemma 2. Let E be a (m,n,r)-SPMFC block cipher. If every [Mi|Mi+2] has
maximum branch number m + 1, E satisfies the following conditions (d5), (d6).

(d5) Di+4 = 0⇒ Di + Di+1 + Di+3 ≥ m + 1 ,
(d6) Di = 0⇒ Di+1 + Di+3 + Di+4 ≥ m + 1 .

Proof. From the relation between 5-round differences,

Mi+1∆zi+1 ⊕Mi+3∆zi+3 = ∆xi ⊕∆xi+4 .

Then,

[Mi+1|Mi+3]

(

∆zi+1

∆zi+3

)

= ∆xi ⊕∆xi+4 .

Since [Mi+1|Mi+3] has maximum branch number m+1, and from Remark 2, we
see that wn(∆zi+1) = 0 and wn(∆zi+3) = 0 will never occur simultaneously, we
obtain

wn(∆zi+1) + wn(∆zi+3) + wn(∆xi ⊕∆xi+4) ≥ m + 1 .

By assuming the cases ∆xi = 0 or ∆xi+4 = 0, we directly obtain (d5) and (d6).
ut

By using the previously obtained conditions (d0)−(d6), we show the following
lemma for the guaranteed number of differentially active S-boxes of (m, n, r)-
SPMFC.

Lemma 3. Let E be a (m,n,r)-SPMFC block cipher where r ≥ 6. If every
[Mi|Mi+2] is an optimal diffusion mapping, then any 6 consecutive rounds in
E guarantee at least 2(m + 1) differentially active S-boxes.

Proof. Consider the total number of active S-boxes in 6 consecutive rounds from
the i-th round,

i+5
∑

k=i

Dk = Di + Di+1 + Di+2 + Di+3 + Di+4 + Di+5 .
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If Di+1 6= 0 and Di+4 6= 0, the condition (d2) guarantees that Di+Di+1+Di+2 ≥

m+1 and Di+3+Di+4+Di+5 ≥ m+1. Therefore we obtain
∑i+5

k=i Dk ≥ 2(m+1).
If Di+1 = 0,

i+5
∑

k=i

Dk = Di + Di+2 + Di+3 + Di+4 + Di+5 .

From (d1),
i+5
∑

k=i

Dk = 2 ·Di+2 + Di+3 + Di+4 + Di+5

= (Di+2 + Di+3) + (Di+2 + Di+4 + Di+5) .

From (d3) and (d6),

i+5
∑

k=i

Dk ≥ (m + 1) + (m + 1) = 2(m + 1) .

The case of Di+4 = 0 is proven similarly from (d1), (d4) and (d5). ut

Next, we show the property of an (m, n, r)-SPMFC in which every
[Mi|Mi+2|Mi+4] has maximum branch number. This coincides with one of the
ODM-MR design.

Lemma 4. Let E be a (m,n,r)-SPMFC block cipher. If every [Mi|Mi+2|Mi+4]
is an optimal diffusion mapping, then E satisfies the following condition (d7).

(d7) Di = Di+6 = 0⇒ Di+1 + Di+3 + Di+5 ≥ m + 1 .

Proof. First, from the difference relation in 7 consecutive rounds, we obtain

Mi+1∆zi+1 ⊕Mi+3∆zi+3 ⊕Mi+5∆zi+5 = ∆xi ⊕∆xi+6 .

Then,

[Mi+1|Mi+3|Mi+5]





∆zi+1

∆zi+3

∆zi+5



 = ∆xi ⊕∆xi+6 .

Since [Mi+1|Mi+3|Mi+5] has maximum branch number, and from Remark 2,
wn(∆zi+1), wn(∆zi+3), and wn(∆zi+5) cannot be simultaneously 0, we get that

wn(∆zi+1) + wn(∆zi+3) + wn(∆zi+5) + wn(∆xi ⊕∆xi+6) ≥ m + 1 .

By assuming ∆xi = 0 and ∆xi+6 = 0, we derive the condition (d7). ut

From the additional condition (d7), we derive the following lemma.

Lemma 5. Let E be a (m,n,r)-SPMFC block cipher where r ≥ 9. If every
[Mi|Mi+2|Mi+4] is an optimal diffusion mapping, then any 9 consecutive rounds
in E guarantee at least 3(m + 1) differentially active S-boxes.
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Proof. Consider the total number of active S-boxes in 9 consecutive rounds,

i+8
∑

k=i

Dk = Di + Di+1 + Di+2 + Di+3 + Di+4 + Di+5 + Di+6 + Di+7 + Di+8 .

If Di+1 6= 0 then Di +Di+1 +Di+2 ≥ m+1 from (d2), and Lemma 3 guarantees

that the sum of the remaining 6 consecutive rounds is equal to
∑i+8

k=i+3
Dk ≥

2(m + 1). Consequently
∑i+8

k=i Dk ≥ 3(m + 1). Similarly, if Di+7 6= 0, at least
3(m + 1) active S-boxes are guaranteed.

If Di+1 = Di+7 = 0, we obtain

i+8
∑

k=i

Dk = Di + Di+2 + Di+3 + Di+4 + Di+5 + Di+6 + Di+8 .

From (d1),

i+8
∑

k=i

Dk = 2 ·Di+2 + Di+3 + Di+4 + Di+5 + 2 ·Di+6

= (Di+2 + Di+3) + (Di+2 + Di+4 + Di+6) + (Di+5 + Di+6) .

From (d3), (d7) and (d4),

i+8
∑

k=i

Dk ≥ (m + 1) + (m + 1) + (m + 1) = 3(m + 1) .

As a consequence, we have shown that any 9 consecutive rounds of E guarantee
at least 3(m + 1) differentially active S-boxes. ut

We conclude this section with

Theorem 1. Let E be an (m, n, r)-SPMFC block cipher where r ≥ 6. If every
[Mi|Mi+2|Mi+4] is an optimal diffusion mapping, any 3R consecutive rounds in
E guarantees at least R(m + 1) differentially active S-boxes.

Proof. Any integer 3R (R ≥ 2) can be written as 3R = 6k + 9j (k + j ≥ 1, 2k +
3j = R). From lemmata 3 and 5, 6 and 9 consecutive rounds of E guarantee
2(m + 1) and 3(m + 1) differentially active S-boxes, respectively. Therefore, E
guarantees k∗2(m+1)+j ∗3(m+1) = (2k+3j)(m+1) = R(m+1) differentially
active S-boxes. ut

4.2 Proofs for the Lower Bound of Linearly Active S-boxes

In this subsection, we will show the proof of the guaranteed number of linearly
active S-boxes of (m, n, r)-SPMFC with ODM-MR design.



10

Theorem 2. Let E be an (m, n, r)-SPMFC block cipher. If every [tM−1

i |
tM−1

i+2]
is an optimal diffusion mapping for any i, any 3R consecutive rounds in E has
at least R(m + 1) linearly active S-boxes.

Proof. From the 3-round linear mask relation,

Γxi+1 = tM−1

i Γzi ⊕
tM−1

i+2Γzi+2 .

Then,

Γxi+1 = [tM−1

i
tM−1

i+2]

(

Γzi

Γzi+2

)

.

Since [tM−1

i |
tM−1

i+2] has maximum branch number m + 1, and from Remark 2,
wn(Γzi) and wn(Γzi+2) cannot be simultaneously 0, we obtain

wn(Γzi) + wn(Γxi+1) + wn(Γzi+2) ≥ m + 1 .

By using the notion of Li, this implies,

(l1) Li + Li+1 + Li+2 ≥ m + 1 .

This shows that every 3 consecutive rounds guarantees at least m + 1 lin-
early active S-boxes. Consequently, any 3R consecutive rounds in E guarantees
∑i+3R−1

k=i Lk ≥ R(m + 1). ut

Finally, by simply combining Theorems 1 and 2, the claimed Corollary 1
follows directly. Appendix A contains example matrices that satisfy the ODM-
MR design.

5 Discussion

5.1 Comparison of ODM-MR and MDS-Feistel

To discuss the implications of this new design approach, we show empirical search
results for the cases r = 12, m = 4, .., 8. To obtain these results we employed a
weight based search method. This approach has been used by Shirai and Shibu-
tani before [18]. Our results are shown in Table 1. In the table, the values for
more than 13-rounds are interpolated by the corollary and Shimizu’s conjec-
ture. Note that the simulation results completely match the lower bound values
predicted by the corollary, which are denoted by the underlined values. These
results show the superiority of ODM-MR design over MDS-Feistel explicitly.

Fig. 2 shows graphs of the results in Table 1, and five auxiliary lines y =
(m + 1)x/3 are added where m = 4, .., 8. These lines connect the lower bounds
values of every 3R-round.

The left side of Fig. 3 shows an estimated lower bound of MDS-Feistel and
approximate lines y = (m+2)x/4−1. To see the effect of the ODM-MR approach
graphically, the right side of Fig. 3 includes the approximated lines for ODM-MR
and MDS-Feistel for m = 4 and m = 8. The differences of the gradients show
explicitly the advantage of the ODM-MR approach.
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Table 1. Lower Bounds of MDS-Feistel and ODM-MR design

m = 4 m = 5 m = 6 m = 7 m = 8

Round M1 D L M1 D L M1 D L M1 D L M1 D L

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 5 2 2 6 2 2 7 2 2 8 2 2 9
4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9
5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10
6 7 10 10 8 12 12 9 14 14 10 16 16 11 18 18
7 8 10 10 9 12 12 10 14 14 11 16 16 12 18 18
8 11 12 11 13 14 13 15 16 15 17 18 17 19 20 19
9 12 15 15 14 18 18 16 21 21 18 24 24 20 27 27
10 13 16 15 15 18 18 17 22 21 19 24 24 21 28 27
11 14 17 16 16 20 19 18 23 22 20 26 25 22 29 28
12 17 20 20 20 24 24 23 28 28 26 32 32 29 36 36
: : : : : : : : : : : : : : : :

15 20 25 25 23 30 30 26 35 35 29 40 40 32 45 45

: : : : : : : : : : : : : : : :
18 25 30 30 29 36 36 33 42 42 37 48 48 41 54 54

M1: numbers of active S-boxes of MDS-Feistel
D: numbers of differentially active S-boxes of ODM-MR
L: numbers of linearly active S-boxes of ODM-MR

5.2 Active S-box Ratio

In this subsection, we compare the ODM-MR approach to other design ap-
proaches using the new type of approach. Since we obtained a formal bound
for the lower bound of the ODM-MR design approach, we can compare it to
other well known design approaches based on the concept of active S-box ratio
introduced by Shirai and Shibutani [18].

Let active(r, m) be the number of guaranteed active S-boxes for an r-round
cipher which employs m×m diffusion matrices over GF (2n) in its diffusion layer.
For example, active(r, m) of the MDS-Feistel design can be written as

active(r, m) = (m + 2)br/4c+ αr,m ,

where αr,m = (r mod 4) − 1. Generally, αr,m is a function which maximum
absolute value is proportional to m and limr→∞αr,m/r = 0.

Next, let total(r, m) be the total number of S-boxes in an r-round cipher. The
ratio of the number of active S-boxes to the total number of S-boxes becomes

ratio(r, m) =
active(r, m)

total(r, m)
=

(m + 2)br/4c+ αr,m

rm
.

By using the definition of active S-box ratio, we can study the characteristic of
the MDS-Feistel design. For example, consider a 128-bit block cipher employing
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Fig. 2. Lower bounds of the ODM-MR design (m = 8)
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Fig. 3. Comparison of MDS-Feistel and ODM-MR design

8-bit S-boxes. For m = 8, ratio(r, 8) will converge to a specific value when r goes
to infinity,

lim
r→∞

ratio(r, 8) = lim
r→∞

10br/4c+ αr,8

8r
=

10

32
= 0.3125 .

This implies that about 31% of all S-boxes will be active for a very large number
of rounds. This limit can be considered as a potentially guaranteed ratio of active
S-boxes corresponding to the chosen m.

Also, we can take the limit of ratio(r, m) when both r and m tend to infinity,

lim
r,m→∞

ratio(r, m) =
(m + 2)br/4c+ αr,m

rm
=

1

4
= 0.25 .

Even though huge r and m are not practical in the real world, the value can
be understood as an indicator of the potential efficiency of a particular design
strategy.

We propose these limits as a reference to evaluate the efficiency of the linear
diffusion layer of the cipher and use them to compare ciphers employing different
design strategies. The following table contains the convergence values of the
“MDS-Feistel” and the“ODM-MR” design. Additionally, the following “Rijndael
type” and ”SHARK type” design approaches are also evaluated for reference.
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Rijndael type: A nm2-bit SPN block cipher design whose round function con-
sists of key-addition, m×m parallel n-bit S-boxes, a MixColumn employing
m m×m matrices over GF (2n) and a ShiftRow operation [4].

SHARK type: A nm-bit SPN block cipher design where m parallel n-bit S-
boxes, an m×m matrix over GF (2n) are employed [12].

Type active(r,m) total(r,m) 128bit blk. limr→∞ limm,r→∞

MDS-Feistel (m + 2)br/4c + αr,m rm m = 8 0.313 0.25
ODM-MR (m + 1)br/3c + βr,m rm m = 8 0.371 0.33

Rijndael type (m + 1)2br/4c + γr,m rm2 m = 4 0.391 0.25
SHARK type (m + 1)br/2c + θr,m rm m = 16 0.531 0.5

Table 2. Comparison of the Active S-box Ratio

Note that all four designs employ optimal diffusion mappings in their diffusion
layers; they have block length of 128 bits with 8-bit S-boxes. The result shows
that the ODM-MR approach has the better limit than MDS-Feistel in the 128-
bit block setting which is also confirmed by the empirical results in the previous
section. We also know that ODM-MR’s limit is closer to that of the Rijndael
design approach than MDS-Feistel.

Moreover, the limit value of the ODM-MR approach, when both r and m tend
to infinity, exceeds that of the Rijndael type construction. This is due to the fact
that the ODM-MR approach guarantees a certain number of active S-boxes for
3 consecutive rounds, while the Rijndael-type approach has such a property for
4 consecutive rounds.

The values of SHARK are still the highest, because the design strategy has a
2-round property. However, there seems to be a tradeoff for the implementation
cost, as SHARK-type design requires matrices which are twice as large as the
matrices in the MDS-Feistel and ODM-MR and four times as large as in the
Rijndael approach.

6 Conclusion

We provide a theoretical motivation for the ODM-MR design. We first give a
theoretical reason of ODM-MR, and found additional conditions and proofs to
improve the immunity against differential and linear cryptanalysis. As a result,
we showed that the ODM-MR design approach guarantees at least R(m + 1)
active S-boxes in 3R consecutive rounds (R ≥ 2) where m is the number of S-
boxes in a round. This guaranteed number of active S-boxes was compared with
the design approach of other well-known designs namely SHARK, Rijndael, and
MDS-Feistel ciphers. We were able to show that our design approach outperforms
some of the other designs.
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Appendix A

We show one of methods to construct a Feistel cipher satisfying the ODM-MR
design. To construct a concrete cipher, at least three m×m matrices over GF (2n)
are required to satisfy all the ODM-MR conditions. The construction steps are:

1. Choose m×m matrices A0, A1, A2 over GF (2n) such that,
(a) Every square submatrix of [A0|A1|A2] is nonsingular,

(b) Every square submatrix of
»

A−1

0

A−1

1

–

,
»

A−1

1

A−1

2

–

and
»

A−1

2

A−1

0

–

is nonsingular.

2. Set these three matrices as M2i+1 = M2r−2i = A i mod 3, for (0 ≤ i < r) in
a Feistel cipher with 2r rounds.

Note that all operations in Step 1 are over GF (2n) although the optimal diffusion
conditions for [MiMi+2Mi+4] and [tM−1

j
tM−1

j+2] are given over GF (2).
Here we show an example of three matrices A0, A1, A2 for the case m = 4.

Example 1. The following matrices A0, A1, A2 satisfy the ODM-MR conditions.

A0 =









9d b4 d3 5d

29 34 39 60

67 6a d2 e3

8e d7 e6 1b









, A1 =









ae ec b9 3e

81 25 13 d4

db 9d 4 1b

9e 3a 91 39









, A2 =









b8 f1 65 ef

3a f6 2d 6a

4a 97 a3 b9

82 5f a2 c1









.

Each element is expressed as hexadecimal value corresponding to a binary rep-
resentation of elements in GF (28) with a primitive polynomial p(x) = x8 +x4 +
x3 + x2 + 1. From the corollary, a (4, 8, 12)-SPNFC employing the above matri-
ces A0, A1, A2 as outlined in Fig. 4 guarantees 10, 15 and 20 differentially and
linearly active S-boxes in 6, 9 and 12 consecutive rounds, respectively.

A0 A2 A1 A1 A2 A0 A0 A2 A1 A1 A2 A0

Fig. 4. Example Allocation of Matrices A0, A1, A2


