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Abstract. Infinite groups have been used for cryptography since about
twenty years ago. However, it has not been so fruitful as using finite
groups. An important reason seems the lack of research on building a
solid mathematical foundation for the use of infinite groups in cryptog-
raphy. As a first step for this line of research, this paper pays attention
to a property, the so-called right-invariance, which makes finite groups
so convenient in cryptography, and gives a mathematical framework for
correct, appropriate use of it in infinite groups.

1 Introduction

In modern cryptography, many schemes are designed based on groups. The most
popular problems used for cryptography may be the integer factorization and
discrete logarithm problems in finite groups. From these problems, many schemes
have been developed. However, on quantum computer they turned out to be
efficiently solved by Shor’s algorithms [19].

Not to put all eggs in one basket as well as to enrich cryptography, people have
attempted to use infinite groups for cryptography. Compared to finite groups, in
infinite groups there are only a few types of schemes (e.g. key agreement protocol
or public key encryption) [24, 9, 21–23,13, 2] and a few ways of analyses of attacks
(e.g. deterministic or empirical) [3, 10, 17, 12, 11, 16, 7]. A natural question is how
we can proceed one more step. An impediment to this seems to be connected with
“probability”. Indeed, many cryptographic schemes have checkpoints concerning
probability for their basic security, and many cases of cryptanalysis rely on
probabilistic analysis. Furthermore, we do not see that we can build a provably
secure cryptosystem without probability. However, there is nothing discussed
seriously for it in the literature on infinite-group-based cryptography.

Our Results. When cryptosystems are designed or analyzed using infinite
groups, we sometimes feel attracted to use nice properties or tools which are
commonly used in finite groups. However, we do not since either it looks wrong
or we are not sure if it is right or wrong. A possible approach to resolve this
problem is to extract a nice property of finite groups, to generalize it in arbitrary
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groups, and then to construct a rigorous theory by which we can decide when
we can or cannot use this property in infinite groups.

This paper follows this way focusing on a particular property, the so-called
right-invariance: we define a probability measure (cf. probability distribution in
probability theory) P on a group G as right-invariant if P (E) = P (Ex) for all
E ⊂ G on which P is defined and for all x ∈ G. We show that right-invariance
property depends on a particular subgroup and the index of the subgroup deter-
mines when right-invariance can or cannot be used in infinite groups.

For the situations where this property is allowable, one may be curious about
how it can be handled in practice. It is easy to find a probability measure which is
right-invariant only in a particular situation. However, what is more meaningful
is to find a probability measure which is right-invariant in all situations where
such property is allowable. Namely, a right-invariant probability measure that
can be used universally on a given group. As to this, we prove that most infinite
groups dealt with in cryptography do not have such a probability measure. So we
discuss weaker, yet practical alternatives with concrete examples. Using these,
we illustrate how our theory is applied to infinite-group-based cryptography via
two opposite types of situations.

Organization. Sec. 2 gives basic notations and brief definitions for reading this
paper. Sec. 3 discusses why right-invariance is attractive, and formalizes the no-
tion. Sec. 4 explores right-invariance property through building a mathematical
framework. Sec. 5 discusses the notion of universally right-invariant probabil-
ity measure and its alternatives. Sec. 6 shows how the results developed in the
previous sections can be applied to practice. This paper concludes with Sec. 7.

2 Preliminaries

IN, Z, and IR denote the sets of all positive integers, all integers, and all real
numbers, respectively. For a < b, (a, b) = {x ∈ IR | a < x < b} and [a, b] =
{x ∈ IR | a ≤ x ≤ b}. For n ∈ IN, Zn = {0, 1, . . . , n − 1} and Z

∗
n = {a ∈ Zn |

gcd(a, n) = 1}. For sets S and T , S\T = {x ∈ S | x 6∈ T}. |S| and 2S denote
the cardinal number of S and the collection of all subsets of S, respectively.
S−1 = {x−1 | x ∈ S}. A partition of S means a family {Si}i∈I of non-empty,
mutually disjoint subsets of S such that S = ∪i∈ISi. ∅ denotes the empty set.

Definition 1. (a) Let M ⊂ 2X for a non-empty set X . M is called a σ-algebra
in X if (i) ∅ ∈ M, (ii) E ∈ M implies X\E ∈ M, and (iii) E1, E2, . . . ∈ M
implies ∪∞

i=1Ei ∈ M.

(b) If M is a σ-algebra in a non-empty set X , then (X,M) is called a measurable
space and the members of M are called the measurable sets in X .

If S is any collection of subsets of X , there exists a smallest σ-algebra M in X
such that S ⊂ M. This M is called the σ-algebra generated by S.
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Definition 2. (a) For a measurable space (X,M), a set function µ : M → [0, 1]
is called a probability measure on M if it satisfies that (i) µ(X) = 1 and (ii)
if E1, E2, . . . ∈ M are mutually disjoint, µ(∪∞

i=1Ei) =
∑∞

i=1 µ(Ei).
(b) For a measurable space (X,M), if µ is a probability measure on M, then

(X,M, µ) is called a probability space. In particular, it is called atomic if
M = 2X . Measurable sets of a probability space are called events.

Let G be a group and H a subgroup of G. For x ∈ G, let ZH(x) = {y ∈ H |
yx = xy}, which is a subgroup of H . Hx = {hx | h ∈ H} is called a right coset
of H in G and xH = {xh | h ∈ H} a left coset of H in G. The index of H in G,
denoted by [G : H ], is the cardinal number of the set of distinct right (or left)
cosets of H in G. For a normal subgroup H of G, G/H denotes {Hx | x ∈ G}
and is called the factor group of G over H . 1G denotes the identity of G.

Definition 3. (a) For a set X , w = w1 · · ·w` is called a reduced word on X if
w is the empty word or w satisfies that (i) ` ∈ IN; (ii) wi ∈ X ∪ X−1 for
all 1 ≤ i ≤ `; (iii) wi+1 6= w−1

i for all 1 ≤ i < `. |w| = 0 (if w is the empty
word) or ` (otherwise) denotes the word length of w.

(b) F (X) is called the free group generated by X . It is the set of all reduced
words on X with the binary operation: for any w1, w2 ∈ F (X), w1 · w2 is
the reduced form of the word obtained by the juxtaposition w1w2 of the two
words. The symbol ‘·’ is omitted if there is no confusion.

3 Role of Right-Invariance in Cryptography

This section shows why this paper selects right-invariance as a useful property.

Role in random self-reducibility. Informally, a problem is called random
self-reducible if solving it on any instance is efficiently reduced to solving it on
a random instance. For a random self-reducible problem, if breaking a crypto-
graphic scheme implies solving the problem on average, it means solving it in
the worst case. Thus, since Blum and Micali [4] introduced this notion, it has
played an invaluable role in showing provable security of many schemes. We refer
to [1, 8] for detailed references on it and the cryptographic significance of this
feature. We state it roughly in terms of the discrete logarithm problem with
proper parameters; a prime p and a generator g of Z

∗
p. n is the length of p when

it is represented in a bit-string.

Let a, b ∈ IN and let A be a probabilistic polynomial time algorithm such
that

Pr
x

[A(p, g, gx mod p) = x] >
1

na
,

where x is taken uniformly at random from Zp−1. Then, there exists a
probabilistic polynomial time algorithm D such that for all y ∈ Zp−1,

Pr[D(p, g, gy mod p) = y] > 1 −
1

nb
.
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D is built based on the following idea: for any fixed y ∈ Zp−1, D chooses x ∈
Zp−1 uniformly at random, gets w by running A on an input (p, g, gygx mod p),
outputs w−x mod p − 1 if gw = gygx mod p, otherwise repeats this process some
polynomial times. A basic property used in computing the success probability
of D is that for any y ∈ Zp−1

Pr
x

[A(p, g, gy+x mod p) = y + x mod p − 1] = Pr
x

[A(p, g, gx mod p) = x], (1)

where x is taken uniformly at random from Zp−1.

Equation (1) can be generalized as follows: given a group G, for all r ∈ G

Pr(f(X) = 0) = Pr(f(Xr) = 0) or (2)

Pr(f(X) = 0) = Pr(f(rX) = 0), (3)

where X is a random variable over G and f : G → {0, 1} is a predicate. Without
loss of generality (WLOG), in this paper we focus on (2).

If G is a finite group and X has the uniform distribution, (2) is true. In this
case, it is being used as an underlying assumption in probabilistically analyzing
many kinds of cryptographic schemes. However, it is not true in general if G
is an infinite group or if one cannot uniformly generate elements from even a
finite group. We know that no probability distribution can ever be uniform on
any infinite group, however the concept of uniformity makes infinite groups more
flexibly handled in cryptography. A natural question is what distribution on an
infinite group is an analogue of the uniform distribution on a finite group.

For an arbitrary group G, let’s recall the meaning of a random variable. The
fact that X is a random variable over G with a probability distribution P means
that P is the probability measure on the atomic measurable space (G, 2G) and
Pr[X ∈ E] = P (E) for any E ⊂ G. In order for (2) to hold when G is an infinite
group, we see it from a measure-theoretic point of view. Namely, we consider not
only 2G but also a smaller σ-algebra G for P . By restricting P originally defined
on 2G to G, (G, 2G, P ) induces another probability space (G,G, P ).

Definition 4. Let (G,G, P ) be a probability space. E ∈ G is called a right-
invariant event (resp. left-invariant event) if, for all x ∈ G, Ex ∈ G (resp.
xE ∈ G) and P (E) = P (Ex) (resp. P (E) = P (xE)). (G,G, P ) (or shortly P ) is
called right-invariant (resp. left-invariant) if all events are right-invariant (resp.
left-invariant).

For a situation in which one is interested (e.g. points where one wants to com-
pute probabilities or to compare them), if a σ-algebra covering all the events in
question (i.e. containing all the events in question as its measurable sets) can be
constructed and there exists a right-invariant probability measure thereon, then
we say that right-invariance is allowable (or can be used, etc.) in the situation.
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4 Right-Invariant Probability Space

In order to discuss right-invariance from a measure-theoretic point of view, we
first analyze the structure of an arbitrary σ-algebra in infinite groups, and then
a special type of σ-algebra. From this we formulate a way of deciding whether
or not right-invariance property is allowable in a given situation.

Throughout this paper, we deal with only finitely generated groups since
groups with infinitely many generators are not practical. Note that any finitely
generated infinite group is a countable set.

σ-algebra in finitely generated infinite groups. Let G be a finitely gener-
ated infinite group and G be a σ-algebra in G. For x ∈ G, define

MG(x) = {E ∈ G | x ∈ E} and MG(x) = ∩E∈MG(x)E.

In particular, denote MG(1G) by MG . The following proposition shows that
MG(x) is the smallest measurable set containing x.

Proposition 1. For a finitely generated infinite group G, let G be any σ-algebra
in it. Then, MG(x) ∈ G for all x ∈ G. Furthermore, any measurable set is
partitioned into MG(x)’s.

Proof. Let x ∈ G. Since G ∈ MG(x) and x ∈ MG(x), MG(x) 6= ∅. We show that
MG(x) can be expressed as an intersection of a countable number of measurable
sets. For y ∈ G, define a set Ay as follows.

Ay =

{

G if y ∈ MG(x),
E such that y 6∈ E ∈ MG(x) if y 6∈ MG(x).

Since G is a countable set, it suffices to show that MG(x) = ∩y∈GAy . (i) MG(x) ⊂
∩y∈GAy: If w 6∈ ∩y∈GAy, there exists y ∈ G such that w 6∈ Ay. Since Ay ∈
MG(x), w 6∈ MG(x). (ii) MG(x) ⊃ ∩y∈GAy : If w 6∈ MG(x), w 6∈ Aw. Thus,
w 6∈ ∩y∈GAy. Therefore, MG(x) ∈ G.

Let E ∈ G. Since, for any x ∈ E, MG(x) ⊂ E, E = ∪x∈EMG(x). Thus it
suffices to show that any distinct MG(x) and MG(y) are disjoint. Assume MG(x)∩
MG(y) 6= ∅. If x 6∈ MG(y), then MG(x)\MG(y) ∈ MG(x) since MG(x)\MG(y) ∈ G
and x ∈ MG(x)\MG(y). Since MG(x) is the intersection of all members of MG(x),
MG(x) ⊂ MG(x)\MG(y). In particular, MG(x)∩MG(y) = ∅ which contradicts to
the assumption. Thus x ∈ MG(y), so MG(x) ⊂ MG(y). By the same argument,
MG(y) ⊂ MG(x). Therefore, MG(x) = MG(y). ut

Right-closed σ-algebra in finitely generated infinite groups.

Definition 5. A measurable space (G,G) (or a σ-algebra G in G) is called right-
closed (resp. left-closed) if, for any E ∈ G and any x ∈ G, Ex ∈ G (resp. xE ∈ G).

A σ-algebra generated by a subgroup and all its right cosets is right-closed. The
following shows that right-closed σ-algebras have only this form.
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Theorem 1. For a finitely generated infinite group G, the following conditions
on a measurable space (G,G) are equivalent.

(i) G is right-closed.
(ii) MG(x) = MGx for all x ∈ G.
(iii) MG is a subgroup of G, and G is generated by MG and all its right cosets.

Proof. (i)⇒(ii): Suppose that (i) holds. Let x ∈ G. Since MG(x) = ∩A∈MG(x)A
and MGx = (∩A∈MG(1G)A)x = ∩A∈MG(1G)(Ax) = ∩B∈MG(1G)xB, it suffices to
show that MG(x) = MG(1G)x.

Let Ax, where A ∈ MG(1G), be an arbitrary element of MG(1G)x. Since
1G ∈ A, x = 1Gx ∈ Ax and so Ax ∈ MG(x) by (i). Thus MG(1G)x ⊂ MG(x).
Conversely, if A ∈ MG(x), then 1G = xx−1 ∈ Ax−1 ∈ MG(1G) by (i). Thus,
MG(x) ⊂ MG(1G)x.

(ii)⇒(iii): Suppose that (ii) holds. Let a, b ∈ MG . Since b ∈ MG , MG = MG(b)
by Proposition 1. Then, a ∈ MG(b) = MGb by (ii), and so ab−1 ∈ MG . Therefore,
MG is a subgroup of G.

For any E ∈ G, E = ∪x∈EMG(x) by Proposition 1. MG(x) = MGx ∈ G by
(ii), and so E = ∪x∈EMGx. Thus, G is generated by all right cosets of MG .

(iii)⇒(i): It is trivial. ut

Analogous result holds for left-closed σ-algebras. By combining these, we get
the following.

Corollary 1. For a finitely generated infinite group G, the following conditions
on a measurable space (G,G) are equivalent.

(i) G is both left- and right-closed.
(ii) xMG = MG(x) = MGx for all x ∈ G.
(iii) MG is a normal subgroup of G and G is generated by MG and all its cosets.

Right-invariance property of finitely generated infinite groups. Right-
invariance property is what belongs to a probability measure defined on a right-
closed σ-algebra. When a probability space is right-invariant, any measurable
set is, of course, right-invariant. Conversely, Proposition 1 and Theorem 1 imply
that right-invariance of MG is extended to the whole space.

Theorem 2. For a finitely generated infinite group G, let G be a right-closed
σ-algebra in G. P (MG) = P (MGx) for all x ∈ G if and only if P (E) = P (Ex)
for all E ∈ G and all x ∈ G.

From Theorems 1 and 2, we have the following.

Corollary 2. Let G be a finitely generated infinite group. If (G,G, P ) is a right-
invariant probability space, then [G : MG ] is finite and P (MGx) = [G : MG ]−1 for
all x ∈ G. Therefore, if [G : MG ] is infinite, (G,G, P ) cannot be right-invariant
for any probability measure P .
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5 Universally Right-Invariant Probability Measure and

Alternatives

Now we can decide whether or not right-invariance is allowable in a given situa-
tion. Suppose that it is allowable. Then, what are the concrete examples of the
probability measure which is both useful and practical for such property?

5.1 Universally right-invariant probability measure

Given a right-closed measurable space (G,G), if MG is of finite-index, it is easy
to get a probability measure that is right-invariant only on (G,G). However,
what is more meaningful is the one that is right-invariant on any right-closed
σ-algebra G with finite-index MG . By Corollary 2, it can be defined as follows.

Definition 6. A probability measure P defined on an atomic measurable space
(G, 2G) is called a universally right-invariant probability measure on G if P (H) =
P (Hx) for any finite-index subgroup H of G and any x ∈ G.

Most infinite groups that have emerged in cryptography are finitely generated
residually-finite groups (e.g. free groups, groups of automorphisms of free groups,
braid groups, etc.). A group is residually-finite if the intersection of all finite-
index normal subgroups consists of only the identity. Here, we consider a larger
class of groups, finitely generated groups with infinitely many finite-index sub-
groups. Finitely-generated residually-finite infinite groups belong to this class.

Theorem 3. Let G be a finitely generated group with infinitely many finite-index
subgroups. Then the intersection of all finite-index subgroups of G is a subgroup
of G with infinite-index. Furthermore, G has no universally right-invariant prob-
ability measure.

Proof. For the proof, we use the following fact.

Fact 1. Let G be a finitely generated infinite group. Then, for any m ∈ IN, G
has only finitely many subgroups of index m.

Let H be the collection of all finite-index subgroups of G and H0 = ∩H∈HH .
Clearly H0 is a subgroup of G. Assume that [G : H0] = k is finite. Then any
H ∈ H has index k or less. By Fact 1, H is a finite set which contradicts to the
hypothesis. Therefore, [G : H0] is infinite.

Assume that P is a universally right-invariant probability measure on G.
Then for any x ∈ G and any H ∈ H,

P (H0x) ≤ P (Hx) = P (H) = [G : H ]−1

by Corollary 2. Note that for any integer m there exists a finite-index subgroup
H such that [G : H ] ≥ m by Fact 1 and by the hypothesis. Thus P (H0x) = 0.
Since H0 is an infinite-index subgroup of G, there exist x1, x2, . . . ∈ G such
that G is partitioned into H0x1, H0x2, . . .. So P (G) =

∑∞
i=1 P (H0xi) = 0 which

contradicts to P (G) = 1. Therefore, P cannot be universally right-invariant. ut

Corollary 3. Any finitely-generated residually-finite infinite group has no uni-
versally right-invariant probability measure.
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5.2 Alternatives

From Theorem 3, a question arises: what are weaker, yet practical alternatives to
the universally right-invariant probability measure? We approach this question
via random walk on a free group F = F (X), where X = {x1, . . . , xm}. It is
because any finitely generated infinite group is a homomorphic image of a finitely
generated free group, and random walk yields a natural probability measure on
F in the following sense: it generates all words of F with positive probability,
and the longer the word is, the lower its occurrence probability is.

On the other hand, Theorems 1 and 2 reduce finding such an alternative
measure to finding an atomic probability measure in an infinite group which is
close to the uniform distribution over the family of all right-cosets of any finite-
index subgroup. The latter has been studied independently in group theory for a
long time. So we attempt to search for alternatives in the results from this area.

For s ∈ (0, 1), let Ws be a no-return random walk on the Cayley graph
C(F, X) of F with respect to the generating set X . See Appendix for Cayley
graph. Ws starts at 1F and either does nothing with probability s, or moves
to one of the 2m adjacent vertices with equal probabilities 1−s

2m . If Ws is at a
vertex v 6= 1F , it either stops at v with probability s, or moves with probability
1−s

2m−1 to one of the 2m−1 adjacent vertices lying away from 1F producing a new

freely reduced word vx±1
i . So Pr(|w| = k) = s(1 − s)k and the resulting atomic

probability measure on F is

µs(w) =

{

s if w = 1F ,
s(1−s)|w|

2m(2m−1)|w|−1
otherwise.

Thus, µs(w) is the probability that the random walk Ws stops at w. From the
results of Woess [25] and Borovik, Myasnikov, and Remeslennikov [5], for any
finite-index subgroup H of F and any x ∈ F

lim
s→0

µs(Hx) = [F : H ]−1.

On the other hand, for the case that we are working with only sufficiently
long words, let’s consider a variant of µs. For k ∈ IN, define

µ̄k(w) =

{

0 if w ∈ Bk,
µs(w)

µs(F\Bk) otherwise,

where Bk = {w ∈ F | |w| ≤ k} is a ball of radius k. Then µ̄k is a probability
measure on (F, 2F ). From the results of Pak [18] and Borovik, Myasnikov, and
Shpilrain [6], for any finite-index normal subgroup H of F

1

2

∑

x̄∈F/H

∣

∣

∣
µ̄k(x̄) − [F : H ]−1

∣

∣

∣
= o(e−k). (4)
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Discussion of property of µs and µ̄k. Let (F,F) be a right-closed measur-
able space with [F : MF ] < ∞. Suppose that PF is the right-invariant probability
measure on (F,F). Then, by Proposition 1 and Theorem 1, µs has the following
property. For any E ∈ F

|µs(E) − PF (E)| =

∣

∣

∣

∣

∣

t
∑

i=1

µs(MFxi) − tPF (MF)

∣

∣

∣

∣

∣

≤
t

∑

i=1

∣

∣µs(MFxi) − [F : MF ]−1
∣

∣ → 0 as s → 0,

where MFxi’s are distinct right-cosets of MF in F such that E = ∪t
i=1MFxi.

On the other hand, by the normality of H in (4), µ̄k has a slightly different
property, so that it can be used in two cases. In the first case, let (F,F) be
a both left- and right-closed measurable space with [F : MF ] < ∞. Then, by
Corollary 1, MF is a normal subgroup of F . Suppose that PF is the right-
invariant probability measure on (F,F). Then, for any E ∈ F

|µ̄k(E) − PF (E)| ≤
1

2

∑

x̄∈F/MF

∣

∣µ̄k(x̄) − [F : MF ]−1
∣

∣ = o(e−k) (5)

for k → ∞. The above inequality comes from the following fact.

Fact 2. Let Ω be a finite set, and let P1 and P2 be probability measures on
(Ω, 2Ω). Then,

max
E⊂Ω

|P1(E) − P2(E)| =
1

2

∑

ω∈Ω

|P1(ω) − P2(ω)|.

In the second case, let (F,F) be a right-closed measurable space such that
MF contains a finite-index normal subgroup N of F . Then, there exist distinct
cosets, Nx1, . . . , Nxt, of N in F such that MF = ∪t

i=1Nxi. Let PF be the
right-invariant probability measure on (F,F). Then, from Fact 2, for any E ∈ F

|µ̄k(E) − PF (E)| ≤
1

2

∑

MFx∈R

∣

∣µ̄k(MFx) − [F : MF ]−1
∣

∣

≤
1

2

∑

MFx∈R

t
∑

i=1

∣

∣µ̄k(Nxix) − [F : N ]−1
∣

∣ = o(e−k)

for k → ∞, where R is the set of all right-cosets of MF in F .

Discussion of alternatives. Given a group G, a good alternative to the uni-
versally right-invariant probability measure may be a probability measure P on
(G, 2G) such that for any right-invariant probability space (G,G, PG) and for any
E ∈ G, |P (E)−PG(E)| is very small. Here, we should be careful with the word,
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“small”. Small in what? The factors which determine the value of |P (E)−PG(E)|
come from the characteristics of G, G, and P . Note that the group G is given,
the σ-algebra G is arbitrarily selected to some extent, and we are discussing the
measure P . So focusing on P , it seems more reasonable to view P not as a single
probability measure but as a family of probability measures indexed by factors
representing its characteristics. For example, µ = {µs}s∈(0,1) and µ̄ = {µ̄k}k∈IN.
From this point of view, let’s define our alternative in general terms.

Let P = {Pα}α∈A be a family of probability measures on (G, 2G) for an
index set A. And let some α0 be given. For any right-invariant probability
space (G,G, PG) and for any E ∈ G, P has the following property.

lim
α→α0

|Pα(E) − PG(E)| = 0

µ serves as a good example of this alternative. On the other hand, µ̄ can serve
as another example if (G,G, PG) is a both left- and right-invariant probability
space, or if (G,G, PG) is a right-invariant probability space and MG contains a
finite-index normal subgroup of G. In these cases, |Pα(E) − PG(E)| decreases
exponentially.

6 Applications

This section shows two basic examples of how to apply our theory to real situa-
tions via recent works. These works are based on braid groups. For a survey of
braid-group-based cryptography, see [14].

For n ≥ 2, the n-braid group Bn can be presented by (n− 1)-generators
σ1, . . . , σn−1 and two kinds of relations: σiσj = σjσi for |i− j| > 1 and σiσjσi =
σjσiσj for |i−j| = 1. For the symmetric group Sn on n-letters, there is a natural
projection π : Bn → Sn sending σi to the transposition (i, i+1). π(x) is written
interchangeably with πx. Define Pn = ker(π) and call its elements pure braids.

6.1 The case that right-invariance is not allowable

Sibert, Dehornoy, and Girault [20] proposed entity authentication schemes using
braid groups: Schemes I, II, II’, III. As a two-pass scheme, Scheme I is perfectly
honest-verifier zero-knowledge. As three-pass protocols, the other schemes were
shown to be zero-knowledge under the assumption that the probability space is
right-invariant (to polynomial-time distinguishers). Their assumption was made
from some experiment over a certain finite subset of Bn.

This section discusses the security of Scheme II on the whole group Bn by
disproving the assumption for zero-knowledge. Analogous arguments apply to
Schemes II’, III. Let’s see Scheme II. Prover’s secrete key is z ∈ Bn, and public
key is (b, b′) ∈ B2

n, where b′ = zbz−1. Its three-pass process is given in Fig. 1.
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Prover Verifier

r ∈R Bn

x = rbr−1 x
−−−−→

ε
←−−−− ε ∈R {0, 1}

y =



r if ε = 0,

rz−1 otherwise.

y
−−−−→ x =



yby−1 if ε = 0,

yb′y−1 otherwise.

Fig. 1. Scheme II

Assumption for perfect zero-knowledge. For perfect zero-knowledge of
Scheme II, it is assumed that the distributions of r and rz−1 are identical, where
r ∈R Bn. We show that they cannot be identical by defining a distinguisher A
as follows.

A : “On an input x ∈ Bn, output 1 if x = 1Bn
, and 0 otherwise.” (6)

Since verifying that any two braids are identical can be done very efficiently, A
is also efficient. Then the situation comparing the distributions of r and rz−1

by using the algorithm A yields the atomic σ-algebra 2Bn as the right-closed
σ-algebra in Bn. So, right-invariance is not allowable in this situation.

Assumption for computational zero-knowledge. For computational zero-
knowledge of Scheme II, it is assumed that the distributions of r and rz−1 are
computationally indistinguishable, where r ∈R Bn. This means that, for any
polynomial-time distinguisher A,

∣

∣Pr[A(X) = 1] − Pr[A(Xz−1) = 1]
∣

∣ is negligi-
ble. Here X is a random variable over Bn.

By using the algorithm (6), we show that it is not negligible in the word
length of the secrete key z with respect to the probability measure µs which is
defined on a free group F generated by {x1, . . . , xn−1}. Considering a natural
projection φ : F → Bn defined by xi 7→ σi, let K = φ−1(1Bn

) and let the random
variable X have the probability distribution induced by µs. Then

Pr[A(X) = 1] = µs(K) ≥ µs(1F ) = s.

Let ` = minw∈φ−1(z) |w|, and let w0 ∈ φ−1(z) satisfy |w0| = `. Then

Pr[A(Xz−1) = 1] = µs(Kw0) =

∞
∑

k=0

µs(Kw0 ∩ Ck) =

∞
∑

k=0

s(1 − s)k |Kw0 ∩ Ck|

|Ck|
,

where Ck = {w ∈ F | |w| = k}. Note that Kw0 ∩ Ck = ∅ for 0 ≤ k < `. Thus,

Pr[A(Xz−1)=1] = s(1−s)`
∞
∑

k=0

(1−s)k |Kw0 ∩ C`+k|

|C`+k|
≤ s(1−s)`

∞
∑

k=0

(1−s)k = (1−s)`.

Therefore, Pr[A(X) = 1] − Pr[A(Xz−1) = 1] ≥ s − (1 − s)`.
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6.2 The case that right-invariance is allowable

For notational convenience, this section assumes that n is even. Define B` (resp.
Bu) be a subgroup of Bn generated by σ1, . . . , σn/2−1 (resp. σn/2+1, . . . , σn−1).
Likewise, define S` (resp. Su) be a subgroup of the symmetric group Sn gener-
ated by (1, 2), . . . , (n

2 −1, n
2 ) (resp. (n

2 +1, n
2 +2), . . . , (n−1, n)). Then, any two

elements chosen from B` and Bu (resp. S` and Su) commute with each other. The
decisional Diffie-Hellman-type conjugacy problem in Bn is defined as follows.

Given (a, w−1
` aw`, w

−1
u awu, x−1

u x−1
` ax`xu), distinguish x−1

u x−1
` ax`xu and

w−1
u w−1

` aw`wu, where a ∈ Bn, w`, x` ∈ B`, and wu, xu ∈ Bu.

This problem is used as an underlying problem of a public-key encryption [13],
pseudorandom number generator, and pseudorandom synthesizer [15]. Gennaro
and Micciancio [10] proposed how to solve it for some parameters. We supplement
their attack with quantifying the success probability of their adversary. The
adversary is described as follows.

A : “On an input (a, w−1
` aw`, w−1

u awu, x−1
u x−1

` ax`xu)
where a ∈ Bn\Pn, w`, x` ∈ B`, and wu, xu ∈ Bu,
1. find any θ ∈ S` such that θ−1πaθ = π(w−1

` aw`);
2. output 1 if π(x−1

u x−1
` ax`xu) = θ−1π(w−1

u awu)θ, and 0 otherwise.”

Define B`Bu = {xy | x ∈ B`, y ∈ Bu} and S`Su = {τω | τ ∈ S`, ω ∈ Su}.
Then they are subgroups of Bn and Sn, respectively. Let C = ZS`Su

(πa).
Since θ (at Step 1) can be easily and perfectly computed and such θ satisfies
θ−1π(w−1

u awu)θ = π(w−1
u w−1

` aw`wu), the success probability equals

Pr[A(a, w−1
` aw`, w

−1
u awu, X−1aX) = 0] = Pr[π(X) 6∈ Cπ(w`wu)], (7)

where X is a random variable over B`Bu.

Deciding whether right-invariance is allowable or not. Restricting π
defined on Bn to B`Bu induces another natural projection π̃ : B`Bu → S`Su.
Define H = π̃−1(C) and P`Pu = ker(π̃). See Fig. 2. Then H is a subgroup
of B`Bu, Pr[π(X) 6∈ Cπ(w`wu)] = Pr[X 6∈ Hw`wu], and P`Pu is a normal
subgroup of B`Bu contained in H . Define B as the σ-algebra in B`Bu generated
by all cosets of P`Pu. Then H ∈ B and B is both left- and right-closed. Since
[B`Bu : MB] = [B`Bu : P`Pu] = ((n

2 )!)2 is finite, we can use right-invariance
property in order to compute the success probability Pr[X 6∈ Hw`wu].

Computing the success probability. Let F = F ({x1, . . . , xn/2−1, xn/2+1, . . . ,
xn−1}) be a free group. Then, there is a natural projection φ : F → B`Bu de-
fined by xi 7→ σi. Let K = φ−1(H) and N = φ−1(P`Pu). See Fig. 2. Let F be
the σ-algebra in F generated by all cosets of N . Since N is a finite-index normal
subgroup of F and MF = N , µ̄k can be used on (F,F) for right-invariance.
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(F, µ̄k)
φ
−→ (B`Bu, P )

π̃
−→ S`Su

| | |

K 7−→ H 7−→ C

| | |

N 7−→ P`Pu 7−→ 1S`Su

Fig. 2. Correspondences among groups

Define a set function P : B → [0, 1] by P (E) = µ̄k(φ−1(E)) for all E ∈ B.
Since F = {φ−1(E) | E ∈ B}, P is a probability measure on (B`Bu,B). Let the
random variable X in (7) induce P . Then, Pr[X 6∈ Hw`wu] = 1 − P (Hw`wu).
On the other hand, from the definition of P and (5)

∣

∣P (Hw`wu) − [B`Bu : H ]−1
∣

∣ =
∣

∣µ̄k(Kφ−1(w`wu)) − [K : N ]/[F : N ]
∣

∣ = o(e−k).

Therefore, the success probability of the adversary is

1 − [B`Bu : H ]−1 − o(e−k) ≤ 1 − P (Hw`wu) ≤ 1 − [B`Bu : H ]−1 + o(e−k).

Note that [B`Bu : H ] = [S`Su : C] and C = ZS`Su
(πa). So [B`Bu : H ] can be

evaluated if πa is specified. For all a ∈ Bn\Pn, its upper bound is (n/2)!
2
, and

lower bound is n(n − 2)/8 for n ≥ 10 from the following theorem.

Theorem 4. If α ∈ Sn\{1Sn
}, ZS`Su

(α) is a proper subgroup of S`Su for n ≥ 6.
Precisely,

[S`Su : ZS`Su
(α)] ≥

{n(n − 2)/8 for n ≥ 10,
3 for n = 8,
2 for n = 6.

Proof. Let α ∈ Sn, and let α1, . . . , αs be disjoint cycles in Sn such that

α = α1 · · ·αs and αi ∈







S` for 1 ≤ i ≤ t`,
Sn\S`Su for t` < i ≤ tu,
Su for tu < i ≤ s,

for some 0 ≤ t` ≤ tu ≤ s. Let

α` =α1 · · ·αt`
∈S`, α̃=αt`+1 · · ·αtu

∈(Sn\S`Su)∪{1Sn
}, αu =αtu+1 · · ·αs∈Su.

For every 1 ≤ i ≤ s, let αi = (aki−1+1, . . . , aki
) with k0 = 0. Then

α = (a1, . . . , ak1
)(ak1+1, . . . , ak2

) · · · (aks−1+1, . . . , aks
).

Note that for any τ ∈ Sn, the cycle decomposition of τατ−1 is as follows.

τατ−1 = (τ(a1), . . . , τ(ak1
))(τ(ak1+1), . . . , τ(ak2

)) · · · (τ(aks−1+1), . . . , τ(aks
))
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Table 1. Maximum of |ZS`
(α`)| and minimum of [S` : ZS`

(α`)]

n
2

max. of |ZS`
(α`)| min. of [S` : ZS`

(α`)] number of cycles

3 3 2 `3 = 1, `k = 0 for k 6= 3

4 8 3 `2 = 2, `k = 0 for k 6= 2

≥ 5 2× (n
2
− 2)! n

4
(n

2
− 1) `1 = n

2
− 2, `2 = 1, `k = 0 for k ≥ 3

Let τ ∈ ZS`Su
(α). Then τα1τ

−1, . . . , ταsτ
−1 are disjoint cycles of α. If αi ∈

S`, αj ∈ Sn\S`Su, and αk ∈ Su, then ταiτ
−1 ∈ S`, ταjτ

−1 ∈ Sn\S`Su, and
ταkτ−1 ∈ Su for all i, j, k. So τα`τ

−1 = α`, τα̃τ−1 = α̃, and ταuτ−1 = αu.
Namely, τ ∈ ZS`Su

(α`) ∩ ZS`Su
(α̃) ∩ ZS`Su

(αu). On the other hand, it is clear
that ZS`Su

(α`) ∩ ZS`Su
(α̃) ∩ ZS`Su

(αu) ⊂ ZS`Su
(α). So

ZS`Su
(α) = ZS`Su

(α`) ∩ ZS`Su
(α̃) ∩ ZS`Su

(αu).

Let α 6= 1Sn
, and let τ = τ`τu ∈ S`Su mean that τ` ∈ S` and τu ∈ Su.

Case 1. α`αu 6= 1Sn
: WLOG, let α` 6= 1Sn

. Define `1 = |{1 ≤ i ≤ n/2 | α`(i) =
i}| and `i as the number of i-cycles of α` for 2 ≤ i ≤ n/2. Then

|ZS`
(α`)| =

n/2
∏

i=1

i`i(`i)!.

Table 1 shows the maximum values of |ZS`
(α`)| and the corresponding val-

ues of [S` : ZS`
(α`)] over α` ∈ S`\{1Sn

}. Since [S`Su : ZS`Su
(α)] ≥ [S`Su :

ZS`Su
(α`)] = [S` : ZS`

(α`)], for all α ∈ Sn such that α`αu 6= 1Sn

[S`Su : ZS`Su
(α)] ≥

{n(n − 2)/8 for n ≥ 10,
3 for n = 8,
2 for n = 6.

Case 2. α`αu = 1Sn
: In this case, ZS`Su

(α) = ZS`Su
(α̃). Define

A` =
{

1≤ i ≤
n

2
| α̃(i) 6= i

}

, Au =
{n

2
<i ≤ n | α̃(i) 6= i

}

, N` = |A`|, Nu = |Au|.

WLOG, we assume 1 ≤ Nu ≤ N` ≤ n/2. Note that for any τ`τu ∈ ZS`Su
(α̃),

{(i, τ`(i)) | i ∈ A`} is uniquely determined by {(i, τu(i)) | i ∈ Au}. So

|ZS`Su
(α̃)| ≤

(n

2
− N`

)

!
(n

2
− Nu

)

!Nu! ≤

{

(n/2− 1)!2 if Nu < n/2,
(n/2)! if Nu = n/2,

≤

{

(n/2− 1)!2 if n ≥ 8,
6 if n = 6.

Therefore, for all α ∈ Sn\{1Sn
} such that α`αu = 1Sn

[S`Su : ZS`Su
(α)] ≥

{

(n/2)2 if n ≥ 8,
6 if n = 6.

From Cases 1 and 2, the conclusion follows. ut
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7 Conclusions

We know that it is impossible to overestimate the role of the uniform distribution
in cryptography. However, no infinite group has such a nice distribution. Noticing
that this fact is an impediment to the use of infinite groups for cryptography, this
paper has formalized the notion of right-invariance on an infinite group which in
a sense corresponds to the uniform distribution on a finite set, and then shown
when and how this notion can be used for infinite-group-based cryptography.

Our work is a first attempt to formalize and resolve probability-theoretic
problems arising in the process of using infinite groups for cryptography. Al-
though our work cannot resolve all the problems, we hope that it contributes to
widening the scope of what provably secure cryptosystems can be built on. We
close this paper with the following research topics.

– Find different types of alternatives to the universally right-invariant proba-
bility measure from ours.

– Find more various examples of practical problems which right-invariance can
resolve in cryptography.

– For complex problems (e.g. proving security of a cryptosystem), discover,
formalize, and solve its constituent problems other than right-invariance.
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Appendix: Cayley Graph

The Cayley graph C(G, X) of a group G with a generating set X is a graph such
that the vertices are in one-to-one correspondence with the group elements and
there is a (directed) edge from the vertex labelled by v to the vertex labelled by
vx for each v ∈ G and x ∈ X ∪ X−1. So if G is an infinite group, its Cayley
graph is also an infinite graph. The Cayley graph is a metric space by defining
the length of each edge to be the unit length. The distance between two vertices
v, w in the Cayley graph is exactly the shortest word-length of v−1w with respect
to the given generating set.


