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Abstract. We present a batch version of Schnorr’s identification scheme.
Our scheme uses higher degree polynomials that enable the execution
of several Schnorr’s protocol at a cost very close to that of a single
execution. We present a full proof of security that our scheme is secure
against impersonation attacks.
The main application of this result is a very efficient way for a party to
prove that it holds several secret keys (i.e. identities), where each identity
is linked to a specific authorization. This approach protects the privacy of
the prover allowing her to prove only the required set of authorizations
required to perform a given task, without disclosing whether she is in
possession of other privileges or not.
We also show that our scheme is suitable to be implemented on low-
bandwidth communication devices. We present an implementation of a
smart card employing recent technology for the use of LEDs (Light Emit-
ting Diodes) for bidirectional communication. Another contribution of
our paper is to show that this new technology allows the implementation
of strong cryptography.

1 Introduction

Identification, also known as entity authentication, is a process by which a ver-
ifier gains assurance that the identity of a prover is as claimed, i.e. there is no
impersonation [MOV97,Sch96]. An identification scheme enables a prover hold-
ing a secret key to identify itself to a verifier holding the corresponding public
key.

The primary objectives of an identification protocol are completeness - in
the case of honest parties the prover is successfully able to authenticate itself to
the verifier, and soundness - a dishonest prover has a negligible probability of
convincing a verifier.
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There are various grades of dishonesty and corresponding levels of security.
The goal of the adversary is to impersonate the prover. As per the standard se-
curity framework [FFS88], the adversary is allowed various attacks on the honest
prover, which complete before the impersonation attempt. A typical requirement
of identification protocols is that they be secure against impersonation under
passive attack, where the adversarial prover has access to transcripts of prover-
verifier interactions. A stronger requirement is that protocols be secure against
active attacks where the adversarial prover can actively play the role of a cheat-
ing verifier with the prover numerous times before the impersonation attempt.
Security against impersonation under active attack has been the traditional goal
of identification schemes.

However, in recent times interest has been growing in still stronger attacks,
e.g. concurrent attacks. In these attacks, just like with active attacks the ad-
versarial prover gets to play the role of cheating verifier prior to impersonation
with the key distinction that the adversary is allowed to interact with multiple
honest prover clones concurrently [FFS88].

It is very important to keep in mind that, in the real world, identification
protocols provide assurances only at the instant of time when the protocol is
successfully completed. It is therefore important to ensure that the identifica-
tion process is tied to some form of ongoing real-world integrity service. At some
level all identification schemes are vulnerable to the adversary who cuts in im-
mediately after the successful identification of the legitimate party.

Zero-knowledge Protocols. A paradigm introduced in [FFS88] to construct
identification protocols, is to construct zero-knowledge proofs of knowledge. These
are protocols which allow a prover to demonstrate knowledge of a secret while
revealing no information whatsoever other than the one bit of information re-
garding the possession of the secret [GMR85,FFS88].

A protocol is said to be honest-verifier zero-knowledge if it is zero-knowledge
when interacting with honest verifiers. An honest-verifier zero-knowledge proto-
col has a weaker security guarantee than a general zero-knowledge protocol since
it is possible that a dishonest verifier can extract information from the prover in
the former protocol.

However, when used as identification schemes, the ultimate measure of the
worth of a protocol lies in its security against impersonation attempts and a
protocol that is secure against impersonation against concurrent attacks is con-
sidered to be ”secure” even if it is “only” honest-verifier zero-knowledge. This
happens if one is able to show that whatever information is leaked to the dis-
honest verifier, it does not help him in any impersonation attack.

Schnorr in [Sch91] presents such a protocol, based on the hardness of comput-
ing discrete logarithms. The details are described in the body of the paper, but
here we just remark that Schnorr’s protocol is an honest-verifier zero-knowledge
proof of knowledge of a discrete logarithm. Recently Bellare and Palacio in
[BPa02] showed that under a slightly stronger assumption on the security of
discrete logarithms, Schnorr’s protocol is a secure identification scheme against
concurrent attacks.
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1.1 Authorization

Authorization is the conveyance to the verifier that the prover, has the sanction
to gain access to a particular resource set, or belongs to a certain privilege class.
Authorization may be effected by the proving of one or of multiple identities.

Consider now the following access control scenario. Users of a given system
belong to various privilege classes. Access control classes for the data are defined
using these privileges, i.e. as the users who own a given subset of privileges. For
example the access control class for a given piece of data D, is defined as the
users who own privileges P1, P2, P3.

A way to implement such an access control system is to give each user a certi-
fied public key. The certificate would indicate the subset of privileges associated
with this public key. Then in order to gain access, Alice performs an identifica-
tion protocol based on her public key, and if her privileges are a superset of the
ones required for the access she is attempting, access is granted.

There are several drawbacks with this approach. But the main one is a blatant
violation of Alice’s privacy. Whenever Alice proves her identity she reveals all
her privileges, when, theoretically, in order to gain access she should have had
to reveal only a subset of them.

It is clear that there are situation which warrant a privacy-preserving au-
thorization mechanism, in which Alice can gain access by proving she owns the
minimal set of required privileges.

This can be done by associating a different public key to each privilege. Then
Alice would prove that she knows the secret keys required for the authorization.
Using typical proofs of knowledge, like Schnorr’s, to prove knowledge of k keys
the user has to perform k proofs. Although these proofs can be performed in
parallel, keeping the round complexity the same, the computational complexity
goes up by a factor of k.

Thus an interesting question is if it is possible to perform a proof of knowledge
of d secrets at the cost of less than d proofs. We answer this question in the
affirmative (see below).

Another advantage of associating different keys to different privileges, is that
the latter can be easily transferred simply by transferring the corresponding
secret key.

1.2 Our Contributions

We present a batch version of Schnorr’s protocol. In our scheme the prover can
prove knowledge of d secret keys (discrete logarithms), at a cost slightly superior
to the cost of a single Schnorr’s protocol, thus saving a factor of d in computa-
tion and bandwidth over the best previously known solutions. We use degree d
polynomials to represent an ordered list of d identities. We show that the result-
ing scheme is not only honest-verifier zero-knowledge, but that it is also a secure
identification scheme against impersonation under concurrent attacks [BPa02].

This immediately yields a very efficient privacy-preserving authorization mech-
anism along the lines described in the previous section.
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Finally, in order to showcase the efficiency of our proposal we present an
implementation in a very low-bandwidth environment. We use recently proposed
technology to use Light Emitting Diodes (LEDs) as bi-directional communication
devices. We believe that another interesting contribution of our paper is to show
that this new technology is robust enough to implement strong cryptographic
solutions.

1.3 Related work

Besides the works cited above [GMR85,FFS88,Sch91], another widely used proto-
col for identification is the one proposed by Guillou and Quisquateur in [GQu88].
This scheme is more efficient than Schnorr’s and very suitable to low-power com-
putation devices. When proving multiple identities simultaneously, our batch
technique makes the advantage of using GQ over Schnorr’s disappear very quickly.
Indeed only for very small values of d (the number of identities being proven), d
parallel executions of GQ beat our batch Schnorr protocol in efficiency1. It would
be interesting to devise a batch version of the Guillou-Quisquateur protocol, but
we were not able to do so.

In any case, when comparing our scheme with running d Guillou-Quisquateur
schemes, one should remember that the GQ scheme is based on a different as-
sumption (RSA inversion) than the Schnorr’s protocol.

Our new identification scheme is related to the concept of batch verifica-
tion of signatures [BGR98]. As far as we know there has not been any work on
batch verification for identification protocols. A straightforward application of
the techniques in [BGR98] to our problem would yield a much less efficient pro-
tocol. Moreover, the mathematical techniques we use are fundamentally different
than the ones in [BGR98].

Recently the area of privacy-preserving protocol has received a lot of atten-
tion. We refer the reader especially to the works by Camenisch and Lysyanskaya
[CL01,CL02], where the concept of group signature is used to show how a user
can prove membership in a certain privilege class, without revealing her true
identity. These solutions offer a very strong privacy guarantee, as a user can
safely prove his privileges to various verifiers, who would not be able to link
her various transactions. On the other hand our solution does not protect the
identity of the user, but simply allows her to prove the minimal set of privileges
required for a given transaction. But if verifiers collude they can link the user’s
transactions and reconstruct the set of privileges she holds. For example if Alice
proves to Bob that she belongs to privilege class P1, and to Charles that she

1 Jumping ahead, assume we perform Schnorr’s scheme, with parameters p, q such
that |p| = 1024 and |q| = 160. Then one execution of the protocol costs about
240 multiplications for the prover (i.e. one exponentiation modp, with a 160-bit
exponent). On the other hand, if we perform the GQ scheme over a 1024-bit RSA
modulus, using a small public exponent (like 3), and security parameter 80, then the
prover’s cost is about 80 multiplications. Thus GQ is approximately 3 times as fast
as Schnorr’s. Which means that for d > 3, i.e. when proving more than 3 identities
simultaneously, our batch Schnorr protocol becomes more attractive than GQ.
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belongs to the P2 class, it is possible for Bob and Charles together to understand
that Alice holds both P1 and P2 privileges. On the other hand our solution is
much simpler and more efficient that solutions based on group signatures, thus
it could be preferable in a scenario in which collusion is not really a problem.
Moreover some of our batching techniques can be used to speed-up solutions
based on group signatures (since there, the proof of possession of several keys is
a subprotocol).

2 Preliminaries

In this section we recall the basic definition of proof of knowledge, the compu-
tational assumptions that we are going to need, and Schnorr’s protocol. In the
following the acronym PPT stands for “probabilistic polynomial-time”.

2.1 Proofs of Knowledge

Polynomial Time Relationships. Let R be a polynomial time computable
relationship, i.e. a language of pairs (y, w) such that it can be decided in polyno-
mial time in |y| if (y, w) ∈ R or not. With LR we denote the language induced
by R i.e. LR = {y : ∃w : (y, w) ∈ R}.

More formally an ensemble of polynomial time relationships PT R consists
of a collection of families PT R = ∪nPT Rn where each PT Rn is a family of
polynomial time relationships Rn. To an ensemble PT R we associate a random-
ized instance generator algorithm IG that on input 1n outputs the description of
a relationship Rn. In the following we will drop the suffix n when obvious from
the context.

Example: The instance generator algorithm on input 1n outputs an n-bit prime
q, a poly(n)-prime p, such that q|p − 1 and an element g of order q in Z∗

p .
The corresponding relationship is that of pairs (y, w) ⊂ Z∗

p × Zq such that
y = gw mod p.

Proofs of Knowledge. In a proof of knowledge for a relationship R, two
parties, Prover P and Verifier V, interact on a common input y. The Prover also
holds a secret input w, such that (y, w) ∈ R. The goal of the protocol is to
convince V that P indeed knows such w. Ideally this proof should not reveal any
information about w to the verifier, i.e. be zero-knowledge.

The protocol should thus satisfy certain constraints. In particular it must
be complete: if P knows w then V should accept. It should be sound: for any
(possibly dishonest) prover who does not know w, the verifier should almost
always reject. Finally it should be zero-knowledge: no (poly-time) verifier (no
matter what possibly dishonest strategy she follows during the proof) can learn
any information about w.

A formal definition of proofs of knowledge can be found in [BGo93] (improv-
ing on the original definition in [FFS88]). Informally, the concept of “knowing”
w is formalized by showing that w can be computed in polynomial-time if we
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have black-box access to P. This is done by constructing a witness extractor
which runs in probabilistic polynomial time, and computes w with a probability
related to the probability that the Prover makes the Verifier accept.

The concept of zero-knowledge is formalized via the existence of a probabilis-
tic polynomial time simulator S that on input y and interacting with a possibly
cheating Verifier outputs transcripts with the same probability distribution as
the real prover (who knows w).

A formal definition follows. With [P(y, w), V(y)] we denote the output of the
protocol, i.e. 1 iff V accepts. With πP(n) we denote the probability that a prover
P makes the verifier accept, i.e.

πP(n) = Prob[ Rn ← IG(1n) ; [P(y, ·), V(y)] = 1 ]

where the statement y can be chosen by P.

Definition 1. We say that (P,V) is a proof of knowledge for a relationship
(PT R, IG) if the following properties are satisfied:

Completeness For all (y, w) ∈ Rn (for all Rn) we have that [P(y, w), V(y)] =
1.

Witness Extraction There exist a probabilistic polynomial time knowledge ex-
tractor KE, a function κ : {0, 1}∗ → [0, 1] and a negligible function ε, such
that for all PPT P’, if πP′(n) > κ(n) then KE, given rewind access to P’, com-
putes w such that (y, w) ∈ Rn with probability at least πP′(n)− κ(n)− ε(n).

Zero-Knowledge For every PPT Verifier V’ there exist a probabilistic polyno-
mial time simulator SIMV′ , such that for all (y, w) ∈ Rn the two random
variables

View[P(y, w), V′(y)]

View[SIMV′(y), V′(y)]

are indistinguishable.

The function κ is called the knowledge error and measures the probability,
inherent to the protocol, that a cheating prover can convince the verifier without
knowing w. What we require is that if a prover convinces the verifier with a prob-
ability higher than κ, then we can extract the witness with a success probability
related to the difference.

2.2 Identification Schemes

In an identification scheme a prover P and a verifier V interact on input a public
key (generated together with its matching secret key by a key generation algo-
rithm KG). The prover holds the matching secret key, and his goal is to convince
the Verifier of this fact, and thus of his identity.

An impersonation attack is when an adversaryA tries to convince the verifier
that he is the honest prover. This kind of attack is called a passive attack, if the
adversary attempts impersonation only after having witnessed several correct
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executions of the identification protocol between the prover and honest verifiers.
We said that an attack, is active, if the adversary before trying to impersonate
the prover has engaged with him in the identification protocol, playing the role
of a (possibly dishonest) verifier.

Finally, and this is the notion we consider in this paper, we say that an
active impersonation attack is a concurrent attack if the interactions between the
adversary and the honest prover before the impersonation attack, can be carried
out in a concurrent fashion (i.e. with an arbitrary scheduling of messages).

So we can consider the following game. A pair of keys sk,pk is chosen accord-
ing to the distribution induced by KG on input 1n the security parameter. The
prover is given sk and pk is made public. Then the adversary A engages as a
verifier in several concurrent executions of the identification protocol with the
prover. He then finally runs one execution of the protocol, as the prover, with
an honest verifier. We denote with advA(n) the probability that A makes the
verifier accept at the end of this game.

Definition 2. We say that an identification protocol is secure against concur-
rent impersonation attack if advA(n) is negligible in n.

2.3 Discrete Logarithm Assumptions

Since its introduction in the seminal paper by Diffie and Hellman [DH78], the
discrete logarithm assumption has been widely used to construct cryptographic
algorithms. Here we are going to use a well established variant of the assumption
that considers the hardness of computing discrete logs in subgroups of prime
order.

Consider the example we described above. On input a security parameter
1n, we generate an n-bit prime q, a poly(n)-prime p, such that q|p − 1 and an
element g of order q in Z∗

p (the multiplicative group of integers modp). In the
group generated by g we can consider the exponentiation function that maps
w ∈ Zq to y = gw mod p. The discrete log assumption says that if we choose w
at random then it is infeasible to compute w, when given only y.

Assumption 1 We assume that computing discrete logarithm is hard, i.e. for
every PPT Turing Machine I (for inverter) the following probability

advI(n) = Prob[I(p, q, g, y = gw mod p) = w]

is negligible in n. The probability is taken over the internal coin tosses of I, the
random choices of q as n-bit prime, p as a poly(n)-bit prime such that q|p− 1,
w ∈R Zq, while g is an arbitrary element of order q in Z∗

p .

In the following we are going to use a stronger variant of the discrete log as-
sumption, introduced in [BNPS01,BPa02]. In this variant once we have selected
p, q at random and chose g, we give the inverter I access to two oracles. The
challenge oracle Ch, when invoked outputs a random element in the group gener-
ated by g. The discrete log oracle DL when queried on a value y ∈ (g) will output
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w such that y = gw mod p. The goal of I is to invert all the values issued to him
by the challenge oracle (and I must invoke Ch at least once), but is restricted
to invoke DL a number of times, which is strictly smaller than the number of
times he invoked Ch. We denote with advCh,DL

I (n) the probability (taken over the
choices of p, q and the internal coin tosses of I and Ch) that I succeeds in this
game.

Assumption 2 We assume that the problem of one more inversion of discrete
logarithms is hard, i.e. we assume that advCh,DL

I (n) is negligible in n.

Note that when the number of queries to Ch is equal to 1, this assumption
is equivalent to Assumption 1. Though Assumption 2 is new, it looks reason-
able and has the advantage enunciated in [BPa02] of reducing the security of
our identification scheme to the hardness of a well-specified number theoretic
problem.

2.4 Schnorr’s identification scheme

Let p and q be two primes such that q|p−1 and |q| = n. Let g 6= 1 be an element
of order q in Z∗

p . Let Gq be the subgroup generated by g. The integers p, q, g are
known and can be common to a group of users.

An identity consists of a private/public key pair. The private key w is a
random non-negative integer less than q. The public key is computed as y =
g−w mod p.

The protocol is described in Figure 1

It is well known that Schnorr is an honest-verifier zero-knowledge proof of knowl-
edge of w, the discrete logarithm of y. The reader is referred to [Sch91] for details.
The protocol is only honest-verifier ZK, because if a dishonest verifier chooses
the challenge e in a non-random way (particularly dependent on the first message
x) we are not able to simulate the interaction2.

However in [BPa02] it is shown that the Schnorr scheme is secure against
impersonation, under concurrent attacks, under the assumption that discrete
logarithm is secure under one more inversion in the underlying group.

3 The new identification scheme

In this section we present our generalization of Schnorr’s scheme to the case in
which the prover wants to prove multiple identities.

A naive generalization of Schnorr’s scheme would be to do the simultaneous
authentication of d identities by composing d rounds in parallel. In other words

2 Note that it is also necessary to check that y is in the proper group, by checking that
yq = 1 mod p, see [Bur90]. This can be added as a verification step, or the verifier
can trust the certification authority that certified y to have performed the test. A
similar requirement holds for our protocol.



281

Schnorr

Common Input: p, q, g, y. A security parameter t.
Secret Input for the Prover: w ∈ Zq such that y = g−w mod p.

1. Commitment by Prover. Prover picks r ∈R Zq and sends x = gr mod p to
the Verifier.

Prover x = g
r

- Verifier

2. Challenge from Verifier. Verifier picks a number e ∈R [1..2t] and sends it
to the Prover.

Prover e
� Verifier

3. Response from Prover. Prover computes s = r + w · e mod q and sends it
to the Verifier.

Prover s = r + w · e
- Verifier

The Verifier checks that x = gs ·ye mod p and accepts if and only if equality
holds.

Fig. 1. Schnorr’s protocol

the prover would send over d commitments and the verifier would reply with d
challenges - one per identity. Note that this scheme has a communication and
computation cost that is d times the cost of Schnorr’s original scheme. A possible
improvement would be to use the same challenge for all rounds, and apply batch
verification techniques (such as the ones in [BGR98]) to the last verification step.
Even with these improvements, the communication and computation cost of the
whole scheme would still be higher by a factor of d (the prover would still have
to send and compute d commitments).

We propose a more efficient scheme where the prover sends one commitment
and the verifier sends one challenge across all identities. The prover’s response
is generalized from a degree one polynomial to a degree d polynomial formed
from the d secret keys. We are able to show that the resulting scheme is sound
and further that it is secure against impersonation under concurrent attacks
by extending the corresponding arguments in [Sch91] and [BPa02] respectively.
We present two theorems that demonstrate that the new scheme is an honest-
verifier zero knowledge proof of knowledge and also a secure identification against
impersonation under concurrent attacks.

The parameters are very similar to Schnorr. Let p and q be two primes such
that q|p − 1. Let g 6= 1 be an element of order q in Z∗

p . The integers p, q, g are
public, and can be common to a group of users.
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We have d identities, each consisting of a private/public key pair indexed by
i. The private keys wi are non-negative integers less than q, chosen uniformly at
random. The public keys are computed as yi = g−wi mod p.

The Prover initiates the protocol by sending over the list of public keys yi

for which it claims to possess the corresponding private keys wi. The protocol is
described in Figure 2

Batch-Schnorr

Common Input: p, q, g, y1, . . . , yd. A security parameter t.
Secret Input for the Prover: wi ∈ Zq such that yi = g−wi mod p.

1. Commitment by Prover. Prover picks r ∈R Zq and sends x = gr mod p to
the Verifier.

Prover x = g
r

- Verifier

2. Challenge from Verifier. Verifier picks a number e ∈R [1..2(t+log d)] and
sends it to the Prover.

Prover e
� Verifier

3. Response from Prover. Prover computes s = r + Σiwi · e
i mod q and sends

it to the Verifier.

Prover s = r + Σiwi · e
i

- Verifier

The Verifier checks that x = gy · Πiy
ei

i mod p, and accepts if and only if
equality holds.

Fig. 2. Batch version of Schnorr’s protocol

Theorem 1. Batch-Schnorr is an honest-verifier zero-knowledge proof of knowl-
edge for d discrete logarithms.

The complete proof is provided in [GLSY].

Notice that the protocol is not zero-knowledge in the general case since a dishon-
est verifier could choose a challenge that is dependent on the commitment making
it difficult to generate transcripts with the same distribution, without knowing
the secret keys. Informally, however the reason no information is revealed is that
the numbers x and y, the commitment and the response, are essentially random.
This is the intuition behind the proof of security as an identification scheme.

The following theorem (Theorem 2) shows that Batch-Schnorr is an identifi-
cation scheme secure against impersonation under concurrent attacks. As men-
tioned before, this is our ultimate end goal. We extend the proof in [BPa02]
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(which shows the security of Schnorr’s scheme under this kind of attack) to our
scheme. We remind the readers that in a concurrent attack the adversarial prover
is allowed to play the role of the cheating verifier and interact concurrently with
multiple honest prover clones prior to the impersonation attempt. Similar to
[BPa02] our proof is based on the assumption that discrete exponentiation is
secure under d more inversions in the underlying group (Assumption 2).

Let A denote the adversary that first takes on the role of fraudulent verifier
and interacts concurrently with several honest prover clones before subsequently
taking on the role of fraudulent prover. Let advA(k) denote the probability that
A is successful at impersonation.

Theorem 2. If A succeeds in an impersonation attack on Batch-Schnorr with
probability advA(k) then there exists an inverter I such that for every k

advA(k) ≤ 2−t + (advCh,DL

I (k))1/(d+1)

Proof. We show how to construct an inverter I that interacts with A the imper-
sonation adversary. Via this interaction I will compute the discrete logarithm
of all the n points it gets from the challenge oracle, by querying the discrete log
oracle, at most n− d times.

First the inverter I queries Ch, the challenge oracle, d times and obtains d
random group elements yi = g−wi . It then runs A in cheating verifier mode
using the yi’s as the public key. For the jth clone prover the commitment xj is
obtained by querying the challenge oracle Ch. The third round response sj to
challenge ej is computed by querying the discrete log oracle DL on the value

xjΠ
d
k=1y

−ek
j

k . Notice that this is a perfect simulation of a real concurrent attack.
With n we denote the total number of queries to the challenge oracle. Notice
that I queried the discrete log oracle only n− d times.

Now I runs A in cheating prover mode d + 1 times, rewinding it each time
to the beginning (of the phase in which A acts as a prover). This in particular
means that the commitment issued by A stays the same, since its internal state
is the same. If any two challenges are the same then the inverter I fails.

Let x = gr be the commitment and let si be the response corresponding
to the distinct challenges ei. If the cheating prover A fails even once then the
inverter I fails. If the cheating prover A succeeds each of the d + 1 times, then
the inverter I has d + 1 equations of the form si = r + Σjwj · e

j
i , with d + 1

unknowns, r and the d secret keys wj . By inverting the Van der Monde matrix
formed from these equations, they can be solved to obtain the wj ’s. These are
the answers to the first d queries I made to Ch.

Recall that I must answer all the challenges he received from Ch. But the
answer to each query xj can be easily computed as sj −Σkwk · e

k
j .

Thus with n− d queries, I succeeds in inverting all the n points asked to the
challenge oracle. The probability of success is the probability that A succeeds
d + 1 times. We will now estimate this probability. We first prove an auxiliary
result that is a generalization of an equivalent result in [BPa02].
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Lemma 1 (Generalized Reset Lemma). Consider any prover (potentially
cheating). Let A and B be random variables over the space of the random coins,
RP , of the prover. Let A denote the probability, taken over e, that the verifier
accepts. Let B denote the probability, taken over e’s, that when the verifier is
reset and run d + 1 times, a different e is generated each time and the verifier
accepts each time. Let acc = E(A) and res = E(B). Then acc ≤ 2−t+res1/(d+1).

Proof. Let 1/c = 2t+log d be the size of the challenge set i.e. #e. It is easy to see
that B ≥ A(A − c)(A − 2c) . . . (A − dc). This implies that B ≥ (A − dc)(d+1)

which yields that E(A) ≤ dc + E(B)1/(d+1) or E(A) ≤ 2−t + E(B)1/d+1.

Now observe that advA(k) = E(acc), where the expectation is taken over
the choice of yi and the knowledge gained as the cheating verifier. Similarly
advCh,DL

I (k) = E(res). Applying the reset lemma we see that

advA(k) = E(acc) ≤ E(2−t + (res)1/(d+1)) = 2−t + E((res)1/(d+1))

then by applying Jensen’s inequality

advA(k) ≤ 2−t + (E(res))1/(d+1) = 2−t + (advCh,DL

I )1/(d+1)

This completes the proof of Theorem 2.

The following corollary is a straightforward consequence of Theorem 2.

Corollary 1. Under Assumption 2, and if t = ω(log k), then Batch-Schnorr is
a secure identification scheme against i mpersonation under concurrent attack.

Note that the assumption that t is super-logarithmic in k is necessary, oth-
erwise the scheme can be broken by guessing the verifier’s challenge.

3.1 Efficiency Analysis

For a list of d identities Batch-Schnorr uses only O(logd) more bits of communi-
cation than Schnorr’s scheme for a single identity (assuming the same security
level).

In terms of computation Batch-Schnorr requires 2d extra modular multiplica-
tions for the prover. The verifier has to perform d + 1 modular exponentiations,
while in Schnorr’s scheme it has to perform 2.

Notice that this is much faster than the known way of proving d identities
simultaneously, which consists of d copies of Schnorr’s protocol (in the particular
the verifier would have to perform 2d exponentiations instead of d + 1).
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3.2 Authorization using Multiple Identities

As we discussed in the Introduction, our identification scheme is suitable to
implement Authorization using multiple identities without incurring a huge ef-
ficiency cost.

When a user joins a particular privilege class he is given a new public key, its
matching secret key and a certificate that associates the key to that particular
privilege class. Another possibility would be to have a unique key for each class,
but that would make revocation very difficult to handle, as revoking one user in
the class (say because her key was compromised or because she does not belong
to the class anymore), would involve replacing the key of all users in the class.

When a user needs to access certain data or services he uses our identification
protocol to prove possession of the minimal set of privileges required for that
access to take place.

Another advantage of our approach is that it is easy to transfer privileges
among parties. A motivating scenario for our application is having a smart card
be able to talk to another smart card and transfer a subset of privileges to it
(equivalent to a high ranking employee in a corporation enabling selective access
to a lower ranked employee). In our scheme using multiple identities it is a simple
matter to transfer the private keys corresponding to the selected list of privileges.

4 Implementation

In order to test the efficiency of our scheme we have performed an implementa-
tion of our scheme. To carry out the implementation we used a recently proposed
technology based on Light Emitting Diodes. We believe that another contribu-
tion of our paper is to show that this new technology allows the implementation
of strong cryptography.

Light Emitting Diodes, or LEDs, are one of the most ubiquitous interface
components. Their diverse applications include numeric displays, flashlights, ve-
hicle brake lights (and possibly even headlights [Hel03]), traffic signals and the
omni-present power-on indicator. LEDs are so commonly used as light emitters
that people often forget that they are fundamentally photodiodes and hence light
detectors. Although LEDs are not optimized for light detection they are very
effective at it. The interchangeability between solid-state light emission and de-
tection was widely publicized in the 1970s by Forrest W. Mims [Mim86,Mim93],
but has since largely been forgotten.

Recently, a novel microprocessor interface circuit was invented which can
alternately emit and detect light using an LED [DYL02]. In addition to the
LED and two digital I/O pins of the microprocessor, the circuit requires only a
single current limiting resistor. When forward-biased the LED emits light and
when back-biased it detects/measures the ambient light. The implications of
LED-based data communication are significant, since it is essentially a software
interface technique that uses existing hardware with minimal modification. ”Ev-
ery LED connected to a microprocessor can be thought of as a generic two-way
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data port” [DYL02]. One can conceive of numerous applications e.g. using the
power light on consumer appliances as a maintenance port for reading service
information and uploading new firmware, or capturing a car stereo’s fault log
through the front panel display.

We show how to build smartcards that communicate via LEDs and implement
our Batch-Schnorr protocol.

4.1 Hardware

Batch-Schnorr was implemented using the Microchip PIC16LF628 microcon-
troller. The hardware was composed of a small printed circuit board 2cm by
4cm, a single push-button switch, an LED, a 3-volt lithium coin-cell battery, a
capacitor and two resistors. The PIC uses 8-bit instruction words and runs at 5
MIPS (million instructions per second). It has 16KB of write-able storage. The
prototypes were also equipped with an in-circuit programming connector, which
allowed us to download code into the microcontroller. We also devised a small
adapter board to convert this connector to Microchip’s standard RJ-11 in-circuit
debugging module. A mass produced version should cost less than a dollar more
than a similar LED keychain flashlight. The range of communication is a few
centimeters at best and the data rate is 250 bits/second in each direction. We
implemented Batch-Schnorr representing the prover in its full functionality. The
verifier was implemented as a LED directly controlled by a PC.

See Appendix B for a picture of our implementation.

4.2 Security

We chose a security parameter setting of t = 95. This is generally considered
adequate security (see [Sch96]) for most practical purposes. We used d = 32.
This made t+log d = 100. This forced the prime q to be 200 bits long because of
the existence of the O(q1/2) baby-step-giant-step algorithm for finding discrete
logs (see [Sch91]). In conjunction with the existence of the general number field
sieve (see [LOd91]) this, in turn, forced the prime p to be about 1500 bits long.

4.3 Prover

The bulk of the implementation effort lay in the code for the prover. An impor-
tant aspect of our implementation of Batch-Schnorr was that storage was at a
premium. This is common with most smart cards where the storage is needed
both for code as well as data.

The main operation performed by the prover is modular multiplication. We
initially attempted an implementation of the Fast Fourier Transform (see [Str88])
of Cooley and Tukey, which takes O(n log n) bit operations. However it turned
out that our practical implementations of this scheme had high code complexity,
even though it is more efficient asymptotically.

Hence, we adopted a scheme that utilizes a pre-computed table to substan-
tially save on both code complexity as well as computation time. For each of
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the private keys we stored a pre-computed table of the residues modulo q of the
product of the private key with the powers of 2 up to 21+log q . Then to multiply
the private key with any given number we added the residues corresponding to
the powers of 2 present in the binary representation of that number. The residue
modulo q of 21+log q enabled us to reduce the overflow when doing addition, so
that we always had a number with log q bits. Upon receiving the challenge e we
first computed a similar table consisting of the residues modulo q of the product
of e with the powers of 2 up to 21+log q. We then used this table to compute
the powers of e, and then used the pre-computed tables of the secret keys to
compute y = r +Σisi · e

i mod q. This enhancement enabled the implementation
to run in less than 2 seconds for our choice of the security parameters.

5 Conclusion and Extensions

We have presented a batch version of Schnorr’s protocol. In our scheme a prover
can prove knowledge of d keys at essentially the same cost as proving knowledge
of a single key. We believe this protocol can find several applications in the
cryptography literature.

We discussed the application of privacy-preserving authorization mechanisms.
Also we presented an implementation of our protocol employing a new technol-
ogy to use Light Emitting Diodes as two-way communication devices. We believe
this to be another interesting contribution of our paper.

In terms of future research, it would be interesting to devise a batch version
of the Guillou-Quisquateur identification protocol.
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