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Abstract. The “XL-algorithm” is a computational method to solve
overdetermined systems of polynomial equations which is based on a
generalization of the well-known method of linearization; it was intro-
duced to cryptology at Eurocrypt 2000.
In this paper, we prove upper bounds on the dimensions of the spaces
of equations in the XL-algorithm. These upper bounds provide strong
evidence that for any fixed finite field K and any fixed c ∈ N the median
of the running times of the original XL-algorithm applied to systems of
m = n+c quadratic equations in n variables over K which have a solution
in K is not subexponential in n. In contrast to this, in the introduction
of the original paper on XL, the authors claimed to “provide strong
theoretical and practical evidence that the expected running time of this
technique is [. . .] subexponential if m exceeds n by a small number”.
More precise upper bounds on the dimensions of the spaces of equations
in the XL-algorithm can be obtained if one assumes a standard con-
jecture from commutative algebra. We state the conjecture and discuss
implications on the XL-algorithm.
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1 Motivation and introduction

The security of many cryptographic systems would be jeopardized if one could
solve certain types of systems of polynomial equations over finite fields. For
example, it has been pointed out in [8] that one can with a high probability
recover an AES-128 key from one AES-128 plaintext-ciphertext pair if one can
solve certain systems with 1600 variables and 8000 quadratic equations over F2,
and it has been pointed out in [14] that one can achieve the same goal if one can
solve certain systems with 3986 variables and 3840 (sparse) quadratic equations
as well as 1408 linear equations over F28 .

Of particular importance for cryptological applications are so-called overde-
termined (or overdefined) systems of quadratic equations as for example the ones
we just mentioned. Let us consider a system of quadratic polynomial equations

f1(X1, . . . , Xn) = 0 , . . . , fm(X1, . . . , Xn) = 0 , (1)
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where the fj are polynomials in n indeterminates X1, . . . , Xn over an “effective”
field K (the field being finite in the cryptological applications). We say that the
system is overdetermined if the dimension of the K-vector space generated by
the fj is greater than n.

In [7], Courtois, Klimov, Patarin and Shamir propose a computational method
called eXtended Linearization (XL) or XL-algorithm to solve such systems of
polynomial equations (see the next section for a description of the method). In
the same paper certain heuristics on the running time of this method are stated.
These heuristics have subsequently been criticized by Moh ([13]) as being too
optimistic, and in Sect. 4 of [13], the method is analyzed with heuristic upper
bounds on the dimensions on the spaces of equations in the XL-algorithm. As
however the assumptions on which the heuristic in [13, Sect. 4] relies are not very
precisely stated, the question whether this heuristic or the original heuristic is
more credible remained an open problem among cryptologists. In a recent work
by Chen and Yang ([4]), the heuristic of [13, Sect. 4] is stated as a special case
of a theorem ([4, Theorem 2]).1 However, the proof of [4, Theorem 2] (and of [4,
Theorem 7]) has some serious flaws.

The main purpose of this paper is to show that under the assumption of a
widely believed conjecture of commutative algebra, one can indeed derive the
non-trivial upper bounds on the dimensions of the spaces of equations in the
XL-algorithm conjectured by Moh and stated in [4, Corollary 6, 1] (see Theorem
1 in Sect. 5 for a more general statement). Moreover, we state upper bounds on
the dimensions of the spaces of equations in the original XL-algorithm which
can be proven without the assumption of this conjecture. These upper bounds
provide strong evidence that for any fixed finite field K and any fixed c ∈ N the
median of the running times of the original XL-algorithm applied to systems of
m = n + c quadratic equations in n variables over K which have a solution in
K is not subexponential in n (see the next section for details).

2 The XL-algorithm and our analysis

Let us fix the system of quadratic equations (1) which we assume to have a
solution in K and some D ∈ N. The main idea of the XL-algorithm is to try to
solve (1) by linearization of the system of all polynomial equations

k
∏

`=1

Xi`
· fj(X1, . . . , Xn) = 0 , (2)

where k ≤ D − 2.
Let UD be K-vector space generated by the polynomials

∏k
`=1 Xi`

· fj with
k ≤ D − 2.

According to [7, Definition 1], the XL-algorithm is as follows. (Except for
changes in the notation, the description is verbatim.)

1 Theorem 2 of [4] is equivalent to the heuristics of [13] if D < q as can be seen by
expanding the polynomial in item 1 of Corollary 6 in [4].
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The XL-algorithm. Execute the following steps:

1. Multiply: Generate all the products
∏k

`=1 Xi`
· fj ∈ UD with k ≤ D − 2.

2. Linearize: Consider each monomial in Xi of degree ≤ D as an independent
variable 2 and perform Gaussian elimination on the equation obtained in 1.
The ordering on the monomials must be such that all the terms containing
one [specific] variable (say X1) are eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation in the pow-
ers of X1. Solve this equation over the finite fields (e.g. with Berlekamp’s
algorithm).3 ,4

4. Repeat: Simplify the equations and repeat the process to find the values of
the other variables.

Remark 1. In the description of the method in [7], it seems that D is fixed
beforehand. As the authors do however not say how D should be determined,
it seems to be reasonable to assume that the authors of [7] had in mind that
D is in fact a variable which is small (e.g. 2) in the beginning, and that the
the XL-algorithm goes to Step 1 with an incremented D whenever in Step 3 no
univariate equation in X1 with a solution in K is found.

Remark 2. In an “extended version” ([6]) of [7], the description of the method is
the same as the one in [7] (and the one we present here) except that the authors
have inserted the sentence “In all the following notations we suppose the powers
of variables taken over K, i.e. reduced modulo q to the range 1, . . . , q−1 because
of the equation aq = a of the finite field K.” after the third paragraph of Sect.
3. (But the field is not assumed to be finite in the second paragraph of Sect.
3 and the number q is not mentioned before.) Apart from this insertion, there
is no substantial difference between Sect. 3 to 7 of [7] and of [6]. Of course, if

one identifies the monomials
∏k

`=1 Xi`
and Xq · ∏k

`=1 Xi`
the method becomes

much faster if q, the field size, is small, q = 2, 3, 4, 5 say. According to the way
the heuristics in Sect. 6 of [7] and [6] were conducted, this identification was
however not made in the heuristic analysis of [7] and [6].

Definition 1. We call the above computational method the original XL-algo-
rithm. The variant introduced in [6] is called reduced XL-algorithm.

Remark 3. Whereas the original XL-algorithm should only be applied to overde-
termined systems of (quadratic) polynomial equations, if the field is finite and
not too large, it makes sense to apply the reduced XL-algorithm to any system
of (quadratic) polynomial equations.

2 The authors of [7] obviously mean that each monomial of degree ≤ D should be
considered as a new variable.

3 Note however that according to the second paragraph in [7, Sect. 3], the ground field
is not necessarily finite.

4 It should be avoided to repeatedly select univariate polynomial equations which
have more than one solution in K. Moreover, if a univariate polynomial equation is
found which does not have a solution in K, the method should terminate and output
“unsolvable”.
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Remark 4. Neither of the two computational methods terminates for every input
(even if they are only applied to overdetermined systems which have a solution
in K); thus in contrast to their names, they are not algorithms (not even ran-
domized algorithms) in the usual sense (cf. [11, Chapter 1, 1.1]).

As we will see in the next section, there is a strong connection between the
original and the reduced XL-algorithm (see Proposition 1). Because of this con-
nection, one can use an analysis of (a generalization of) the original XL-algorithm
to analyze also the reduced XL-algorithm (see Theorem 1 and Corollary 1). In
order to state the main ideas of our analysis and to compare our results with the
conjectures of [7], in this section, we concentrate on the original XL-algorithm.

For D ∈ N, let K[X1, . . . , Xn]≤D be the K-vector space of polynomials in
X1, . . . , Xn of (total) degree ≤ D, and let

χ(D) := dimK(K[X1, . . . , Xn]≤D) − dimK(UD) . (3)

One can surely obtain a non-trivial univariate polynomial by (Gaussian)
elimination on (2) if χ(D) ≤ D. (This is because the K-vector space K[X1]≤D

has dimension D + 1, thus if χ(D) ≤ D, then dimK(UD) + dimK(K[X1]≤D) >
dimK(K[X1, . . . , Xn]≤D), and this implies that UD ∩K[X1]≤D 6= {0}.) In order
to analyze the running time of the XL-algorithm, it is of greatest importance to
study the question for which D one can expect this condition to hold (if such a
D exists at all). We thus define Dmin be the minimal D with χ(D) ≤ D (if no
such D exists, we set Dmin = ∞).

The starting point for our analysis of the XL-algorithm is the interpretation
of the original XL-algorithm via the theory of homogeneous polynomial ideals
pointed out by Moh ([13]). This interpretation opens the door for the usage of
well-established methods from commutative algebra – the keywords are Hilbert
Theory, Hilbert functions, Hilbert series and Hilbert polynomials.

A crucial observation is that in order to derive lower bounds on χ(D) (i.e.
upper bounds on dimK(UD)) it suffices to study the dimensions of the homoge-
neous parts of algebras defined by generic systems of homogeneous polynomials.
(This notion will be made precise in Sect. 4.) For m ≤ n + 1, these dimensions
are known, and this information suffices to prove that for m = n + c, c ≥ 1,

Dmin ≥ n√
c − 1 + 1

(4)

(see Proposition 6.) In contrast to this inequality, it was suggested in [7, Sect.
6.4] that “even for small values of c”, c ≥ 2, one has

Dmin ≈
√

n . (5)

Let us fix the field K and c ≥ 2 and study the asymptotic behavior of the running
time of the original XL-algorithm for n −→ ∞ (and m = n + c): If (5) was true,
the XL-algorithm in [7] would have a running time (in field operations) which
is subexponential in n. (This hope was expressed at the end of Sect. 6.1 of [7]
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as well as at the end of the introduction of [7].) However by (4), the running
time of all instances for which UD ∩ K[X1]≤D = {0} for all D < Dmin is not
subexponential in n.

If K is a finite field and #K and n are not “too small” it seems very reason-
able to expect: Under all systems (1) which have a solution in K, the portion of
systems for which UD ∩ K[X1]≤D 6= {0} for some D < Dmin is negligible. This
suggests that for any fixed c ≥ 1 the median of the running times of the original
XL-algorithm applied to systems of m = n+c quadratic equations in n variables
over K which have a solution in K is not subexponential in n. The hope stated
at the end of Sect. 1 of [7] that “the expected running time of this technique is
... subexponential if m exceeds n by a small number” should be abandoned.

For c ≥ 3, much more precise lower bounds on Dmin then the ones in (4)
can be obtained if one assumes a certain conjecture which implies what the
dimensions of homogeneous parts of algebras defined by generic systems of ho-
mogeneous polynomials should be (see Sect. 5). This conjecture – which is now
approximately 20 years old – states that certain linear maps are either injective
or surjective, that is, they have maximal rank. Because of this, we speak of the
maximal rank conjecture (MR-conjecture).

3 A generalization of the original and the reduced

XL-algorithm

The original as well as the reduced XL-algorithm of can easily be general-
ized to more general than quadratic systems of polynomial equations (see also
[5, Sect. 2]).

For these generalizations, we start off with a system of m polynomial equa-
tions

f1(X1, . . . , Xn) = 0, . . . , fm(X1, . . . , Xn) = 0 . (6)

The generalization of the original XL-algorithm works just as the original XL-
algorithm stated in the previous section with the difference that for some D ∈
N, one applies Gaussian elimination to the linearized system of all polynomial
equations

k
∏

`=1

Xi`
· fj(X1, . . . , Xn) = 0 , (7)

where k + deg(fj) ≤ D.
Clearly, the reduced XL-algorithm can be generalized in a similar manner.

From now on, we refer to these generalizations also as the “original” and the
“reduced” XL-algorithm.

Let us fix the following notations.

– As in the previous section, let

UD := 〈∏k
`=1 Xi`

· fj(X1, . . . , Xn) with k ≤ D − deg(fj)〉K (8)
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– and

χ(D) := dimK(K[X1, . . . , Xn]≤D) − dimK(UD) . (9)

Let K = Fq.
– If f ∈ K[X1, . . . , Xn]≤D, we denote by f red the “reduction” of f , i.e. f red

is the polynomial obtained by maximally reducing all exponents in the
monomials according to the relations

∏k
`=1 Xi`

− Xq
i · ∏k

`=1 Xi`
= 0. Note

that (. . .)red is a homomorphism of K-vector spaces and that (UD)red ≤
(K[X1, . . . , Xn]≤D)red is the space of equations generated in the reduced
XL-algorithm.

– In order to analyze the reduced XL-algorithm, we set

χred(D) := dimK((K[X1, . . . , Xn]≤D)red) − dimK((UD)red) . (10)

– Let ŨD be defined just as UD with respect to the system of m+n polynomials
f1, . . . , fm, Xq

1 − X1, . . . , X
q
n − Xn, and let χ̃(D) be defined as χ(D) with

respect to ŨD.

The proof of the following proposition can be found in Appendix A.

Proposition 1. We have χred(D) = χ̃(D).

Because of this proposition, the results on the original XL-algorithm can easily
be carried over to the reduced XL-algorithm. What remains is to derive non-
trivial lower bounds on χ(D).

4 The XL-algorithm and Hilbert Theory

In the following discussion, we assume that the reader is familiar with basic
notions of commutative algebra as can for example be found in the first three
chapters of [1].

As mentioned in Sect. 2, our analysis of the XL-algorithm relies on an in-
terpretation via homogeneous polynomial ideals. The main idea is to consider
(for some field K, some n ∈ N and some D ∈ N) the homogeneous polynomials
of degree D in n + 1 variables instead of the polynomials of degree ≤ D in n
variables.

Let K be an arbitrary field, n ∈ N, and let f1, . . . , fn ∈ K[X1, . . . , Xn].
We use the notations of the previous sections, and additionally we denote by
K[X0, . . . , Xn]D the K-vector space of all homogeneous polynomials of degree D.
More generally, for any positively graded K[X0, . . . , Xn]-module M , we denote
the homogeneous part of degree D of M by MD.

Let Fj ∈ K[X0, . . . , Xn] be the homogenization of fj , that is, Fj is the
unique homogeneous polynomial in K[X0, . . . , Xn] of the same degree as fj with
Fj(1, X1, . . . , Xn) = fj(X1, . . . , Xn).

Let

Φ : K[X1, . . . , Xn]≤D −→ K[X0, . . . , Xn]D



326

be the “degree D homogenization map”, that is, the K-linear map given by

k
∏

`=1

Xi`
7→ XD−k

0

k
∏

`=1

Xi`
.

Then under the isomorphism Φ, the K-vector space UD corresponds to

〈
k

∏

`=1

Xi`
· Fj(X0, X1, . . . , Xn) with k = D − deg(Fj)〉K ,

where the products are taken over the variables X0, . . . , Xn. This space is nothing
but the Dth homogeneous component of the homogeneous ideal

I := (F1, . . . , Fm) � K[X0, . . . , Xn] ,

denoted ID. We have

χ(D)
Def
= dimK(K[X1, . . . , Xn]≤D) − dimK(UD)
= dimK(K[X0, . . . , Xn]D) − dimK(ID)
= dimK(K[X0, . . . , Xn]D/ID)
= dimK((K[X0, . . . , Xn]/I)D) .

(11)

Let R := K[X0, . . . , Xn]. Recall the following definitions (see e.g. [16, Sect. 1]).

Definition 2. Let M =
⊕

i∈N0
Mi be any finitely generated positively graded

R-module. Then the function

χM : N0 −→ N0, χM (i) := dimK(Mi)

is called the Hilbert function of M .
The power series with integer coefficients

HM :=
∑

i∈N0

χM (i)T i

is called the Hilbert series of M .

Note that the above equation (11) states that

χ(D) = χR/I(D) for all D ∈ N . (12)

Let us denote by X i the monomial corresponding to the multiindex i ∈
N

{0,...,n}
0 . The following definition can be found in [10].

Definition 3. A form (i.e. a homogeneous polynomial) G =
∑

i aiX
i ∈ R of

degree d is generic if all monomials of degree d in R have coefficients ai in G,
and these coefficients are algebraically independent over the prime field of K.

A generic system of forms is a system of generic forms Gj =
∑

i a
(j)
i X i as

above (not necessarily of the same degree) such that all a
(j)
i are algebraically

independent over the prime field of K. An ideal I generated by a generic system
of forms is called generic, and so is the R-algebra R/I.
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Lemma and Definition 4. The Hilbert series of an ideal generated by a generic
system G1, . . . , Gm of forms of degrees d1, . . . , dm depends only on the charac-
teristic of the field, the number n and the tuple of numbers (d1, . . . , dm). If the
characteristic of the field is 0, we speak of the generic Hilbert series of type
(n + 1; m; d1, . . . , dm).

Proof. Let K and L be two fields over the same prime field F , and let
G1, . . . , Gm ∈ K[X0, . . . , Xn], G′

1, . . . , G
′
m ∈ L[X0, . . . , Xn] be two generic sys-

tems of forms such that deg(Gj) = deg(G′
j) for all j. Let Gj =

∑

i a
(j)
i X i,

G′
j =

∑

i a′
i
(j)

X i. Let k and l respectively be the subfields of K and L generated

by the coefficients of Gj and G′
j over F . Then there exists a (unique) isomor-

phism between k and l under which a
(j)
i corresponds to a′

i
(j)

. We thus have for
all D ∈ N0

χK[X0,...Xn]/(G1,...,Gm)(D) = dimK((K[X0, . . . Xn]/(G1, . . . , Gm))D) =
dimk((k[X0, . . . Xn]/(G1, . . . , Gm))D) =
diml((l[X0, . . .Xn]/(G′

1, . . . , G
′
m))D) =

dimL((L[X0, . . . Xn]/(G′
1, . . . , G

′
m))D) = χL[X0,...Xn]/(G′

1
,...,G′

m)(D) .

ut

Together with (12), the following proposition is crucial for our analysis of the
XL-algorithm.

Proposition 2. Let K be any field (of any characteristic), and let F1, . . . , Fm ∈
R = K[X0, . . . , Xn] be forms of degree d1, . . . , dm (not necessarily generic).
Let Hg be the generic Hilbert series of type (n + 1; m; d1, . . . , dm). Let I :=
(F1, . . . , Fm) � K[X0, . . . , Xn]. Then we have the coefficient-wise inequality

HR/I ≥ Hg .

This proposition seems to be well-known in commutative algebra (see e.g. Sect.
4 of [16]); for the lack of a suitable reference we include the proof in Appendix B.

Because of (12) and this proposition the task is now to study generic Hilbert
series. The following proposition is a well-known statement from commutative
algebra.

Proposition 3. Let m ≤ n+1, and let G1, . . . , Gm−1, Gm = G be a generic sys-
tem of forms in R = K[X0, . . . , Xn], where G has degree d. Let
J := (G1, . . . , Gm−1) � R. Then for all D ∈ N0 the multiplication map

G· : (R/J)D −→ (R/J)D+d, F 7→ G · F

is injective, in particular we have a short exact sequence

0 −→ (R/J)D
G·−→ (R/J)D+d −→ (R/(J, G))D+d −→ 0 .
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(Here by (J, G) we denote the ideal of R generated by J and G.)
Indeed, this proposition is nothing but a reformulation of the well-known

statement that a generic system of forms in K[X0, . . . , Xn] with at most n + 1
elements forms a regular sequence (cf. [16, Sect. 4], Page 318). (The fact that a
generic system of forms is a regular sequence can be seen as follows: By Lemma
3 in Appendix B, it suffices to prove that for all (d1, . . . , dn+1) ∈ Nn+1 there
exist some forms F1, . . . , Fn+1 ∈ R of degrees d1, . . . , dn+1 which form a regular

sequence, and by [12, Theorem 16.1], the forms Xd1

0 , . . . , X
dn+1

n do form a regular
sequence.)

Note that the Hilbert series of R = K[X0, . . . , Xn] is

HR =
∑

i

(

n + i

i

)

T i =
1

(1 − T )n+1
(13)

(see e.g. [16, Sect. 1]). Proposition 3 and (13) imply by induction on m:

Proposition 4. Let m ≤ n+1, and let G1, . . . , Gm be a generic system of forms
of degrees d1, . . . , dm in R. Then the Hilbert series of R/(G1, . . . , Gm) is

∏m
j=1(1 − T dj)

(1 − T )n+1
.

For simplicity we now concentrate until the end of this section on the case of
quadratic equations.

Proposition 5. Let m = n + c for some c ≥ 1. Let F1, . . . , Fm be quadratic
forms in R = K[X0, . . . , Xn]. Then the Hilbert series of R/(F1, . . . , Fm) is
coefficient-wise greater-or-equal

(1 − (c − 1)T 2)(1 + T )n+1 .

Proof. By Proposition 2 we only have to prove that the generic Hilbert series of
type (n + 1; m; 2, . . . , 2) is coefficient-wise greater-or-equal (1 − (c − 1)T 2)(1 +
T )n+1.

So let K be a field of characteristic 0, let R = K[X0, . . . , Xn], and let
G1, . . . , Gm be a generic system of quadratic forms in R. (The assumption
on the characteristic is not necessary for the following argument.) Let R′ :=
R/(G1, . . . , Gn+1), and let I ′ be the ideal generated by Gn+2, . . . , Gm in R′.
Note that by the above proposition, the Hilbert series of R′ is (1 + T )n+1. We
have R/(G1, . . . , Gm) ' R′/I ′, thus

χR/(G1,...,Gm)(D) = χR′/(Gn+2,...,Gm)(D) = dimK(R′
D) − dimK(I ′D) .

Now, for D ≥ 2, I ′
D =

∑m
j=n+2 Gj · R′

D−2, where by definition Gj · R′
D−2 is the

image of R′
D−2 under the multiplication map Gj · : R′

D−2 −→ R′
D. It follows that

dimK(I ′D) ≤ (m − n − 1) dimK(R′
D−2) .
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All in all, we have
χR/(G1,...,Gm)(D) ≥ χR′(D) − (c − 1)χR′(D − 2) ,

thus

HR/(G1,...,Gm) ≥ HR′ − (c − 1)T 2HR′ = (1 − (c − 1)T 2)(1 + T )n+1 .

Proposition 6. Let K be any field, let m = n + c with c ≥ 1, let f1, . . . , fm ∈
K[X1, . . . , Xn] be quadratic polynomials, and as in Sect. 2, let Dmin be the min-
imal D with χ(D) ≤ D, where χ(D) is defined as above with respect to these
polynomials. Then

Dmin ≥ n√
c − 1 + 1

.

Sketch of the Proof. Let c ≥ 1, m = n + c, f1, . . . , fm and χ(D) be as in the
proposition. By (12) and the above proposition, we have

χ(D) ≥ (
(n − D + 2)(n − D + 3)

(D − 1)D
− (c − 1)) ·

(

n + 1

D − 2

)

for all D ≥ 2. The proposition follows from the statement that ( (n−D+2)(n−D+3)
(D−1)D −

(c−1)) ·
(

n+1
D−2

)

> D for all D < n√
c−1+1

. We only show the slightly weaker state-

ment that (n−D+2)(n−D+3)
(D−1)D − (c − 1) > 0 for all D < n√

c−1+1
.

Let D < n√
c−1+1

. Then D
√

c − 1 + D < n, thus D2(c − 1) < (n − D)2. This

implies that (D − 1)D(c − 1) < (n − D + 2)(n −D + 3), i.e. (n−D+2)(n−D+3)
(D−1)D −

(c − 1) > 0. ut

Remark 5. For an application of the XL-algorithm to a system with m = n
quadratic equations, one can easily see with Propositions 2 and 4 and (12) that
one always has χ(D) ≥ 2n, and for m = n + 1 quadratic equations, one has
Dmin ≥ n + 1. Both these results are consistent with conjectures in [7].

5 The maximal rank conjecture

The maximal rank conjecture (MR-conjecture) which we now state can be thought
to be a (potential) generalization of Proposition 3.

Conjecture. Let K be a field of characteristic 0, and let G1, . . . , Gm−1, Gm = G
be a generic system of forms in R = K[X0, . . . , Xn], where G has degree d. Let
J := (G1, . . . , Gm−1) � R. Then for all D ∈ N0 the multiplication map

G· : (R/J)D −→ (R/J)D+d, F 7→ G · F

has maximal rank, that is it is injective if dimK((R/J)D) ≤ dimK((R/J)D+d)
and it is surjective if dimK((R/J)D) ≥ dimK((R/J)D+d).

This conjecture – which is also known under the name “Fröberg’s Conjecture”
– can (in an equivalent formulation) be found in [10]. It is also stated in Sect. 4
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of the informative overview article [16]. (Note however that the formulations at
the beginning of Sect. 4 of [16] are a bit vague.) Interesting facts about this and
related conjectures can be found in [15].

The conjecture is known to hold if one of the following five conditions is
satisfied: m ≤ n + 1 (see Proposition 3), n = 1, n = 2, m = n + 2, D =
minj{deg(Gj)} + 1 (see [10, 3.2.] and the citations in [16, Sect. 4]).

The conjecture is equivalent to the statement that

χR/(J,G)(D) = max{χR/J(D) − χR/J (D − d) , 0}

as one can easily see (cf. [16, Sect. 4]). (Here, we set χR/J (i) = 0 for i < 0.)
Obviously, if χR/(J,G)(D) = 0, then χR/(J,G)(D

′) = 0 for all D′ > D. Using
this fact, the conjecture can be reformulated via Hilbert series as:

HR/(I,G) = |(1 − T d)HR/I | , (14)

where for some power series p(T ) with integer coefficients, |p(T )| denotes the
power series q(T ) =

∑

i qiT
i, where

qi = pi if pj > 0 for all j ≤ i
0 if pj ≤ 0 for some j ≤ i .

Assumption. From now on, we assume that the maximal rank conjecture is
valid.

Let K be a field of characteristic 0, let G1, . . . , Gm be a generic system of
forms in R, and let dj := deg(Gj). Let I := (G1, . . . , Gm). Using (13), (14) and
Lemma 5 in Appendix C, we have

HR/I =

∣

∣

∣

∣

∣

∏m
j=1(1 − T dj )

(1 − T )n+1

∣

∣

∣

∣

∣

. (15)

Definition 5. (see [16]) We call the right-hand side of the above equation the
expected Hilbert series of a generic algebra of type (n + 1; m; d1, . . . , dm).

Proposition 2 implies:

Proposition 7. Let K be any field (of any characteristic), and let F1, . . . , Fm ∈
R = K[X0, . . . , Xn] be forms of degree d1, . . . , dm (not necessarily generic). Let
He be the corresponding expected Hilbert series. Let I := (F1, . . . , Fm). Then we
have the coefficient-wise inequality

HR/I ≥ He .

Together with (12), this proposition has the following implication for the
original XL-algorithm.
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Theorem 1. Let K be any field, let f1, . . . , fm be non-trivial polynomials in
K[X1, . . . , Xn] with degrees d1, . . . , dm. Let D ∈ N, and let χ(D) be defined as in
(9). Then χ(D) is greater-or-equal to the Dth term of the expected Hilbert series
of a generic algebra of type (n + 1; m; d1, . . . , dm).

By Proposition 1, this theorem has the following corollary which can be used
to analyze the reduced XL-algorithm.

Corollary 1. With the notations of the theorem, let K = Fq, and let χred(D)
be defined as is (10). Then χred(D) is greater-or-equal to the Dth term of the ex-
pected Hilbert series of a generic algebra of type (n+1; m+n; d1, . . . , dm, q, . . . , q).

Remark 6. Let Dn,m be the degree of the expected Hilbert series of a generic
algebra of type (n + 1; m; 2, . . . , 2). One can use the methods presented in [2,
Sect. 5] to study asymptotic behaviors of Dn,m. A corresponding study is carried
out in [3]. One obtains Dn,n+c ∼ n

2 for any fixed c ≥ 2 and n −→ ∞. (More
precise results for various small c can also be found in [3].) For a fixed α > 1, a
reformulation of a result in [3] gives Dn,αn ∼ (α−

√
α2 − α− 1

2 ) ·n for n −→ ∞.

For example, one has Dn,2n ∼ C · n with C = 3
2 −

√
2 ≈ 0.0858 (which is

consistent with the “Comparison with 2n equations over Q” on page 13 of [2]).
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A On the connection between the the original and

the reduced XL-algorithm

The purpose of this section is to prove Proposition 1.
As in Proposition 1, let K = Fq . Let

VD := 〈
k

∏

`=1

Xi`
· (Xq

i − Xi) with k + q ≤ D〉K ≤ K[X1, . . . , Xn]≤D .

Lemma 1. Let U be any K-vector subspace of K[X1, . . . , Xn]≤D. Then we have
a short exact sequence

0 −→ U ∩ VD −→ U −→ U red −→ 0 .

Proof. It is obvious that U∩VD is contained in the kernel of (. . .)red. The converse
follows from the following lemma. ut

Lemma 2. Let f ∈ K[X1, . . . , Xn]. Then there exist polynomials p1, . . . , pn of
degree ≤ deg(f) − q with

f = p1 · (Xq
1 − X1) + · · · pn · (Xq

n − Xn) + f red .
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Proof. By the linearity of (. . .)red, it suffices to prove the statement for mono-
mials, and for monomials it is obvious by the very definition of (. . .)red. ut

Let us use the definitions of Sect. 3.
We have by Lemma 1

(K[X1, . . . , Xn]≤D)red ' K[X1, . . . , Xn]≤D/VD ,

(UD)red ' UD/(UD ∩ VD) ' (UD + VD)/VD ' ŨD/VD ,

thus

(K[X1, . . . , Xn]≤D)red/(UD)red ' (K[X1, . . . , Xn]≤D/VD)/(ŨD/VD)

' K[X1, . . . , Xn]/ŨD .

This implies:

χred(D) = dimK((K[X1, . . . , Xn]≤D)red/(UD)red)

= dimK(K[X1, . . . , Xn]≤D/ŨD) = χ̃(D) .

B Hilbert series of generic and arbitrary algebras

The purpose of this section is to prove Proposition 2. Let us before we come to
the proof state two lemmata.

Lemma 3. Let A be a domain with quotient field Q. Let K be a field and let
ϕ : A −→ K be a homomorphism, and let Φ : A[X0, . . . , Xn] −→ K[X0, . . . , Xn]
be the canonical extension of ϕ. Let I � A[X0, . . . , Xn] be a homogeneous ideal
(that is, an ideal generated by homogeneous polynomials). Then we have the
coefficient-wise inequality

HK[X0,...,Xn]/(Φ(I)) ≥ HQ[X0,...,Xn]/(I) .

Proof. Let D ∈ N0. The map ϕ : A −→ K induces a canonical map

(A[X0, . . . , Xn]/I)D −→ (A[X0, . . . , Xn]/I)D ⊗A K
' (A[X0, . . . , Xn]/I ⊗A K)D ' (K[X0, . . . , Xm]/(Φ(I)))D .

This implies that
χK[X0,...,Xn]/(Φ(I))(D)

= dimK((A[X0, . . . , Xn]/I)D ⊗A K)
≥ dimQ((A[X0, . . . , Xn]/I)D ⊗A Q) by Lemma 4 below
= dimQ((Q[X0, . . . , Xn]/(I))D)
= χQ[X0,...,Xn]/(I)(D) .

Lemma 4. Let A be a domain with quotient field Q, and let M be a finitely
generated A-module. Let K be a field and let ϕ : A −→ K be a homomorphism.
Then

dimK(M ⊗A K) ≥ dimQ(M ⊗A Q) .
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Proof. Let m be the kernel of ϕ. Then M ⊗A K ' Mm ⊗Am
K and M ⊗A Q '

Mm ⊗Am
Q. We can thus assume that A is a local ring with maximal ideal

m = ker(ϕ). As the dimension of a vector space is stable under base-change, we
can further assume that ϕ is surjective. Now if m1, . . . , mr form modulo m a
basis of M ⊗A K over K then by Nakayama’s Lemma ([9, Corollary 4.8]) they
generate the A-module M , thus they generate M ⊗A Q over Q. ut
Proof of Proposition 2. We keep the notations of the proposition. The propo-
sition follows from Lemma 3 applied to the multivariate polynomial ring A =

Z[{a(j)
i }], the ideal I = (G1, . . . , Gm), where G1, . . . , Gm with Gj =

∑

i a
(j)
i X i

and deg(Gj) = dj is a generic system of forms, and the specialization homomor-

phism ϕ : A −→ K sending a
(j)
i to the corresponding coefficient of Fj . (Note

that the quotient field of A is Q({a(j)
i }) which has characteristic 0.) ut

C A lemma on power series

The following lemma generalizes [10, Lemma 4]. For the convenience of the
reader, we include a proof.

Lemma 5. Let p(T ) be a power series with integer coefficients, let d ∈ N. Then

|(1 − T d)p(T )| = |(1 − T d)|p(T )|| .

Proof. Note that ((1−T d)p(T ))i = pi for i < d and ((1−T d)p(T ))i = pi − pi−d

for i ≥ d.
Thus the coefficients whose index is < d of both sides agree. Furthermore, if

pi < 0 for some i < d, then both sides are equal.
Let us assume that for all i = 0, . . . , d − 1, we have pi > 0.
If now for all i we have pi−pi−d > 0, then we also have pi > 0 for all i as can

easily be seen by induction on i. In this case, both sides agree with (1−T d)p(T ).
Assume that this is not the case and let a be the least natural number for

which pa − pa−d ≤ 0.
Then for each i < a, we have pi > 0 again by induction on i.
There are two cases: Either pa > 0. Then |p(T )|a−|p(T )|a−d = pa−pa−d < 0

by definition of a. Or pa ≤ 0. Then |p(T )|a − |p(T )|a−d = −pa−d < 0.
We conclude that for i ≤ d − 1, the i-th coefficient of both sides agrees with

pi, for d < i < a, the i-th coefficient of both sides agrees with pi − pi−d, and for
i ≥ a, the i-th coefficient of both sides is 0. ut
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