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Abstract. Edwards recently introduced a new normal form for elliptic
curves. Every elliptic curve over a non-binary field is birationally equiv-
alent to a curve in Edwards form over an extension of the field, and in
many cases over the original field.

This paper presents fast explicit formulas (and register allocations) for
group operations on an Edwards curve. The algorithm for doubling uses
only 3M + 4S, i.e., 3 field multiplications and 4 field squarings. If curve
parameters are chosen to be small then the algorithm for mixed addition
uses only 9M + 1S and the algorithm for non-mixed addition uses only
10M + 1S. Arbitrary Edwards curves can be handled at the cost of just
one extra multiplication by a curve parameter.

For comparison, the fastest algorithms known for the popular “a4 =
−3 Jacobian” form use 3M + 5S for doubling; use 7M + 4S for mixed
addition; use 11M + 5S for non-mixed addition; and use 10M + 4S for
non-mixed addition when one input has been added before.

The explicit formulas for non-mixed addition on an Edwards curve can
be used for doublings at no extra cost, simplifying protection against
side-channel attacks. Even better, many elliptic curves (approximately
1/4 of all isomorphism classes of elliptic curves over a non-binary finite
field) are birationally equivalent—over the original field—to Edwards
curves where this addition algorithm works for all pairs of curve points,
including inverses, the neutral element, etc.

This paper contains an extensive comparison of different forms of elliptic
curves and different coordinate systems for the basic group operations
(doubling, mixed addition, non-mixed addition, and unified addition) as
well as higher-level operations such as multi-scalar multiplication.
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1 Introduction

The core operations in elliptic-curve cryptography are single-scalar multiplica-
tion (m,P 7→ mP ), double-scalar multiplication (m,n, P,Q 7→ mP + nQ), etc.
Miller, in his Crypto ’85 paper introducing elliptic-curve cryptography, pro-
posed carrying out these operations on points represented in Jacobian form:
“Each point is represented by the triple (x, y, z) which corresponds to the point
(x/z2, y/z3)” on a curve y2 = x3 + a4x + a6. See [37, page 424]. One can add
two points using 16 field multiplications, specifically 11M+ 5S, with the fastest
algorithms known today; here we keep separate tallies of squarings S and general
multiplications M. A mixed addition— this means that one input has z = 1 —
takes only 7M+4S. A doubling takes 1M+8S+1D, where D denotes the cost
of multiplying by a4; a doubling takes 3M + 5S in the special case a4 = −3.

Several subsequent papers analyzed the performance of other forms of elliptic
curves proposed in the mathematical literature. See, e.g., [18] for the speed of
several dialects of the Weierstrass form, [34] for the speed of Jacobi intersections,
[28] for the speed of Hessians, and [9] for the speed of Jacobi quartics; see also
[38] and [23], which introduced the Montgomery and Doche/Icart/Kohel forms
and analyzed their speed. These alternate forms attracted some interest— in
particular, many of them simplify protection against side-channel attacks, and
the speed records in [7] for single-scalar multiplication were set with the Mont-
gomery form — but the Jacobian form remained the overall speed leader for
multi-scalar multiplication.

A new form for elliptic curves was added to the mathematical literature a few
months ago: Edwards showed in [25] that all elliptic curves over number fields
could be transformed to the shape x2 + y2 = c2(1 + x2y2), with (0, c) as neutral
element and with the surprisingly simple and symmetric addition law

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

c(1 + x1x2y1y2)
,

y1y2 − x1x2

c(1− x1x2y1y2)

)
.

Similarly, all elliptic curves over non-binary finite fields can be transformed to
Edwards form. Some elliptic curves require a field extension for the transfor-
mation, but some elliptic curves have transformations defined over the original
number field or finite field.

To capture a larger class of elliptic curves over the original field, we expand
the notion of Edwards form to include all curves x2 + y2 = c2(1 + dx2y2) where
cd(1 − dc4) 6= 0. More than 1/4 of all isomorphism classes of elliptic curves
over a finite field— for example, the curve “Curve25519” previously used to set
speed records for single-scalar multiplication —can be transformed to Edwards
curves over the same field. See §2 and §3 of this paper for further background
on Edwards curves.

Our main goal in this paper is to analyze the impact of Edwards curves upon
cryptographic applications. Our main conclusions are that the Edwards form
(1) breaks solidly through the Jacobian speed barrier, (2) is competitive with
the Montgomery form for single-scalar multiplication, and (3) is the new speed
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leader for multi-scalar multiplication. Specifically, we present explicit formulas
(i.e., sequences of additions, subtractions, and multiplications) that

• compute an addition (X1 : Y1 : Z1), (X2 : Y2 : Z2) 7→ (X1 : Y1 : Z1) + (X2 :
Y2 : Z2) using 10M + 1S + 1D— here D is the cost of multiplying by a
selectable curve parameter;

• compute a mixed addition (X1 : Y1 : Z1), (X2 : Y2 : 1) 7→ (X1 : Y1 :
Z1) + (X2 : Y2 : 1) using 9M + 1S + 1D; and

• compute a doubling (X1 : Y1 : Z1) 7→ 2(X1 : Y1 : Z1) using 3M + 4S.

See §4 for details of these computations; §5 for a comparison of these speeds
to the speeds of explicit formulas for Jacobian, Hessian, etc.; §6 and §7 for an
analysis of the resulting speeds of single-scalar multiplication and general multi-
scalar multiplication; and §8 for a discussion of side-channel attacks.

An Edwards curve with a unique point of order 2 has the extra feature that
the addition formulas are complete. This means that the formulas work for all
pairs of input points on the curve, with no exceptions for doubling, no exceptions
for the neutral element, no exceptions for negatives, etc. Some previous addi-
tion formulas have been advertised as unified formulas that can handle generic
doublings, simplifying protection against side-channel attacks; our addition for-
mulas are faster than previous unified formulas and have the stronger property
of completeness. See §3, §5, and §8 for further discussion.

Acknowledgments. We thank Harold M. Edwards for his comments and en-
couragement, and of course for finding the Edwards addition law in the first
place. We thank Marc Joye for suggesting using the curve equation to accelerate
the computation of the x-coordinate of 2P ; see §4.

2 Transformation to Edwards form

Fix a field k of characteristic different from 2. Let E be an elliptic curve over k
having a point of order 4. This section shows that some quadratic twist of E is
birationally equivalent over k to an Edwards curve: specifically, a curve of the
form x2 +y2 = 1+dx2y2 with d /∈ {0, 1}. (Perhaps this twist is E itself; perhaps
not.) §3 shows that the Edwards addition law on the Edwards curve corresponds
to the standard elliptic-curve addition law.

If E has a unique point of order 2 then some quadratic twist of E is bi-
rationally equivalent over k to an Edwards curve having non-square d. If k is
finite and E has a unique point of order 2 then the twist can be removed: E
is birationally equivalent over k to an Edwards curve having non-square d. §3
shows that the Edwards addition law is complete in this case.

All of these equivalences can be computed efficiently. The proof of Theorem
2.1 explicitly constructs d given a Weierstrass-form elliptic curve, and explicitly
maps points between the Weierstrass curve and the Edwards curve.

As an example, consider the elliptic curve published in [7] for fast scalar mul-
tiplication in Montgomery form, namely the elliptic curve v2 = u3+486662u2+u
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modulo p = 2255 − 19. This curve “Curve25519” is birationally equivalent over
Z/p to the Edwards curve x2 + y2 = 1 + (121665/121666)x2y2. The transforma-
tion is easy: simply define x =

√
486664u/v and y = (u − 1)/(u + 1); note that

486664 is a square modulo p. The inverse transformation is just as easy: simply
define u = (1 + y)/(1− y) and v =

√
486664u/x.

Every Edwards curve has a point of order 4; see §3. So it is natural to
consider elliptic curves having points of order 4. What about elliptic curves
that do not have points of order 4— for example, the NIST curves over prime
fields? Construct an extension field k′ of k such that E(k′), the group of points
of E defined over k′, has an element of order 4. Then replace k by k′ in Theorem
2.1 to see that some twist of E is birationally equivalent over k′ to an Edwards
curve defined over k′.

Theorem 2.1. Let k be a field in which 2 6= 0. Let E be an elliptic curve over
k such that the group E(k) has an element of order 4. Then

(1) there exists d ∈ k − {0, 1} such that the curve x2 + y2 = 1 + dx2y2 is
birationally equivalent over k to a quadratic twist of E;

(2) if E(k) has a unique element of order 2 then there is a nonsquare d ∈ k
such that the curve x2 + y2 = 1 + dx2y2 is birationally equivalent over k to
a quadratic twist of E; and

(3) if k is finite and E(k) has a unique element of order 2 then there is a non-
square d ∈ k such that the curve x2+y2 = 1+dx2y2 is birationally equivalent
over k to E.

Proof. Write E in long Weierstrass form s2 + a1rs + a3s = r3 + a2r
2 + a4r + a6.

Assume without loss of generality that a1 = 0 and a3 = 0; to handle the general
case, define s = s + (a1r + a3)/2.

Write P for the hypothesized point of order 4 on E. Assume without loss of
generality that 2P = (0, 0) and thus a6 = 0; to handle the general case, define
r = r − r2 where 2P = (r2, s2).

The elliptic curve E now has the form s2 = r3 + a2r
2 + a4r. Write P as

(r1, s1). The next step is to express a2 and a4 in terms of r1 and s1.
Note that s1 6= 0, as otherwise P has order 2. Consequently r1 6= 0. The

equation 2P = (0, 0) means that the tangent line to E at P passes through
(0, 0), i.e., that s1 − 0 = (r1 − 0)λ where λ is the tangent slope (3r2

1 + 2a2r1 +
a4)/2s1. Thus 3r3

1 + 2a2r
2
1 + a4r1 = 2s2

1. Also 2s2
1 = 2r3

1 + 2a2r
2
1 + 2a4r1 since

P is on the curve. Subtract to see that r3
1 = a4r1, i.e., r2

1 = a4. Furthermore
a2 = (s2

1 − r3
1 − a4r1)/r2

1 = s2
1/r2

1 − 2r1. Putting d = 1 − 4r3
1/s2

1 we obtain
a2 = 2((1 + d)/(1− d))r1.

Note that d 6= 1 since r1 6= 0. Note also that d 6= 0: otherwise the right hand
side of E’s equation would be r3 + a2r

2 + a4r = r3 + 2r1r
2 + r2

1r = r(r + r1)2,
contradicting the hypothesis that E is elliptic. Note also that if d is a square
then there is another point of order 2 in E(k), namely

(
r1(
√

d+1)/(
√

d− 1), 0
)
.

Consider two quadratic twists of E, namely the elliptic curves E′ and E′′

defined by (r1/(1−d))s2 = r3 +a2r
2 +a4r and (dr1/(1−d))s2 = r3 +a2r

2 +a4r.
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If k is finite and d is nonsquare then either r1/(1 − d) or dr1/(1 − d) is a
square in k so E is isomorphic to either E′ or E′′.

Substitute u = r/r1 and v = s/r1 to see that E′ is isomorphic to the elliptic
curve (1/(1− d))v2 = u3 + 2((1 + d)/(1− d))u2 + u and that E′′ is isomorphic
to (d/(1− d))v2 = u3 + 2((1 + d)/(1− d))u2 + u.

We now show that the curve x2 +y2 = 1+dx2y2 is birationally equivalent to
(1/(1− d))v2 = u3 + 2((1 + d)/(1− d))u2 + u, and therefore to E′. The rational
map (u, v) 7→ (x, y) is defined by x = 2u/v and y = (u−1)/(u+1); there are only
finitely many exceptional points with v(u + 1) = 0. The inverse rational map
(x, y) 7→ (u, v) is defined by u = (1+ y)/(1− y) and v = 2(1+ y)/(1− y)x; there
are only finitely many exceptional points with (1 − y)x = 0. A straightforward
calculation, included in [8], shows that the inverse rational map produces (u, v)
satisfying (1/(1− d))v2 = u3 + 2((1 + d)/(1− d))u2 + u.

Substitute 1/d for d and −u for u to see that x2 + y2 = 1 + (1/d)x2y2 is
birationally equivalent to the curve (1/(1− 1/d))v2 = (−u)3 + 2((1 + 1/d)/(1−
1/d))(−u)2 + (−u), i.e., to (d/(1 − d))v2 = u3 + 2((1 + d)/(1 − d))u2 + u, and
therefore to E′′.

To summarize: (1) The curve x2 +y2 = 1+dx2y2 is equivalent to a quadratic
twist E′ of E. (2) If E has a unique point of order 2 then d is a nonsquare and
x2 + y2 = 1 + dx2y2 is equivalent to a quadratic twist E′ of E. (3) If k is finite
and E has a unique point of order 2 then d is a nonsquare so E is isomorphic
to E′ or to E′′; thus E is birationally equivalent to x2 + y2 = 1 + dx2y2 or to
x2 + y2 = 1 + (1/d)x2y2. ut

Notes on isomorphisms. If d = dc4 then the curve x2 + y2 = 1 + dx2y2 is
isomorphic to the curve x2+y2 = c2(1+dx2y2): simply define x = cx and y = cy.
In particular, if k is a finite field, then at least 1/4 of the nonzero elements of k are
4th powers, so d/d is a 4th power for at least 1/4 of the choices of d ∈ k − {0};
the smallest qualifying d is typically extremely small. But for computational
purposes we do not recommend minimizing d as a general strategy: a small c is
more valuable than a small d. See §4.

3 The Edwards addition law

This section presents the Edwards addition law for an Edwards curve x2 + y2 =
c2(1+dx2y2). We show (1) that the Edwards addition law produces points on the
curve, (2) that the Edwards addition law corresponds to the standard addition
law on a birationally equivalent elliptic curve, and (3) that the Edwards addition
law is complete when d is not a square. Proofs appear at the end of the section.

Fix a field k of characteristic different from 2. Fix c, d ∈ k such that c 6= 0,
d 6= 0, and dc4 6= 1. Consider the Edwards addition law

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1− dx1x2y1y2)

)
on the Edwards curve x2 + y2 = c2(1 + dx2y2) over k.
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Examples: for each point P = (x1, y1) on the curve, P is the sum of (0, c) and
P , so (0, c) is a neutral element of the addition law; the only neutral element is
(0, c); (0, c) is the sum of P and −P = (−x1, y1); in particular, (0,−c) has order
2; (c, 0) and (−c, 0) have order 4.

The next theorem states that the output of the Edwards addition law is on
the curve when the output is defined, i.e., when dx1x2y1y2 /∈ {−1, 1}.

Theorem 3.1. Let k be a field in which 2 6= 0. Let c, d be nonzero elements of k
with dc4 6= 1. Let x1, y1, x2, y2 be elements of k such that x2

1 +y2
1 = c2(1+dx2

1y
2
1)

and x2
2 + y2

2 = c2(1 + dx2
2y

2
2). Assume that dx1x2y1y2 /∈ {−1, 1}. Define x3 =

(x1y2 + y1x2)/c(1 + dx1x2y1y2) and y3 = (y1y2 − x1x2)/c(1− dx1x2y1y2). Then
x2

3 + y2
3 = c2(1 + dx2

3y
2
3).

The next theorem states that the output of the Edwards addition law cor-
responds to the output of the standard addition law on a birationally equiva-
lent elliptic curve E. One can therefore perform group operations on E (or on
any other birationally equivalent elliptic curve) by performing the correspond-
ing group operations on the Edwards curve, at the expense of evaluating and
inverting the correspondence once for each series of computations.

Theorem 3.2. In the situation of Theorem 3.1, let e = 1 − dc4 and let E be
the elliptic curve (1/e)v2 = u3 + (4/e − 2)u2 + u. For each i ∈ {1, 2, 3} define
Pi as follows: Pi = ∞ if (xi, yi) = (0, c); Pi = (0, 0) if (xi, yi) = (0,−c); and
Pi = (ui, vi) if xi 6= 0, where ui = (c+yi)/(c−yi) and vi = 2c(c+yi)/(c−yi)xi.
Then Pi ∈ E(k) and P1 + P2 = P3.

Here P1 + P2 means the sum of P1 and P2 in the standard addition law on
E(k). Note that xi 6= 0 implies yi 6= c.

The group operations could encounter exceptional points where the Edwards
addition law is not defined. One can, in many applications, rely on randomization
to avoid the exceptional points, or one can switch from the Edwards curve back
to E when exceptional points occur.

The next theorem states that, when d is not a square, there are no exceptional
points: the denominators in the Edwards addition law cannot be zero. In other
words, when d is not a square, the Edwards addition law is complete: it is defined
for all pairs of input points on the Edwards curve over k. The set E(k), with the
standard addition law, is isomorphic as a group to the set of points (x1, y1) ∈ k×k
on the Edwards curve, with the Edwards addition law. The Edwards addition
law can carry out any sequence of group operations, without risk of failure.

Theorem 3.3. Let k be a field in which 2 6= 0. Let c, d, e be nonzero elements
of k with e = 1 − dc4. Assume that d is not a square in k. Let x1, y1, x2, y2 be
elements of k such that x2

1 + y2
1 = c2(1 + dx2

1y
2
1) and x2

2 + y2
2 = c2(1 + dx2

2y
2
2).

Then dx1x2y1y2 6= 1 and dx1x2y1y2 6= −1.

Example: d = 121665/121666 is not a square in the field k = Z/(2255 − 19).
The Edwards addition law is defined for all (x1, y1), (x2, y2) on the Edwards
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curve x2 + y2 = 1 + dx2y2 over k, and corresponds to the standard addition
law on “Curve25519,” the elliptic curve v2 = u3 + 486662u2 + u over k. The
point at ∞ on Curve25519 corresponds to the point (0, 1) on the Edwards curve;
the point (0, 0) on Curve25519 corresponds to (0,−1); any other point (u, v)
on Curve25519 corresponds to (

√
486664u/v, (u − 1)/(u + 1)); a sum of points

on Curve25519 corresponds to a sum of points on the Edwards curve. One can
therefore perform a sequence of group operations on points of the elliptic curve
v2 = u3 + 486662u2 + u by performing the same sequence of group operations
on the corresponding points of the Edwards curve.

The reader might wonder why [11, Theorem 1] (“The smallest cardinality of
a complete system of addition laws on E equals two”) does not force exceptional
cases in the addition law for the curve x2 +y2 = c2(1+dx2y2). The simplest an-
swer is that [11, Theorem 1] is concerned with exceptional cases in the algebraic
closure of k, whereas we are concerned with exceptional cases in k itself.

The reader might also wonder why we ignore the two projective points (0 : 1 :
0) and (1 : 0 : 0) on the Edwards curve. The answer is that, although these points
might at first glance appear to be defined over k, they are actually singularities
of the curve, and resolving the singularities produces four points that are defined
over k(

√
d), not over k.

Proof (of Theorem 3.1). The special case d = 1 is equivalent to [25, Theorem
8.1]. We could deduce the general case from the special case, but to keep this
paper self-contained we instead give a direct proof.

The first ingredient in the proof is a mechanically verifiable polynomial iden-
tity. Define T = (x1y2+y1x2)2(1−dx1x2y1y2)2+(y1y2−x1x2)2(1+dx1x2y1y2)2−
d(x1y2 + y1x2)2(y1y2 − x1x2)2. The identity says that T = (x2

1 + y2
1 − (x2

2 +
y2
2)dx2

1y
2
1)(x2

2 + y2
2 − (x2

1 + y2
1)dx2

2y
2
2).

The second ingredient is the curve equation, i.e., the hypotheses on (x1, y1)
and (x2, y2). Subtract the equation (x2

2 + y2
2)dx2

1y
2
1 = c2(1 + dx2

2y
2
2)dx2

1y
2
1 from

the equation x2
1 + y2

1 = c2(1 + dx2
1y

2
1) to see that x2

1 + y2
1 − (x2

2 + y2
2)dx2

1y
2
1 =

c2(1 − d2x2
1x

2
2y

2
1y2

2). Similarly x2
2 + y2

2 − (x2
1 + y2

1)dx2
2y

2
2 = c2(1 − d2x2

1x
2
2y

2
1y2

2).
Thus T = c4(1− d2x2

1x
2
2y

2
1y2

2)2.
The third ingredient is the Edwards addition law, i.e., the definition of

(x3, y3) in terms of x1, x2, y1, y2. We have x2
3 +y2

3− c2dx2
3y

2
3 = (x1y2+y1x2)

2

c2(1+dx1x2y1y2)2
+

(y1y2−x1x2)
2

c2(1−dx1x2y1y2)2
− c2d(x1y2+y1x2)

2(y1y2−x1x2)
2

c4(1+dx1x2y1y2)2(1−dx1x2y1y2)2
= T

c2(1+dx1x2y1y2)2(1−dx1x2y1y2)2
=

T
c2(1−d2x2

1x2
2y2

1y2
2)2

= c2. Thus x2
3 + y2

3 = c2(1 + dx2
3y

2
3) as claimed. ut

Proof (of Theorem 3.2). First we show that each Pi is in E(k). If (xi, yi) = (0, c)
then Pi = ∞ ∈ E(k). If (xi, yi) = (0,−c) then Pi = (0, 0) ∈ E(k). Otherwise
Pi = (ui, vi) ∈ E(k) by essentially the same calculations as in Theorem 2.1,
omitted here.

All that remains is to show that P1 +P2 = P3. There are several cases in the
standard addition law for E(k); the proof thus splits into several cases.

If (x1, y1) = (0, c) then (x3, y3) = (x2, y2). Now P1 is the point at infinity
and P2 = P3, so P1 + P2 = ∞ + P2 = P2 = P3. Similar comments apply if
(x2, y2) = (0, c). Assume from now on that (x1, y1) 6= (0, c) and (x2, y2) 6= (0, c).
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If (x3, y3) = (0, c) then (x2, y2) = (−x1, y1). If (x1, y1) = (0,−c) then also
(x2, y2) = (0,−c) and P1 = (0, 0) = P2; otherwise x1, x2 are nonzero so u1 =
(c + y1)/(c − y1) = u2 and v1 = 2cu1/x1 = −2cu2/x2 = −v2 so P1 = −P2. In
both cases P1 + P2 = ∞ = P3. Assume from now on that (x3, y3) 6= (0, c).

If (x1, y1) = (0,−c) then (x3, y3) = (−x2,−y2). Now (x2, y2) 6= (0,−c) (since
otherwise (x3, y3) = (0, c)) and (x2, y2) 6= (0, c) so x2 6= 0. Thus P1 = (0, 0) and
P2 = (u2, v2) with u2 = (c+y2)/(c−y2) and v2 = 2cu2/x2. The standard addition
law says that (0, 0) + (u2, v2) = (r3, s3) where r3 = (1/e)(v2/u2)2 − (4/e− 2)−
u2 = 1/u2 and s3 = (v2/u2)(−r3) = −v2/u2

2. Furthermore P3 = (u3, v3) with
u3 = (c + y3)/(c − y3) = (c − y2)/(c + y2) = 1/u2 = r3 and v3 = 2cu3/x3 =
−2c/u2x2 = −v2/u2

2 = s3. Thus P1 + P2 = P3. Similar comments apply if
(x2, y2) = (0,−c).

Assume from now on that x1 6= 0 and x2 6= 0. Then P1 = (u1, v1) with u1 =
(c+y1)/(c−y1) and v1 = 2cu1/x1, and P2 = (u2, v2) with u2 = (c+y2)/(c−y2)
and v2 = 2cu2/x2.

If (x3, y3) = (0,−c) then (x1, y1) = (x2,−y2) so u1 = (c + y1)/(c − y1) =
(c − y2)/(c + y2) = 1/u2 and v1 = 2cu1/x1 = v2/u2

2. Furthermore P3 = (0, 0)
so the standard addition law says as above that −P3 + P2 = (0, 0) + P2 =
(1/u2,−v2/u2

2) = (u1,−v1) = −P1, i.e., P1 + P2 = P3.
Assume from now on that x3 6= 0. Then P3 = (u3, v3) with u3 = (c+y3)/(c−

y3) and v3 = 2cu3/x3.
If P2 = −P1 then u2 = u1 and v2 = −v1, so x2 = −x1 and y2 = c(u2 −

1)/(u2 + 1) = c(u1 − 1)/(u1 + 1) = y1, so (x3, y3) = (0, c), which is already
handled above. Assume from now on that P2 6= −P1.

If u2 = u1 and v2 6= −v1 then the standard addition law says that (u1, v1) +
(u2, v2) = (r3, s3) where λ = (3u2

1 + 2(4/e− 2)u1 + 1)/((2/e)v1), r3 = (1/e)λ2 −
(4/e−2)−2u1, and s3 = λ(u1−r3)−v1. A straightforward calculation, included
in [8], shows that (r3, s3) = (u3, v3).

The only remaining case is that u2 6= u1. The standard addition law says
that (u1, v1) + (u2, v2) = (r3, s3) where λ = (v2 − v1)/(u2 − u1), r3 = (1/e)λ2 −
(4/e−2)−u1−u2, and s3 = λ(u1−r3)−v1. Another straightforward calculation,
included in [8], shows that (r3, s3) = (u3, v3).

Conclusion: P3 = P1 + P2 in every case. ut

Proof (of Theorem 3.3). Write ε = dx1x2y1y2. Suppose that ε ∈ {−1, 1}. Then
x1, x2, y1, y2 6= 0. Furthermore dx2

1y
2
1(x2

2 + y2
2) = c2(dx2

1y
2
1 + d2x2

1y
2
1x2

2y
2
2) =

c2(dx2
1y

2
1 + ε2) = c2(1 + dx2

1y
2
1) = x2

1 + y2
1 so

(x1 + εy1)2 = x2
1 + y2

1 + 2εx1y1 = dx2
1y

2
1(x2

2 + y2
2) + 2x1y1dx1x2y1y2

= dx2
1y

2
1(x2

2 + 2x2y2 + y2
2) = dx2

1y
2
1(x2 + y2)2.

If x2+y2 6= 0 then d = ((x1+εy1)/x1y1(x2+y2))2 so d is a square, contradiction.
Similarly, if x2 − y2 6= 0 then d = ((x1 − εy1)/x1y1(x2 − y2))2 so d is a square,
contradiction. If both x2 + y2 and x2 − y2 are 0 then x2 = 0 and y2 = 0,
contradiction. ut
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4 Efficient group operations in Edwards form

This section presents fast explicit formulas and register allocations for doubling,
mixed addition, etc. on Edwards curves with arbitrary parameters c, d.

As usual we count the number of operations in the underlying field. We
keep separate tallies of the number of general multiplications (each costing M),
squarings (each costing S), multiplications by c (each costing C), multiplications
by d (each costing D), and additions/subtractions (each costing a). The costs
M,S,C,D,a depend on the choice of platform, on the choice of finite field, and
on the choice of c and d.

Every Edwards curve can easily be transformed to an isomorphic Edwards
curve over the same field having c = 1 and thus C = 0; see “Notes on isomor-
phisms” in §2. In subsequent sections we assume that c = 1. However, we can
imagine applications in which c 6= 1 (for example, a curve with a fairly small c
and with d = 1 could have smaller C + D than an isomorphic curve with c = 1
and d = c4), so we allow arbitrary (c, d) in our explicit formulas.

Addition. To avoid the inversions in the original Edwards addition formulas,
we homogenize the curve equation to (X2 + Y 2)Z2 = c2(Z4 + dX2Y 2). A point
(X1 : Y1 : Z1) satisfying (X2

1 +Y 2
1 )Z2

1 = c2(Z4
1 +dX2

1Y 2
1 ) and Z1 6= 0 corresponds

to the affine point (X1/Z1, Y1/Z1). The neutral element is (0 : c : 1), and the
inverse of (X1 : Y1 : Z1) is (−X1 : Y1 : Z1).

The following formulas, given (X1 : Y1 : Z1) and (X2 : Y2 : Z2), compute the
sum (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2):

A = Z1 · Z2; B = A2; C = X1 ·X2; D = Y1 · Y2; E = d · C ·D;

F = B − E; G = B + E; X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D);

Y3 = A ·G · (D − C); Z3 = c · F ·G.

One readily counts 10M + 1S + 1C + 1D + 7a. We have saved operations here
by rewriting x1y2 + x2y1 as (x1 + y1)(x2 + y2)− x1x2 − y1y2 and by exploiting
common subexpressions.

The following specific sequence of operations starts with registers R1, R2, R3

containing X1, Y1, Z1 and registers R4, R5, R6 containing X2, Y2, Z2, uses just
two temporary registers R7, R8 and constants c, d, ends with registers R1, R2, R3

containing X3, Y3, Z3 and untouched registers R4, R5, R6 containing X2, Y2, Z2,
and uses 10M + 1S + 1C + 1D + 7a:

R3 ← R3 ·R6; R7 ← R1 + R2; R8 ← R4 + R5; R1 ← R1 ·R4; R2 ← R2 ·R5;

R7 ← R7 ·R8; R7 ← R7 −R1; R7 ← R7 −R2; R7 ← R7 ·R3; R8 ← R1 ·R2;

R8 ← d ·R8; R2 ← R2 −R1; R2 ← R2 ·R3; R3 ← R2
3; R1 ← R3 −R8;

R3 ← R3 + R8; R2 ← R2 ·R3; R3 ← R3 ·R1; R1 ← R1 ·R7; R3 ← c ·R3.

We emphasize that these formulas work whether or not (X1 : Y1 : Z1) = (X2 :
Y2 : Z2). There is no need to go to extra effort to unify the addition formulas
with separate doubling formulas; the addition formulas are already unified. If d
is not a square then the addition law works for all pairs of input points. See §3
for further discussion of the scope of validity of the addition formulas.
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As an alternative, one can obtain A(B−E) and A(B+E) and (B−E)(B+E)
as linear combinations of A2, B2, E2, (A + B)2, (A + E)2. This change replaces
10M+1S by 7M+5S, presumably saving time on platforms where S/M < 0.75.
Note that S/M ≈ 0.67 in [7].

Mixed addition. “Mixed addition” refers to the case that Z2 is known to be 1.
In this case the multiplication A = Z1 ·Z2 can be eliminated, reducing the total
costs to 9M + 1S + 1C + 1D + 7a.

Doubling. “Doubling” refers to the case that (X1 : Y1 : Z1) and (X2 : Y2 : Z2)
are known to be equal. In this case we rewrite c(1 + dx2

1y
2
1) as (x2

1 + y2
1)/c using

the curve equation, and we rewrite c(1− dx2
1y

2
1) as (2c2 − (x2

1 + y2
1))/c:

2(x1, y1) =
(

2x1y1

c(1 + dx2
1y

2
1)

,
y2
1 − x2

1

c(1− dx2
1y

2
1)

)
=

(
2x1y1c

x2
1 + y2

1

,
(y2

1 − x2
1)c

2c2 − (x2
1 + y2

1)

)
.

We thank Marc Joye for suggesting rewriting c(1+dx2
1y

2
1) as (x2

1+y2
1)/c. We save

further operations by rewriting 2x1y1 as (x1 + y1)2 − x2
1 − y2

1 and by exploiting
common subexpressions. The resulting formulas (with 2H computed as H + H)
use only 3M + 4S + 3C + 6a:

B = (X1 + Y1)
2; C = X2

1 ; D = Y 2
1 ; E = C + D; H = (c · Z1)

2;

J = E − 2H; X3 = c · (B − E) · J ; Y3 = c · E · (C −D); Z3 = E · J.

The following specific sequence of operations, starting with X1, Y1, Z1 in
registers R1, R2, R3, changes registers R1, R2, R3 to contain X3, Y3, Z3, using
3M + 4S + 3C + 6a and using just two temporary registers R4, R5:

R4 ← R1 + R2; R3 ← c ·R3; R1 ← R2
1; R2 ← R2

2; R3 ← R2
3; R4 ← R2

4;

R3 ← R3 + R3; R5 ← R1 + R2; R2 ← R1 −R2; R4 ← R4 −R5; R3 ← R5 −R3;

R1 ← R3 ·R4; R3 ← R3 ·R5; R2 ← R2 ·R5; R1 ← c ·R1; R2 ← c ·R2.

The following alternate sequence of operations uses one more addition, totalling
3M + 4S + 3C + 7a, but uses just one additional register R4:

R3 ← c ·R3; R4 ← R2
1; R1 ← R1 + R2; R1 ← R2

1; R2 ← R2
2; R3 ← R2

3; R3 ← 2R3;

R4 ← R2 + R4; R2 ← 2R2; R2 ← R4 −R2; R1 ← R1 −R4; R2 ← R2 ·R4;

R3 ← R4 −R3; R1 ← R1 ·R3; R3 ← R3 ·R4; R1 ← c ·R1; R2 ← c ·R2.

Another option is to scale (X3 : Y3 : Z3) to (X3/c : Y3/c : Z3/c), replacing
two multiplications by c with one multiplication by 1/c; typically 1/c can be
precomputed. Of course, all three multiplications by c can be skipped if c = 1.

Compression. Given x one can easily recover ±y =
√

(c2 − x2)/(1− c2dx2).

5 Comparison to previous addition speeds

This section compares the speeds of the algorithms in §4 to the speeds of previous
algorithms for elliptic-curve doubling, elliptic-curve mixed addition, etc. The
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next three sections perform similar comparisons for higher-level elliptic-curve
operations relevant to various cryptographic applications.

Level of detail of the comparison. We follow most of the literature in ignoring
the costs of additions, subtractions, and multiplications by small constants. We
recognize that these costs (and the costs of non-arithmetic operations) can be
quite noticeable in practice, and we plan a more detailed cost evaluation of the
Edwards form along the lines of [7], but for this paper we ignore the costs.

Consider, for example, the usual doubling algorithm for Jacobian coordinates
in the case a4 = −3: there are 4 squarings, 4 general multiplications, 5 additions
and subtractions, and 5 multiplications by the small constants 2, 3, 4, 8, 8. We
summarize these costs as 4M + 4S.

Some algorithms involve multiplications by curve parameters, such as the
parameter d in Edwards curves. Some applications can take advantage of multi-
plying by a constant d, and some applications can choose curves where d is small,
but other applications cannot. To cover both situations we separately tally the
cost D of multiplying by a curve parameter; the reader can substitute D = 0,
D = M, or anything in between.

Each of our tables includes a column “(1, 1)” that substitutes (S,D) ≈
(M,M), a column “(0.8, 0.5)” that substitutes (S,D) ≈ (0.8M, 0.5M), and a
column “(0.8, 0)” that substitutes (S,D) ≈ (0.8M, 0M). We sort each table us-
ing the standard, but debatable, approximations (S,D) ≈ (0.8M, 0M). We do
not claim that these approximations are valid for most applications. The order
of entries in our tables can easily be affected by small changes in the S/M ratio,
the D/M ratio, etc.

Algorithms in the literature. We have built an “Explicit-Formulas Database”
[8] containing, in computer-readable format, various algorithms for operations on
elliptic curves. EFD currently consists of 123 scripts for the Magma computer-
algebra system checking the correctness of algorithms for elliptic curves in the
following forms:

• Projective: A point (x, y) on an elliptic curve y2 = x3 + ax + b, with
neutral element at infinity, is represented as (X : Y : Z) satisfying Y 2Z =
X3 + aXZ2 + bZ3. Here (X : Y : Z) = (λX : λY : λZ) for all nonzero λ.

• Jacobian: A point (x, y) on an elliptic curve y2 = x3 + ax + b, with neutral
element at infinity, is represented as (X : Y : Z) satisfying Y 2 = X3 +
aXZ4 + bZ6. Here (X : Y : Z) = (λ2X : λ3Y : λZ) for all nonzero λ.

• Jacobi quartic (with leading and trailing coefficients 1): A point (x, y) on
an elliptic curve y2 = x4+2ax2+1, with neutral element (0, 1), is represented
as (X : Y : Z) satisfying Y 2 = X4 + 2aX2Z2 + Z4. Here (X : Y : Z) =
(λX : λ2Y : λZ) for all nonzero λ.

• Jacobi intersection: A point (s, c, d) on an elliptic curve s2 + c2 = 1,
as2 + d2 = 1, with neutral element (0, 1, 1), is represented as (S : C : D : Z)
satisfying S2 + C2 = Z2, aS2 + D2 = Z2. Here (S : C : D : Z) = (λS : λC :
λD : λZ) for all nonzero λ.
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• Hessian: A point (x, y) on an elliptic curve x3 +y3 +1 = 3axy, with neutral
element at infinity, is represented as (X : Y : Z) satisfying X3 + Y 3 + Z3 =
3aXY Z. Here (X : Y : Z) = (λX : λY : λZ) for all nonzero λ.

• Doubling-oriented Doche/Icart/Kohel: A point (x, y) on an elliptic
curve y2 = x3 + ax2 + 16ax, with neutral element at infinity, is represented
as (X : Y : Z : Z2) satisfying Y 2 = ZX3 + aZ2X2 + 16aZ3X. Here (X : Y :
Z : Z2) = (λX : λ2Y : λZ : λ2Z2) for all nonzero λ.

• Tripling-oriented Doche/Icart/Kohel: A point (x, y) on an elliptic curve
y2 = x3 + 3a(x + 1)2, with neutral element at infinity, is represented as
(X : Y : Z : Z2) satisfying Y 2 = X3 + 3aZ2(X + Z2)2. Here (X : Y : Z :
Z2) = (λ2X : λ3Y : λZ : λ2Z2) for all nonzero λ.

• Edwards (with c = 1): A point (x, y) on an elliptic curve x2 + y2 = 1 +
dx2y2, with neutral element (0, 1), is represented as (X : Y : Z) satisfying
(X2 + Y 2)Z2 = Z4 + dX2Y 2. Here (X : Y : Z) = (λX : λY : λZ) for all
nonzero λ.

We copied formulas from several sources in the literature; see [24] for an
overview. One particularly noteworthy source is the 1986 paper [16] by Chud-
novsky and Chudnovsky, containing formulas and operation counts for several
forms of elliptic curves: projective, Jacobian, Jacobi quartic, Jacobi intersec-
tion, and Hessian. Liardet and Smart in [34] presented faster algorithms for
Jacobi intersections. Billet and Joye in [9] presented faster algorithms for Ja-
cobi quartics. Joye and Quisquater in [28] pointed out that the Hessian addition
formulas (dating back to Sylvester) could also be used for doublings after a per-
mutation of input coordinates, providing a weak form of unification: specifically,
2(X1 : Y1 : Z1) = (Z1 : X1 : Y1)+(Y1 : Z1 : X1). Brier and Joye in [13] presented
unified addition formulas for projective (and affine) coordinates; see also [12]. Of
course, we also include our own algorithms for Edwards curves.

Chudnovsky and Chudnovsky also pointed out, in the case of Jacobian coor-
dinates, that readdition of a point is less expensive than the first addition. The
addition formulas for (X1 : Y1 : Z1) + (X2 : Y2 : Z2) use 1M + 1S to compute
Z2

2 and Z3
2 ; by caching Z2

2 and Z3
2 one can save 1M + 1S in computing any

(X ′ : Y ′ : Z ′) + (X2 : Y2 : Z2). We comment that similar savings are possible for
Jacobi intersections and Jacobi quartics.

(Rather than distinguishing readditions from initial additions, Chudnovsky
and Chudnovsky reported speeds for addition and doubling of points represented
as (X : Y : Z : Z2 : Z3). But this representation is wasteful, as pointed out by
Cohen, Miyaji, and Ono in [18]: if (X1 : Y1 : Z1) is used only for a doubling
and not for a general addition then there is no need to compute Z3

1 . Some-
times coordinates (X : Y : Z : Z2 : Z3) are called “Chudnovsky coordinates”
or “Chudnovsky-Jacobian coordinates,” and computing Z2 and Z3 only when
they are needed is called “mixing Chudnovsky coordinates with Jacobian coor-
dinates.” We prefer to describe the same speedup using the simpler concept of
readditions.)

Our operation counts for previous systems are often better than the operation
counts reported in the literature. One reason is that a multiplication can often
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be replaced with a squaring, saving M − S. For example, as pointed out in [5,
pages 16–17], Jacobian doubling with a = −3 uses 3M + 5S rather than the
usual 4M + 4S. As another example, Doche/Icart/Kohel doubling uses 2M +
5S + 2D rather than 3M + 4S + 2D. The Explicit-Formulas Database contains
full justification for each of our operation counts.

Comparison charts. The following table reports speeds for addition of two
points:

System ADD (1, 1) (0.8, 0.5) (0.8, 0)
Doche/Icart/Kohel 2 12M + 5S + 1D 18M 16.5M 16M
Doche/Icart/Kohel 3 11M + 6S + 1D 18M 16.3M 15.8M
Jacobian 11M + 5S 16M 15M 15M
Jacobi intersection 13M + 2S + 1D 16M 15.1M 14.6M
Projective 12M + 2S 14M 13.6M 13.6M
Jacobi quartic 10M + 3S + 1D 14M 12.9M 12.4M
Hessian 12M 12M 12M 12M
Edwards 10M + 1S + 1D 12M 11.3M 10.8M

Readdition of a point already used in an addition:
System reADD (1, 1) (0.8, 0.5) (0.8, 0)
Doche/Icart/Kohel 2 12M + 5S + 1D 18M 16.5M 16M
Doche/Icart/Kohel 3 10M + 6S + 1D 17M 15.3M 14.8M
Projective 12M + 2S 14M 13.6M 13.6M
Jacobian 10M + 4S 14M 13.2M 13.2M
Jacobi intersection 11M + 2S + 1D 14M 13.1M 12.6M
Hessian 12M 12M 12M 12M
Jacobi quartic 9M + 3S + 1D 13M 11.9M 11.4M
Edwards 10M + 1S + 1D 12M 11.3M 10.8M

Mixed addition (i.e., addition assuming that Z2 = 1):
System mADD (1, 1) (0.8, 0.5) (0.8, 0)
Jacobi intersection 11M + 2S + 1D 14M 13.1M 12.6M
Doche/Icart/Kohel 2 8M + 4S + 1D 13M 11.7M 11.2M
Projective 9M + 2S 11M 10.6M 10.6M
Jacobi quartic 8M + 3S + 1D 12M 10.9M 10.4M
Doche/Icart/Kohel 3 7M + 4S + 1D 12M 10.7M 10.2M
Jacobian 7M + 4S 11M 10.2M 10.2M
Hessian 10M 10M 10M 10M
Edwards 9M + 1S + 1D 11M 10.3M 9.8M

Doubling:
System DBL (1, 1) (0.8, 0.5) (0.8, 0)
Projective 5M + 6S + 1D 12M 10.3M 9.8M
Projective if a = −3 7M + 3S 10M 9.4M 9.4M
Hessian 7M + 1S 8M 7.8M 7.8M
Doche/Icart/Kohel 3 2M + 7S + 2D 11M 8.6M 7.6M
Jacobian 1M + 8S + 1D 10M 7.9M 7.4M
Jacobian if a = −3 3M + 5S 8M 7M 7M
Jacobi quartic 2M + 6S + 2D 10M 7.8M 6.8M
Jacobi intersection 3M + 4S 7M 6.2M 6.2M
Edwards 3M + 4S 7M 6.2M 6.2M
Doche/Icart/Kohel 2 2M + 5S + 2D 9M 7M 6M

Unified addition:
System UNI (1, 1) (0.8, 0.5) (0.8, 0)
Projective 11M + 6S + 1D 18M 16.3M 15.8M
Projective if a = −1 13M + 3S 16M 15.4M 15.4M
Jacobi intersection 13M + 2S + 1D 16M 15.1M 14.6M
Jacobi quartic 10M + 3S + 1D 14M 12.9M 12.4M
Hessian 12M 12M 12M 12M
Edwards 10M + 1S + 1D 12M 11.3M 10.8M

Most of the addition formulas in this last table are strongly unified : they work
without change for doublings. The Hessian addition algorithm is an exception: it
works for doublings only after a permutation of input coordinates. As mentioned
earlier, the addition algorithm for Edwards curves with non-square d has the
stronger feature of being complete: it works without change for all inputs.
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6 Single-scalar variable-point multiplication

This section compares Edwards curves to previous curve forms for single-scalar
variable-point multiplication: computing nP given an integer n and a curve
point P . This is one of the critical computations in elliptic-curve cryptography;
for example, if n is a secret key and P is another user’s public key then nP is a
Diffie-Hellman secret shared between the two users. The next section considers
variations of the same problem: fixed points P (allowing precomputation of, e.g.,
2128P ), more scalars and points, etc.

See [2] and [22] for surveys of the classic algorithms for scalar multiplication.
We focus on “signed sliding window” algorithms, specifically with “window width
1” (also known as “non-adjacent form” or “NAF”) or “window width 4.” We
also discuss the “Montgomery ladder.”

We make the standard assumption that the input point P has Z = 1. All
additions of P can thus be computed as mixed additions. By scaling other points
to have Z = 1 one can create more mixed additions at the expense of extra field
inversions; for the sake of simplicity we ignore this option in our comparison.

The NAF algorithm, for an average b-bit scalar n, uses approximately b
doublings and approximately (1/3)b mixed additions. So we tally the cost of 1
doubling and 1/3 mixed additions:

System 1 DBL, 1/3 mADD (1, 1) (0.8, 0.5) (0.8, 0)
Projective 8M + 6.67S + 1D 15.7M 13.8M 13.3M
Projective if a = −3 10M + 3.67S 13.7M 12.9M 12.9M
Hessian 10.3M + 1S 11.3M 11.1M 11.1M
Doche/Icart/Kohel 3 4.33M + 8.33S + 2.33D 15M 12.2M 11M
Jacobian 3.33M + 9.33S + 1D 13.7M 11.3M 10.8M
Jacobian if a = −3 5.33M + 6.33S 11.7M 10.4M 10.4M
Jacobi intersection 6.67M + 4.67S + 0.333D 11.7M 10.6M 10.4M
Jacobi quartic 4.67M + 7S + 2.33D 14M 11.4M 10.3M
Doche/Icart/Kohel 2 4.67M + 6.33S + 2.33D 13.3M 10.9M 9.73M
Edwards 6M + 4.33S + 0.333D 10.7M 9.63M 9.47M

The “signed width-4 sliding windows” algorithm involves, on average, approx-
imately b − 4.5 doublings, 7b/48 + 5.2 readditions, b/48 + 0.9 mixed additions,
and 0.9 non-mixed additions; e.g., approximately 251.5 doublings, 42.5 readdi-
tions, 6.3 mixed additions, and 0.9 non-mixed additions for b = 256. (Different
variants of the algorithm have slightly different costs; we chose one variant and
measured it for 10000 uniform random 256-bit integers n.) So we tally the cost
of 251.5/256 ≈ 0.98 doublings, 42.5/256 ≈ 0.17 readditions, 6.3/256 ≈ 0.025
mixed additions, and 0.9/256 ≈ 0.0035 non-mixed additions:

System 0.98 DBL, 0.17 reADD, etc. (1, 1) (0.8, 0.5) (0.8, 0)
Projective 7.17M + 6.28S + 0.982D 14.4M 12.7M 12.2M
Projective if a = −3 9.13M + 3.34S 12.5M 11.8M 11.8M
Doche/Icart/Kohel 3 3.84M + 7.99S + 2.16D 14M 11.3M 10.2M
Hessian 9.16M + 0.982S 10.1M 9.94M 9.94M
Jacobian 2.85M + 8.64S + 0.982D 12.5M 10.3M 9.77M
Jacobian if a = −3 4.82M + 5.69S 10.5M 9.37M 9.37M
Doche/Icart/Kohel 2 4.2M + 5.86S + 2.16D 12.2M 9.96M 8.88M
Jacobi quartic 3.69M + 6.48S + 2.16D 12.3M 9.95M 8.87M
Jacobi intersection 5.09M + 4.32S + 0.194D 9.6M 8.64M 8.54M
Edwards 4.86M + 4.12S + 0.194D 9.18M 8.26M 8.16M

Another approach to high-speed single-scalar multiplication is Montgomery’s
algorithm in [38] for x-coordinate operations on curves in Montgomery form
y2 = x3 +ax2 +x. This algorithm does not support fast addition P,Q 7→ P +Q,
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does not support arbitrary addition chains, and does not fit into our previous
tables; but it does support fast “differential addition” P −Q,P,Q 7→ P +Q, and
therefore fast computation of “differential addition-subtraction chains.”

In particular, the “Montgomery ladder” uses 5M + 4S + 1D per bit of n
to compute P 7→ nP . For comparison, the NAF algorithm for Edwards curves
with our formulas takes 6M + 4.33S + 0.333D per bit of n, clearly slower than
5M + 4S + 1D per bit. But signed width-4 sliding windows take only 4.86M +
4.12S + 0.194D per bit for b = 256, saving 0.14M − 0.12S + 0.806D per bit.
Note that Edwards form is less sensitive to a large D than Montgomery form.
Larger b’s favor larger window widths, reducing the number of additions per bit
and making Edwards curves even more attractive.

7 Multiple scalars, fixed points, etc.

General multi-scalar multiplication means computing
∑

niPi given integers ni

and curve points Pi. Specific tasks are obtained by specifying the number of
points, by specifying which points are known in advance, by specifying which
integers are known in advance, etc. See generally [2] and [22].

We focus on four specific algorithms: the popular “joint sparse form” (“JSF”)
algorithm for computing n1P1+n2P2, given b-bit integers n1, n2 and curve points
P1, P2; the accelerated ECDSA verification algorithm in [1, page 9]; batch veri-
fication of elliptic-curve signatures, using the “Small Exponents Test” from [4,
§3.3] and the multi-scalar multiplication algorithm that de Rooij in [20, §4]
credits to Bos and Coster; and computation of nP for a fixed point P , using
a standard “comb” table containing 90 precomputed multiples of P , essentially
2{0,1,2,3,4,5}b/6({0, 1}P +{0, 1}2b/24P +{0, 1}22b/24P +{0, 1}23b/24P ), normalized
to have Z = 1.

The JSF algorithm uses about b doublings, about (1/4)b mixed additions (for
average n1, n2), and about (1/4)b readditions. So we tally the cost of 1 doubling,
1/4 mixed additions, and 1/4 readditions:

System 1 DBL, 1/4 mADD, 1/4 reADD (1, 1) (0.8, 0.5) (0.8, 0)
Projective 10.2M + 7S + 1D 18.2M 16.4M 15.8M
Projective if a = −3 12.2M + 4S 16.2M 15.4M 15.4M
Doche/Icart/Kohel 3 6.25M + 9.5S + 2.5D 18.2M 15.1M 13.8M
Hessian 12.5M + 1S 13.5M 13.3M 13.3M
Jacobian 5.25M + 10S + 1D 16.2M 13.8M 13.2M
Jacobian if a = −3 7.25M + 7S 14.2M 12.8M 12.8M
Doche/Icart/Kohel 2 7M + 7.25S + 2.5D 16.8M 14.1M 12.8M
Jacobi intersection 8.5M + 5S + 0.5D 14M 12.8M 12.5M
Jacobi quartic 6.25M + 7.5S + 2.5D 16.2M 13.5M 12.2M
Edwards 7.75M + 4.5S + 0.5D 12.8M 11.6M 11.3M

The accelerated ECDSA verification algorithm uses about (1/3)b doublings,
about (1/4)b mixed additions, and about (1/4)b readditions. So we tally the cost
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of 1/3 doublings, 1/4 mixed additions, and 1/4 readditions:

System 1/3 DBL, 1/4 mADD, 1/4 reADD (1, 1) (0.8, 0.5) (0.8, 0)
Projective 6.92M + 3S + 0.333D 10.2M 9.48M 9.32M
Projective if a = −3 7.58M + 2S 9.58M 9.18M 9.18M
Doche/Icart/Kohel 2 5.67M + 3.92S + 1.17D 10.7M 9.38M 8.8M
Doche/Icart/Kohel 3 4.92M + 4.83S + 1.17D 10.9M 9.37M 8.78M
Jacobi intersection 6.5M + 2.33S + 0.5D 9.33M 8.62M 8.37M
Jacobian 4.58M + 4.67S + 0.333D 9.58M 8.48M 8.32M
Jacobian if a = −3 5.25M + 3.67S 8.92M 8.18M 8.18M
Hessian 7.83M + 0.333S 8.17M 8.1M 8.1M
Jacobi quartic 4.92M + 3.5S + 1.17D 9.58M 8.3M 7.72M
Edwards 5.75M + 1.83S + 0.5D 8.08M 7.47M 7.22M

The batch-verification algorithm is not as well known as it should be, so
we summarize it here for one variant of the ElGamal signature system. Fix
a hash function H and a base point B on an elliptic curve over a 256-bit
field. Define (R, s) as a signature of a message m under a public key K if
R,K are curve points, s is a 256-bit integer, and sB = H(R,m)R + K. The
batch-verification algorithm is given (e.g.) 100 alleged signatures (Ri, si) of 100
messages mi under 100 keys Ki. The algorithm checks the equations siB =
H(Ri,mi)Ri +Ki by choosing random 128-bit integers vi and checking that the
combination (

∑
i visi)B −

∑
i viH(Rimi)Ri −

∑
i viKi is zero. Computing this

combination—a 201-scalar multiplication with 101 256-bit scalars and 100 128-
bit scalars — takes about 0.8·256 mixed additions and about 24.4·256 readditions
with the Bos-Coster algorithm. So we tally the cost of 0.8 mixed additions and
24.4 readditions:

System 0.8 mADD, 24.4 reADD (1, 1) (0.8, 0.5) (0.8, 0)
Doche/Icart/Kohel 2 299M + 125S + 25.2D 450M 412M 399M
Doche/Icart/Kohel 3 250M + 150S + 25.2D 424M 382M 369M
Projective 300M + 50.4S 350M 340M 340M
Jacobian 250M + 101S 350M 330M 330M
Jacobi intersection 277M + 50.4S + 25.2D 353M 330M 318M
Hessian 301M 301M 301M 301M
Jacobi quartic 226M + 75.6S + 25.2D 327M 299M 286M
Edwards 251M + 25.2S + 25.2D 302M 284M 271M

The 90-point-comb algorithm computes a b-bit fixed-point single-scalar mul-
tiplication as a 24-scalar multiplication with about b/24 doublings and about
15b/64 = 5.625(b/24) mixed additions. So we tally the cost of 1/24 doublings
and 15/64 mixed additions:

System 1/24 DBL, 15/64 mADD (1, 1) (0.8, 0.5) (0.8, 0)
Jacobi intersection 2.7M + 0.635S + 0.234D 3.57M 3.33M 3.21M
Projective 2.32M + 0.719S + 0.0417D 3.08M 2.91M 2.89M
Projective if a = −3 2.4M + 0.594S 2.99M 2.88M 2.88M
Doche/Icart/Kohel 2 1.96M + 1.15S + 0.318D 3.42M 3.03M 2.88M
Jacobi quartic 1.96M + 0.953S + 0.318D 3.23M 2.88M 2.72M
Doche/Icart/Kohel 3 1.72M + 1.23S + 0.318D 3.27M 2.87M 2.71M
Jacobian 1.68M + 1.27S + 0.0417D 2.99M 2.72M 2.7M
Jacobian if a = −3 1.77M + 1.15S 2.91M 2.68M 2.68M
Hessian 2.64M + 0.0417S 2.68M 2.67M 2.67M
Edwards 2.23M + 0.401S + 0.234D 2.87M 2.67M 2.56M

Montgomery’s x-coordinate algorithm in [38] can also be used for multi-
scalar multiplication, but does not seem to provide competitive performance as
the number of scalars increases, despite recent differential-addition-chain im-
provements in [6] and [14].
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8 Countermeasures against side-channel attacks

The scalar-multiplication algorithms discussed in §6 and §7 are often unaccept-
able for cryptographic hardware and embedded systems. Many secret bits of the
integers ni are leaked, through the pattern of doublings and mixed additions
and non-mixed additions, to side-channel attacks such as simple power analysis.
See generally [27], [33], and [36].

One response is to use a fixed pattern of doublings, mixed additions, etc.,
independent of the integers ni. Another response is to hide the pattern of dou-
blings, mixed additions, etc. Some of these responses still leak the Hamming
weight in the single-scalar case, and the total number of operations in the gen-
eral case, but this information can be shielded at low cost in other ways. Of
course, at a lower level, field operations must be individually shielded. In par-
ticular, an operation counted as M must be carried out by a multiplication unit
whose time, power consumption, etc. do not depend on the inputs. Even if the
inputs happen to be the same, and even if a faster squaring unit is available,
the multiplication must not be carried out by the squaring unit. An operation
counted as S can be carried out by a faster squaring unit whose time, power
consumption, etc. do not depend on the input.

We focus on four specific side-channel countermeasures: non-sliding win-
dows with digits {1, 2, 3, 4, 5, 6, 7, 8}; signed width-4 sliding windows with unified
addition-or-doubling formulas; width-4 sliding windows with atomic blocks; and
the Montgomery ladder. For concreteness we consider two examples of primi-
tives: first single-scalar multiplication and then triple-scalar multiplication. Ex-
tra scalars produce extra additions, reducing the importance of doublings, as in
§7; in particular, extra scalars make unified formulas more attractive.

We also discuss differential attacks at the end of the section.

Single-scalar multiplication. Non-sliding windows with digits {1, 2, 3, . . . , 8}
use, on average, approximately b−1.9 doublings and b/3+6 readditions for single-
scalar multiplication: e.g., 254.1 doublings and 91.4 readditions for b = 256. So
we tally the cost of 254.1/256 ≈ 0.99 doublings and 91.4/256 ≈ 0.36 readditions:

System 0.99 DBL, 0.36 reADD (1, 1) (0.8, 0.5) (0.8, 0)
Projective 9.27M + 6.66S + 0.99D 16.9M 15.1M 14.6M
Projective if a = −3 11.2M + 3.69S 14.9M 14.2M 14.2M
Doche/Icart/Kohel 3 5.58M + 9.09S + 2.34D 17M 14M 12.9M
Jacobian 4.59M + 9.36S + 0.99D 14.9M 12.6M 12.1M
Hessian 11.2M + 0.99S 12.2M 12M 12M
Doche/Icart/Kohel 2 6.3M + 6.75S + 2.34D 15.4M 12.9M 11.7M
Jacobian if a = −3 6.57M + 6.39S 13M 11.7M 11.7M
Jacobi quartic 5.22M + 7.02S + 2.34D 14.6M 12M 10.8M
Jacobi intersection 6.93M + 4.68S + 0.36D 12M 10.9M 10.7M
Edwards 6.57M + 4.32S + 0.36D 11.2M 10.2M 10M

Signed width-4 sliding windows with unified addition-or-doubling formulas
use, on average, 7b/6+2.5 unified operations for single-scalar multiplication: e.g.,
301.2 unified operations for b = 256. So we tally the cost of 301.2/256 ≈ 1.18
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unified operations:

System 1.18 UNI (1, 1) (0.8, 0.5) (0.8, 0)
Projective 13M + 7.08S + 1.18D 21.2M 19.2M 18.6M
Projective if a = −1 15.3M + 3.54S 18.9M 18.2M 18.2M
Jacobi intersection 15.3M + 2.36S + 1.18D 18.9M 17.8M 17.2M
Jacobi quartic 11.8M + 3.54S + 1.18D 16.5M 15.2M 14.6M
Hessian 14.2M 14.2M 14.2M 14.2M
Edwards 11.8M + 1.18S + 1.18D 14.2M 13.3M 12.7M

Next we consider signed width-4 sliding windows with atomic blocks. In [15],
Chevallier-Mames, Ciet, and Joye presented Jacobian-coordinate formulas using
10 atomic blocks for doubling and 16 atomic blocks for addition. Each block
costs 1M and consists of one field multiplication, one field addition, one field
negation, and another field addition; many of the additions and negations are
dummy operations. Barbosa and Page in [3] presented automatic tools that turn
arbitrary explicit formulas using mM + sS into formulas using m + s atomic
blocks, each consisting of one field multiplication and some number of field ad-
ditions and negations, thus costing 1M. So we tally the cost of 0.98 doublings,
0.17 readditions, 0.025 mixed additions, and 0.0035 non-mixed additions, as in
§6, except that we insist on S = M:

System 0.98 DBL, 0.17 reADD, etc., S = M (1, 1) (1, 0)
Projective 13.5M + 0.982D 14.4M 13.5M
Projective if a = −3 12.5M 12.5M 12.5M
Doche/Icart/Kohel 3 11.8M + 2.16D 14M 11.8M
Jacobian 11.5M + 0.982D 12.5M 11.5M
Jacobian if a = −3 10.5M 10.5M 10.5M
Jacobi quartic 10.2M + 2.16D 12.3M 10.2M
Hessian 10.1M 10.1M 10.1M
Doche/Icart/Kohel 2 10.1M + 2.16D 12.2M 10.1M
Jacobi intersection 9.41M + 0.194D 9.6M 9.41M
Edwards 8.99M + 0.194D 9.18M 8.99M

The Montgomery ladder for single-scalar multiplication naturally uses a fixed
double-add pattern costing only 5M+4S+1D per bit. This combination of side-
channel resistance and high speed has already attracted interest; see, e.g., [13,
§4], [29], and [7].

We comment that, in some situations, the dummy operations in atomic blocks
can be detected by fault attacks. Non-sliding windows (with nonzero digits),
unified formulas, and the Montgomery ladder have the virtue of avoiding dummy
operations.

Triple-scalar multiplication. Non-sliding windows with digits {1, 2, 3, . . . , 8}
use approximately 0.99 doublings and 1.08 readditions per bit for triple-scalar
multiplication:

System 0.99 DBL, 1.08 reADD (1, 1) (0.8, 0.5) (0.8, 0)
Projective 17.9M + 8.1S + 0.99D 27M 24.9M 24.4M
Projective if a = −3 19.9M + 5.13S 25M 24M 24M
Doche/Icart/Kohel 3 12.8M + 13.4S + 3.06D 29.2M 25M 23.5M
Doche/Icart/Kohel 2 14.9M + 10.3S + 3.06D 28.4M 24.8M 23.2M
Jacobian 11.8M + 12.2S + 0.99D 25M 22.1M 21.6M
Jacobian if a = −3 13.8M + 9.27S 23M 21.2M 21.2M
Hessian 19.9M + 0.99S 20.9M 20.7M 20.7M
Jacobi intersection 14.9M + 6.12S + 1.08D 22.1M 20.3M 19.7M
Jacobi quartic 11.7M + 9.18S + 3.06D 23.9M 20.6M 19M
Edwards 13.8M + 5.04S + 1.08D 19.9M 18.3M 17.8M
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Signed width-4 sliding windows with unified addition-or-doubling formulas
use approximately 1.54 unified operations per bit:

System 1.54 UNI (1, 1) (0.8, 0.5) (0.8, 0)
Projective 16.9M + 9.24S + 1.54D 27.7M 25.1M 24.3M
Projective if a = −1 20M + 4.62S 24.6M 23.7M 23.7M
Jacobi intersection 20M + 3.08S + 1.54D 24.6M 23.3M 22.5M
Jacobi quartic 15.4M + 4.62S + 1.54D 21.6M 19.9M 19.1M
Hessian 18.5M 18.5M 18.5M 18.5M
Edwards 15.4M + 1.54S + 1.54D 18.5M 17.4M 16.6M

Signed width-4 sliding windows with atomic blocks use approximately 0.98
doublings and 0.56 readditions per bit:

System 0.98 DBL, 0.56 reADD, S = M (1, 1) (1, 0)
Projective 18.6M + 0.98D 19.6M 18.6M
Doche/Icart/Kohel 3 17.8M + 2.52D 20.3M 17.8M
Projective if a = −3 17.6M 17.6M 17.6M
Jacobian 16.7M + 0.98D 17.6M 16.7M
Doche/Icart/Kohel 2 16.4M + 2.52D 18.9M 16.4M
Jacobian if a = −3 15.7M 15.7M 15.7M
Jacobi quartic 14.6M + 2.52D 17.1M 14.6M
Hessian 14.6M 14.6M 14.6M
Jacobi intersection 14.1M + 0.56D 14.7M 14.1M
Edwards 13M + 0.56D 13.6M 13M

The Montgomery ladder can be generalized to a multi-scalar multiplication
method using a fixed pattern of doublings and additions, as discussed in [6] and
[14], but the performance of the generalization degrades rapidly as the number
of scalars increases, as mentioned in §7.

Countermeasures against differential and correlation side-channel at-
tacks. Curves in Edwards form are compatible with countermeasures against
differential and correlation side-channel attacks:

• Randomized representations of scalars as addition-subtraction chains; see,
e.g., [42] and [34, §4]. Our point representation supports arbitrary additions
and subtractions.

• Randomized scalars; see, e.g., [19, §5.1].
• Randomized coordinates; see, e.g., [19, §5.3]. Our point representation is

redundant and can be scaled freely: (X1 : Y1 : Z1) = (λX1 : λY1 : λZ1) for
any λ 6= 0.

• Randomized points, for example computing nP as n(P + Q) − nQ; see,
e.g., [19, §5.2]. Our point representation supports arbitrary additions and
subtractions.

• Randomized curves; see, e.g., [33, §29.2]. Using the generalized addition law
involving c and d one can easily transfer the computation to an isomorphic
curve with c̄ and d̄ satisfying dc4 = d̄c̄4. As another example, one can perform
computations on a 3-isogenous curve.

We suggest using a combination of these countermeasures. In particular, point
randomization or scalar randomization appears to be vital to counteract Goubin-
type attacks.

Curves in Edwards form are also compatible with countermeasures to other
types of attacks discussed in [36].
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