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Abstract. GPUs offer a tremendous amount of computational band-
width that was until now largely unusable for cryptographic computa-
tions due to a lack of integer arithmetic and user-friendly programming
APIs that provided direct access to the GPU’s computing resources. The
latest generation of GPUs, which introduces integer/binary arithmetic,
has been leveraged to create several implementations of the AES and
DES symmetric key algorithms. Both conventional and bitsliced imple-
mentations are described that achieve data rates on the order of 3-30
Gbps from a single AMD HD 2900 XT graphics card, yielding speedups
of 6-60x over equivalent implementations on high-performance CPUs.

1 Introduction

In recent years, there has been significant interest from both academia and in-
dustry in applying commodity graphics processing units (GPUs) toward gen-
eral computing problems [1]. This trend toward general-purpose computation
on GPUs (GPGPU) is spurred by the large number of arithmetic units and
the high memory bandwidth available in today’s GPUs. In certain applications,
where there is a high compute to memory bandwidth ratio (a.k.a., arithmetic
intensity) the GPU has the potential to be orders of magnitude faster than con-
ventional CPUs due to the parallel nature of GPUs versus CPUs, which are
inherently optimized for sequential code. In addition, the computational power
of GPUs is growing at a faster rate than what Moore’s Law predicts for CPUs
(Figure 1).

With the introduction of native integer and binary operations in the latest
generation of GPUs, we believe that bulk encryption and its related applications
(e.g., key searching) are ideally suited to the GPGPU programming model. In
this paper we demonstrate the viability of the GPGPU programming model
for implementing symmetric key ciphers on GPUs. We examine high-efficiency
bitsliced implementations of the AES and DES algorithms, as well as compare
conventional block-based implementations of AES on previous/current genera-
tion GPUs. We demonstrate AES and DES running on an AMD HD 2900 XT
GPU to be up to 16 and 60 times faster respectively than high end CPUs.

The following section describes previous work related to implementing sym-
metric cryptographic algorithms on GPUs and vector-based processors. Next we
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Fig. 1. GPU vs. CPU GFLOPS performance over time

describe GPU hardware architecture and programming APIs to provide context
for the GPGPU programming model. Bitsliced implementations of DES and
AES are then described in the context of high-performance GPGPU-accelerated
key searching applications that demonstrate the potential speedup of GPUs over
conventional CPUs in certain classes of problems. Lastly, a comparison of a con-
ventional block-based implementation of AES on both the current and previous
generations of GPUs is presented to illustrate the computational advantages of
the latest generation of GPUs.

2 Previous Work

Cook et al. [2] were the first to investigate the feasibility of using GPUs for
symmetric key encryption. Using OpenGL they implemented AES on various
previous-generation GPUs. Unfortunately, the limited capability of the graphics
programming model they used limited their performance and prevented them
from exploiting some of the programmable features of their hardware. Instead
they were forced to use a fixed-function pipeline, rely on color maps to transform
bytes, and exploit a hardware XOR unit in the output-merger stage. A complete
execution of AES required multiple passes through the pipeline, which signifi-
cantly impacted their performance. Their experiments found that the GPU could
only perform at about 2.3% of the CPU rate when both were running code op-



timized for their individual instruction sets. A recent OpenGL implementation
[3] on a NVIDIA Geforce 8800 GTS achieves rates of almost 3 Gbps.

Vector processors have been considered for implementation of symmetric al-
gorithms such as DES [4], and cryptography in general [5], which yielded some
performance increase. Recently, Costigan and Scott [6] implemented RSA using
the vector units of the Cell processor. They were able to achieve rates up to 7×
faster using 6 vector units (SPU) over the onboard PowerPC unit (PPU).

3 GPGPU Programming Model

The latest generation of GPUs (e.g., Nvidia’s 8000 series or AMD’s HD 2000
series) has adopted the unified shader programming model pioneered by AMD
in the Xbox 360’s GPU [7]. In the unified shader model, all graphics functions
are executed on programmable ALUs that can handle the different types of pro-
grams (i.e., shader programs) that need to be run by the different stages of
the conventional graphics pipeline. The programmable nature of these ALUs
can be exploited to implement non-graphics functions using a virtualized SIMD
processing programming model that operates on streams of data. In this pro-
gramming model, arrays of input data elements stored in memory are mapped
one-to-one onto the virtualized SIMD array, which executes a shader program
to generate one or more outputs that are then written back to output arrays
in memory. Each instance of a shader program running on a virtualized SIMD
array element is called a thread. The GPU and its components map the array of
threads onto a finite pool of physical shader processors (SPs) by scheduling the
available resources in the GPU such that each element of the virtual SIMD array
is eventually processed, at which point additional shader programs can also be
executed until the application has completed. A simplified view of the GPGPU
programming model and mapping of threads to the GPUs processing resources
is shown in Figure 2.

Modern GPUs are designed to be very efficient at running large numbers of
threads (e.g., thousands/millions) in a manner that is transparent to the appli-
cation/user. The GPU uses the large number of threads to hide memory access
latencies by having the resource scheduler switch the active thread in a given
SP whenever the current thread finds itself stalled waiting for a memory access
to complete. Time multiplexing is also used in the SPs’ ALUs to execute multi-
ple threads concurrently and hide the latency of ALU operations via pipelining.
Both of these techniques require that a thread contains a large number of calcula-
tions to improve the ability of the resource scheduler to hide the aforementioned
latencies. When that condition is satisfied, the entire computational bandwidth
of the GPU can be utilized to help GPGPU applications achieve performance
increases on the order of 10− 100× over conventional CPUs.

DirectX [8] and OpenGL [9] are the standard programming APIs for GPUs
and provide high-level languages for writing shader programs (e.g., HLSL and
GLSL). However, these APIs are optimized for graphics and are difficult to use
for non-graphics developers. Recently several projects have begun to try and
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Fig. 2. Simplified view of the GPGPU programming model and thread mapping

abstract away the graphics-specific aspects of traditional GPU APIs ([10], [11],
[12]). In this paper we use both DirectX and CTM [13], AMD’s GPU hardware
interface API, which treats the GPU as a data parallel virtual machine. CTM
allows shader programs to be written in both high-level (e.g., HLSL) and low-
level (e.g., native GPU ASM) languages. Writing high-level shaders is similar to
writing C code, except there are additional vector data types with multiple (up
to four) accessible components. See [14] for a more complete description. Our
implementations written in DirectX can run on any DirectX capable hardware.
The bitsliced implementations described in the following sections could also be
implemented on most modern graphics hardware.

All of the experiments in this work were conducted on either an AMD Radeon
X1950 XTX or an AMD Radeon HD 2900 XT GPU. The HD 2900 XT is the
latest generation of AMD GPUs and uses a unified, superscalar shader processing
architecture. Shader processors also share a limited number of memory fetch
units, which are the physical devices that access memory. Table 1 summarizes
the relevant GPU feature sets. With significantly more ALUs than memory fetch
units, GPUs perform better on applications with high arithmetic intensity.

4 High-performance Bitsliced DES Key Searching
Application

Bitslicing was first suggested by Biham in [15] as a means of exploiting large
word widths in conventional CPUs to increase the bandwidth of software im-
plementations of symmetric algorithms. The HD 2900 XT can be utilized in
a variety of configurations due to its flexible superscalar architecture. For this



Table 1. GPU characteristics

X1950 XTX HD 2900 XT

# of SP Units 48 64
# of ALU Units 192 320
# of Memory Fetch Units 16 16
SP Frequency 650 MHz 750 MHz
Memory Frequency 1 GHz 825 MHz
Memory Bandwidth 64 GB/s 105.60 GB/s
Local Memory Size 1 GB 1 GB

application we utilized it as a 2× 64−bit wide processor with 64 individual pro-
cessing cores to implement a bitsliced implementation of DES [16] for use in a
key search application implemented using AMD’s CTM GPGPU programming
infrastructure. The full width of the GPU (160-bits) was not used as the resulting
register requirements to store the entire cipher state and key vector would limit
the number of threads executing at any given time, reducing overall program
performance.

The key search application partitions the key space of size 256 into 222 in-
dependent jobs that each check 234 keys. Each job is composed of 212 (64× 64)
individual program invocations (threads), each of which is run on a shader pro-
cessor using an optimized bitsliced DES shader program written in the GPUs
native assembly language. Each shader program computes 64 DES calculations
in parallel, and iterates a total of 216 times, for a total of 222 key checks per
thread. In general such a brute force searching application is of limited use,
but combined with a directed, template-based approach, such as that used in
popular password recovery utilities, or in conjunction with side channel tech-
niques that are used to find a subset of the secret key bytes, it can prove to be
a very potent tool capable of operating substantially faster than conventional
CPU implementations.

The bitsliced DES shader program utilizes the XOR, AND, OR, and NOT in-
structions of the GPU to implement the necessary functions, which are primarily
the eight DES S-boxes. Matthew Kwan’s optimized DES S-box implementations
[17] were utilized as the basis for our implementation. Modifications were made
to both the data format and S-box functions to enable two S-boxes to be com-
puted concurrently (e.g., sbox15 = sbox1 and sbox5) as a means of reducing the
execution time by almost a factor of 2. Table 2 compares the performance of
the conventional and parallelized S-box implementations. The even/odd round
distinction is required due to the alternating write-back of the left and right
cipher states in the even/odd rounds when you leave the cipher state in place
to eliminate DES’ right/left state swapping. The difference in instruction counts
between the even/odd versions is due to the insertion of NOPs to avoid write
conflicts within the ALU/register interface.



Table 2. Comparison of DES S-box instruction counts

Odd Round Even Round
Instruction Instruction Instruction

S-box Count Count S-box Count

sbox15 69 72 sbox1 67
sbox26 65 64 sbox2 60
sbox37 63 63 sbox3 61
sbox48 61 61 sbox4 46
Total 258 260 sbox5 66

sbox6 61
sbox7 61
sbox8 58
Total 480

S-box parallelization, combined with a reduction in the number of registers
needed by the shader program, more than offset the fact that we are only able to
use less than half of the full 160-bit width available in the shader processor for
bitslicing. The net effect is approximately 2.5× increase in overall performance
using the 64-bit solution with S-box parallelization compared to a full-width
(i.e., 128-bit) bitsliced solution.

The resulting bitsliced implementation is shown graphically in Figure 3. The
main loop consists of 16 rounds of S-box applications, along with short setup
functions that mix in the necessary key bits for each round. The InitCipherState
function loads IP-permuted plaintext(s) into the GPU using constants as they
don’t change during the shader program’s execution. The CheckResult function
compares the pre-IP−1 permuted output to a similarly formatted reference ci-
phertext, generating a 64-bit bitmask of each bitsliced calculation where a “1”
indicates a match was found (i.e., the reference plaintext encrypted with the key
corresponding to that slice generated the reference ciphertext). Note that mul-
tiple plaintexts and ciphertexts can be utilized as those values are passed in as
simple parameters. When a match is found the necessary information required
to reconstruct the corresponding key is written to the output array where it can
be scanned by the application running on the CPU while the next job is being
processed by the GPU, thereby incurring no overall result-checking performance
penalty. The IncrementKey function increments the bitsliced key vector stored
within the GPU using a simple bitsliced bit-serial addition on the 16 key bits
that track the iteration number.

The theoretical peak bandwidth of the GPU for the bitsliced DES calculation
can be determined by computing the maximum rate that can be achieved by all
64 SPs operating at their peak rate, ignoring any degradation in performance
due to memory accesses and overhead:



Shader Program

Iteration

Init

F
e
tc
h
D
a
ta

In
itP
ro
g
ra
m

Round 1

S
b
o
x
1
5
_
o
d
d

S
b
o
x
3
7
_
o
d
d

S
e
tu
p
S
b
o
x

S
e
tu
p
S
b
o
x

S
b
o
x
2
6
_
o
d
d

S
e
tu
p
S
b
o
x

S
b
o
x
4
8
_
o
d
d

R
o
u
n
d
 3

R
o
u
n
d
 1
6

. . .

Finish

C
h
e
c
k
R
e
s
u
lt

In
c
re
m
e
n
tK
e
y

S
e
tu
p
S
b
o
x

Round 2

S
b
o
x
1
5
_
e
v
e
n

S
b
o
x
3
7
_
e
v
e
n

S
e
tu
p
S
b
o
x

S
e
tu
p
S
b
o
x

S
b
o
x
2
6
_
e
v
e
n

S
e
tu
p
S
b
o
x

S
b
o
x
4
8
_
e
v
e
n

S
e
tu
p
S
b
o
x

In
itC
ip
h
e
rS
ta
te

6
9

6 6
5

6 6
3

6 6
1

3
2

9
9

6 6 7
2

6 6
4

6 6
3

6 6
1

6 2
8
2

2
8
4

3
2

131284282

4691 instructions

Fig. 3. Bitsliced DES implementation instruction count

PeakRate =
64 SPs× 750 Minstructions/s× 64 blocks/iteration

4691 instructions/iteration

= 654.9 Mblocks/s

The execution time of the shader program is key-invariant. The performance
measured on HD 2900 XT hardware is shown in Figure 4. All measurements were
based on timing the program across multiple iterations for several minutes of real
time execution. The implementation achieves a maximum device utilization of
83% for a maximum key checking rate of 545 Mkeys/s (i.e., encrypting 545M DES
blocks per second, or 34.9 Gbps of data, though memory read/write bandwidth
limitations may constrain this general case). The remaining 17% of the available
performance is lost to the overhead associated with the scheduling and execution
of the shader program on the GPU, along with the costs of reading/writing
memory during execution.

Figure 4 also shows the performance advantage of using the HD 2900 XT
compared to a comparable bitsliced DES key search program using Matthew
Kwan’s optimized S-boxes executing on a dual-core AMD 2.8 GHz Athlon FX-
62 system. The CPU-based solution had a measured key checking rate of 9
Mkeys/s. Hence, a single-GPU solution can deliver on the order of a 19 − 60×
increase in performance over a single-CPU solution for this application.

Lastly, Figure 4 demonstrates the effect of amortizing a portion of the fixed-
cost overhead of processing on the GPU across multiple iterations, indicating
that over 87% of the application’s maximum performance can be realized with
as few as 32 iterations.
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5 High-performance Bitsliced AES Key Searching
Application

A more relevant algorithmic exploration was undertaken to implement an effi-
cient bitsliced AES [18] version of the aforementioned DES key search applica-
tion. The AES key search application partitions the key space of size 2128 into
295 independent jobs that each check 233 keys. Each job is composed of 212

(64× 64) individual threads, each of which executes an optimized bitsliced AES
shader program written in the GPU’s native assembly language. Each shader
program computes 32 AES calculations in parallel, and iterates a total of 216

times, for a total of 221 key checks per thread. With such an enormous key space
of 2128, the only realistic use of a brute-force AES-based key search application
is as a component of the aforementioned directed, template-based key searching
utilities, or helping to find missing key bytes in side channel attacks. In this sort
of application having an accelerated AES engine can prove very beneficial to
greatly reduce the search times over conventional CPU-based solutions.

For bitsliced AES the HD 2900 XT shader processor is utilized as a 4×32−bit
wide processor that processes four columns of 32 bitsliced AES state arrays in
parallel. The bitsliced implementation computes the encryption key schedule on-
the-fly using a transposed key array stored in the register file. The transposition
is required to maximize the performance of the round key generation function.
The bitsliced state and key array to register mappings are shown in Figure 5.

The bitsliced AES shader program utilizes an optimized AES ByteSub/Shift-
Row implementation that computes four columns in parallel, requiring four in-
vocations to process the entire state array (i.e., 4 ByteSub/ShiftRow operations
= SubBytes/ShiftRows operation defined in [18]). The AES S-boxes were im-
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plemented using the optimized normal basis composite S-box implementation
described in [19] and shown in Figure 6. Additional optimizations to eliminate
redundant calculations/storage were used to yield a final implementation requir-
ing 126 instructions, which is substantially less than previously reported bitsliced
AES S-box solutions (e.g., 205 instructions in [20]).
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The round key update function (Figure 7) exploits the transposed key array
and optimized ByteSub/ShiftWord function to yield a 160 instruction operation.
The transposition of the key array is undone when the round key is XORed into
the state array using a transposed XOR operation that has no performance
penalty since the transposition is done via register addressing.

The resulting bitsliced AES implementation is summarized graphically in
Figure 8. The main loop adds some additional initialization as both state and
key arrays need to be reset. The ByteSub/ShiftRow, UpdateRoundKey, and
AddRoundKey functions have already been discussed. The MixColumns func-
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tion processes all four columns in parallel, in-place, and in a single invocation.
The CheckResult and IncrementKey functions are functionally equivalent to
previously described bitsliced DES functions. As in the case of DES, arbitrary
plaintexts and ciphertexts can be used, and, as previously mentioned, the key
schedule is computed on-the-fly. With pre-generated keys, the performance could
be increased by 23%.

The theoretical peak bandwidth of the GPU for bitsliced AES calculations
can be computed as with DES using the formula:

PeakRate =
64 SPs× 750 Minstructions/s× 32 blocks/iteration

8560 instructions/iteration

= 179.4 Mblocks/s (w/key generation)

The execution time of the shader is key-invariant. The performance measured
on HD 2900 XT hardware is shown in Figure 9. All measurements were based
on timing the program across multiple iterations for several minutes of real time
execution. The implementation achieves a maximum device utilization of 81% for
a maximum key checking rate of 145 Mkeys/s (i.e., encrypting 145M blocks per
second, or 18.5 Gbps of data, though memory read/write bandwidth limitations
may constrain the general case).

Figure 9 also compares the performance on the GPU to two previously re-
ported software implementations ([20], [21]). The authors of [20] describe a non-
bitsliced implementation on an AMD Athlon 64 3500+ CPU running @ 2.2 GHz
at a rate of 2200 MHz / 170 cycles/block ∼ 13 Mblocks/s. The authors of [21]
describe a non-bitsliced implementation on an AMD Opteron 64 CPU running
@ 2.4 GHz at a rate of 2400 MHz / 254 cycles/block ∼ 9 Mblocks/s. Unfortu-



Shader Program

Iteration

SetupInit

S
a
m
p
le
D
a
ta

In
itS
ta
te

In
itK
e
y

A
d
d
R
o
u
n
d
K
e
y

In
itP
ro
g
ra
m

Round 1

B
y
te
S
u
b
/S
h
iftR

o
w

M
ix
C
o
lu
m
n
s

U
p
d
a
te
R
o
u
n
d
K
e
y

B
y
te
S
u
b
/S
h
iftR

o
w

B
y
te
S
u
b
/S
h
iftR

o
w

B
y
te
S
u
b
/S
h
iftR

o
w

A
d
d
R
o
u
n
d
K
e
y

R
o
u
n
d
 2

R
o
u
n
d
9

. . .

Round 10

B
y
te
S
u
b
/S
h
iftR

o
w

U
p
d
a
te
R
o
u
n
d
K
e
y

B
y
te
S
u
b
/S
h
iftR

o
w

B
y
te
S
u
b
/S
h
iftR

o
w

B
y
te
S
u
b
/S
h
iftR

o
w

A
d
d
R
o
u
n
d
K
e
y

Finish
C
h
e
c
k
R
e
s
u
lt

In
c
re
m
e
n
tK
e
y

3
2

3
2

3
2

1
2
6

1
2
6

1
2
6

1
2
6

1
5
3

1
6
0

3
2

8
4
9

8
4
9

1
2
6

1
2
6

1
2
6

1
2
6

3
2

1
6
0

3
2

9
9

6

131

8560 instructions

69684996

Fig. 8. Bitsliced AES implementation instruction count

nately, simple comparisons to our work aren’t possible as neither implementation
generates their key schedule on the fly, which is required in a key searching ap-
plication. Figure 9 attempts to normalize the key generation process out of the
equation by removing the key generation portion of our implementation since
we don’t have the necessary information to derate the results of [20] and [21].
Hence Figure 9 shows GPU implementation’s results prorated by the aforemen-
tioned 23% attributed to round key generation. Hence, a single-GPU solution
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can deliver on the order of 6 − 16× increase in performance over a single-CPU
solution for this application.

As with the bitsliced DES implementation, Figure 9 demonstrates the amor-
tization effect of running multiple loop iterations, indicating that over 85% of the
application’s maximum performance can be realized with as few as 8 iterations.

6 Conventional Block-based AES Implementation

In this section, we describe the implementation of a conventional block-based
AES decryption implementation on both the previous-generation X1950 XTX
GPU, which only has floating point ALU units, and the current HD 2900 XT
GPU that features an enhanced instruction set with full integer support. Even
with the availability of full integer support, it is still important to understand
implementations on earlier GPUs because they are still used in low-cost graphics
cards.

6.1 Implementation using only Floating Point Hardware

The entire 128-bit state array is transformed in parallel using four registers con-
taining 4 bytes each stored in the transposed, unpacked format shown in Figure
10. When reading in an integer value, floating point GPU hardware normalizes
the input to range from 0 to 1, which is accounted for in the shader program
that implements AES.

s0,0s1,0s2,0s3,0

s0,1s1,1s2,1s3,1

s0,2s1,2s2,2s3,2

s1,3s2,3s3,3 s0,3

Ri

Ri+1

Ri+2

Ri+3

X componentY componentZ componentW component

128 bits
32 bits

Fig. 10. AES state array register storage mapping

The internal floating-point representation introduces complications with the
required XOR operation. [2] proposed using XORs in the output stage which
incurs a steep penalty due to the overhead involved with issuing multiple passes
through the GPU’s pipeline. One alternative is to use the GPU’s native in-
struction set to implement a XOR function at the cost of 20 instructions per



4 × 8−bit row of the state array. A more economical solution is to utilize a
256×256 table-lookup in local memory to implement each 8-bit XOR operation
in a single instruction. The cost of this approach is the memory latency associ-
ated with performing the lookup, but GPUs are optimized to hide these latencies
by efficiently switching to other threads whenever a stall occurs due to fetching
data from memory. However, a 256× 256 (64 KB) lookup table is actually quite
large, so a hybrid approach can also be used that processes the 8-bit XOR as
two 4-bit XORs through a combination of a 16 × 16 (256 bytes) lookup table
or ALU instructions. Table 3 compares the performance of the different XOR
alternatives; however, actual performance in the full AES implementation will
depend on shader instruction ordering.

Table 3. Performance of 8-bit XOR operations on the X1950 XTX

Shader Type XORs per sec

ALU Only 6307 M
256x256 Table 778 M
16x16 Table 2980 M

Hybrid 4877 M

The GPU-based AES implementation is performed using the T-box approach
described in the original Rijndael submission [22] to the AES contest:

Tround[x] Tround[x] Tround[x] Tround[x]
s′0,c = (0E·Sbox[s0,c]) ∧ (0B·Sbox[s1,c]) ∧ (0D·Sbox[s2,c]) ∧ (09·Sbox[s3,c])
s′1,c = (09·Sbox[s0,c]) ∧ (0E·Sbox[s1,c]) ∧ (0B·Sbox[s2,c]) ∧ (0D·Sbox[s3,c])
s′2,c = (0D·Sbox[s0,c]) ∧ (09·Sbox[s1,c]) ∧ (0E·Sbox[s2,c]) ∧ (0B·Sbox[s3,c])
s′3,c = (0B·Sbox[s0,c]) ∧ (0D·Sbox[s1,c]) ∧ (09·Sbox[s2,c]) ∧ (0E·Sbox[s3,c])

Using the above implementation, each column of the state array would require
4 lookups to compute the GF(28) multiplications (each fetch can return 4×8−bit
values simultaneously) and 12 lookups for computing the 8-bit XORs, assuming
1 fetch per XOR, for a total of 64 lookups per round. The number of lookups
can be reduced to 24 by combining two GF(28) multiplications and XORs into
a single lookup table. Hence, every lookup of Tround[x, y] would return a 4-tuple
containing [0E·x ∧ 0B· y, 09·x ∧ 0E· y, 0D·x ∧ 09· y, 0B·x ∧ 0D· y] which reduces
each state array column update to 6 lookups (2 for the multiplications and 4 for
the XORs), or 24 MixColumns lookups per round. With swizzling, the ability for
hardware to arbitrarily access register components, only one table is required.

AddRoundKey is implemented using a similar lookup based technique that
requires us to pre-process the key expansion table and XOR it with the range of
8-bit values forming a 2D lookup table that can be accessed using 16 lookups.



Every byte in every round maps to a specific entry in the key expansion, so every
table access is of the form Tkeyadd[byte value, key entry]. For the last round,
which has no MixColumns operation, the S-Box transform is also included.

The following shader program pseudo-code processes one complete column
of the round function:

float4 a, b, t, c0;
a = Tround[r0.w, r3.z];
b = Tround[r2.y, r1.x];
t = XOR(a, b);
c0.w = Tkeyadd[t.x, round offset];
c0.z = Tkeyadd[t.y, round offset + 1];
c0.y = Tkeyadd[t.z, round offset + 2];
c0.x = Tkeyadd[t.w, round offset + 3];

Assuming a single lookup per 8-bit XOR, the complete round function is 40
lookups.

When the shader program has processed all 10 rounds the 128-bit state array
is written out to memory. The hardware can write four outputs simultaneously,
which is used to write back the state as four, 4×8−bit values, each representing
a row in the transposed state array (e.g., sc,0, sc,1, sc,2, or sc,3 in Figure 10).

The measured performance of this straightforward implementation is approx-
imately 315 Mbps on a X1950 XTX and 380 Mbps on a HD 2900 XT. This as-
sumes all input blocks use the same key and does not include the key expansion
which can be computed on the CPU in parallel with previous GPU computations
such that it can be effectively hidden in a well-balanced implementation. The
performance is limited due to the number of lookups, which can be a penalty
if there are not enough threads and ALU instructions to hide the associated
memory access latencies. This is why performance does not scale by the number
of ALU units, because both GPUs have the same number of memory fetch units.
In addition, the random nature of the fetches due to the mixing properties of
the AES algorithm impacts the ability of the GPU to use caching to minimize
the memory access latencies of the lookups.

One possible optimization replaces the 2D round processing lookup tables
with a 3D table that incorporates three GF(28) multiplies and two XORs, as well
as a 2D table that incorporates the fourth GF(28) multiply and round key XOR.
This reduces the entire round function to 24 lookups. In this mode, performance
increases to 770 Mbps. However, the memory requirements are greatly increased
as we now need a 256× 256× 256 (16 MB) lookup table.

Taking advantage of latency hiding, a fully optimized shader using hybrid
XORs performs at 840 Mbps on a X1950 XTX and 990 Mbps on a HD 2900 XT.

6.2 Implementation on the HD 2900 XT

AMD’s HD 2900 XT allows for native integer operations and data types, as well
as the ability to access data structures in memory (i.e., lookup tables) using



integer values. XORs can be computed using the native XOR instruction of
the GPU, so all 256× 256 byte lookup tables with precomputed XORs from the
previous section can be replaced with much smaller 256×4 byte tables (similar to
CPU implementations) and their results summed using explicit XOR operations.
Hence, the round operation shader code can be greatly simplified:

float4 c0, r0;
c0 = txMCol[r0.w].wzyx ∧ txMCol[r3.z].xwzy ∧

txMCol[r2.y].yxwz ∧ txMCol[r1.x].zyxw;
r0 = c0 ∧ Tkeyadd[round offset];

With swizzling, only a single table is needed to represent an entire state array
column update (e.g., four S-Box transforms and four GF(28) multiplies) in one
lookup.

The AddRoundKey step requires the key expansion to be stored as a separate
lookup table and the XOR is performed in the shader. In the very last round,
SubBytes must be performed without the MixColumns. Previously we would
have to precompute this into a dedicated lookup table, but now we perform sep-
arate lookups for all the S-Box transform values and then a final AddRoundKey.

With these changes, we can achieve rates of 3.5 Gbps on the HD 2900 XT
compared to an optimized bitsliced implementation on a CPU running at 1.6
Gbps [20] and the floating point versions on X1950 XTX and HD 2900 XT GPUs
running at 840 Mbps and 990 Mbps respectively. This is about 2× faster than
a CPU and 3.5× faster than the floating point implementation. This is also
comparable to the performance achieved by [3] using OpenGL on a NVIDIA
Geforce 8800. Although the floating point implementation runs at half the rate
of the CPU, this is still considerably better than 2.3% found by [2].

7 Conclusion and Future Work

In this work we have demonstrated both that GPUs can execute symmetric key
ciphers, and that that they can perform significantly faster than CPUs in certain
applications. Bitsliced DES on a single HD 2900 XT was shown to operate up
to 60 times faster than on a CPU, and bitsliced AES was shown to run up to 16
times faster.

We also demonstrated the advantages of the latest generation of GPUs over
the previous generation. A block-based GPU implementation of AES runs 4×
faster on the latest generation of GPUs versus the previous generation and 2×
faster than a CPU version.

It should be noted that the GPU is optimized for algorithms that are parallel
in nature with high arithmetic intensity. Hence, when programs must be executed
serially, such as when there are dependencies between threads, then CPUs will
outperform GPUs. This will be the case for certain block cipher operating modes
such as CBC encryption due to the dependencies between successive blocks,



unless there are a sufficient number of streams that can be processed in parallel
to provide the large number of independent threads required to extract the
performance in the GPU.

We believe that the entire gamut of cryptography is waiting to be explored
with current and future GPU hardware. Algorithmic exploration awaits on the
symmetric algorithm front with investigations of efficient implementations of
other block/stream ciphers, particularly those amenable to bitsliced implemen-
tations that can leverage the large datapath width inherent in modern GPUs.
In addition, the word-level integer support should be exploitable in conventional
hashing algorithms to achieve significant performance increases over conven-
tional CPUs. One particularly interesting area of potential research is finding
efficient mappings of the integer support on the latest generation of GPUs to
DH/RSA/ECC, and other generic integer arithmetic algorithms. With proces-
sor design trending towards multi-core, and combining CPU(s) and GPU(s) on
a single die, the GPU would appear to be a good research platform for future
algorithm development.
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