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Abstract. The black-box field (BBF) extraction problem is, for a given
field F, to determine a secret field element hidden in a black-box which
allows to add and multiply values in F in the box and which reports
only equalities of elements in the box. This problem is of cryptographic
interest for two reasons. First, for F = Fp it corresponds to the generic
reduction of the discrete logarithm problem to the computational Diffie-
Hellman problem in a group of prime order p. Second, an efficient so-
lution to the BBF extraction problem proves the inexistence of field-
homomorphic one-way permutations whose realization is an interesting
open problem in algebra-based cryptography. BBFs are also of indepen-
dent interest in computational algebra.
In the previous literature BBFs had only been considered for the prime
field case. In this paper we consider a generalization of the extraction
problem to BBFs that are extension fields. More precisely we discuss the
representation problem defined as follows: For given generators g1, . . . , gd

algebraically generating a BBF and an additional element x, all hidden
in a black-box, express x algebraically in terms of g1, . . . , gd. We give an
efficient algorithm for this representation problem and related problems
for fields with small characteristic (e.g. F = F2n for some n). We also
consider extension fields of large characteristic and show how to reduce
the representation problem to the extraction problem for the underlying
prime field.
These results imply the inexistence of field-homomorphic (as opposed to
only group-homomorphic, like RSA) one-way permutations for fields of
small characteristic.
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1 Introduction

1.1 Black-Boxes and Generic Algorithms

Algebraic structures like groups, rings, and fields, and algorithms on them, play
a crucial role in cryptography. In order to compute in an algebraic structure one
needs a representation of its elements, for instance as bitstrings. Algorithms that
do not exploit any property of the representation are called generic. The concept
of generic algorithms is of interest for two reasons. First, generic algorithms can



be used no matter how the structure is represented, and second, this model
allows for significant lower bound proofs for certain computational problems.
For instance, Shoup [Sho97] proved a lower bound on the complexity of any
generic algorithm for computing discrete logarithms in a finite cyclic group.

Representation-independent algorithms on a given algebraic structure S are
best modeled by a black-box [BS84,BB99,Mau05], which initially contains some
elements of S, describing an instance of the computational problem under con-
sideration. The black-box accepts instructions to perform the operation(s) of S
on the values stored in it. The (internal) values are stored in addressable registers
and the result of an operation is stored in a new register. The values stored in
the black-box are hidden and the only information about these values provided
to the outside (an hence to the algorithm) are equalities of stored elements. This
models that there is no (need for a) representation of values but that nevertheless
one can compute on given values. The equality check provided by the black-box
models the trivial property of any (unique) representation that equality is easily
checked.1

A basic problem in this setting is the extraction problem: The black-box
contains a secret value x (and possibly also some constants), and the task of the
algorithm is to compute x (explicitly).

For example, a cyclic group of prime order p is modeled by a black-box where
S is the additive group Zp (and which can be assumed to contain the constants 0
and 1 corresponding to the neutral element and the generator, respectively). The
discrete logarithm problem is the extraction problem for this black-box. Shoup’s
result implies that no algorithm can extract x (if uniformly chosen) with fewer
than O(

√
p) expected operations. Actually, this many operations are required

in expectation to provoke a single collision in the black-box, which is necessary
for the algorithm to obtain any information about the content of the black-box.
Both the baby-step giant-step algorithm and the Pohlig-Hellman algorithm are
generic algorithm which can be described and analyzed in this model.

1.2 Black-Box Fields and Known Results

If one assumes in the above setting that the black-box not only allows addition
but also multiplication of values modulo p, then this corresponds to a black-box
field (BBF).

An efficient (non-uniform) algorithm for the extraction problem in Fp was
proposed in [Mau94] (see also [MW99]), where non-uniform means that the al-
gorithm depends on p or, equivalently, obtains a help-string that depends on p.
Moreover, the existence of the help-string, which is actually the description of
an elliptic curve of smooth order over Fp, depends on a plausible but unproven
number-theoretic conjecture.

Boneh and Lipton [BL96] proposed a similar but uniform algorithm for the
extraction problem in Fp, but its running time is subexponential and the analysis
also relies on a related unproven number-theoretic conjecture.
1 Note that this model is simpler than Shoup’s model which assumes a random rep-

resentation.



1.3 Black-Box Extention Fields

Prime fields differ significantly from extension fields, which is relevant in the
context of this paper:

In contrast to an extension field Fpk (for k > 1), a prime field Fp is generated
by any non-zero element (for instance 1). Hence there is a unique isomorphism
between any two instantiations of Fp that is given by mapping the 1 of the first
instance to the 1 of the second. In particular, there is a unique isomorphism
between a BBF over Fp and any explicit representation of Fp. Therefore in an
explicit representation there exists a unique element corresponding to a secret
value x inside the black-box, and the extraction problem as stated above is well
defined.

As an extension field Fpk (for k > 1) contains non-zero elements that do
not algebraically generate the entire field, it is not sufficient to give a secret
value x inside the black box in order to describe an arbitrary extension field.
Rather, the field must be given by a set of elements (generators) in the black-box
algebraically generating the field. A vector space basis of Fpk over Fp would be
a natural choice, but our goal is to make no assumption whatsoever about how
the given elements generate the field.

Furthermore, extension fields Fpk (for k > 1) have non-trivial automor-
phisms, so there is no unique isomorphism between a black-box extension field
and an explicit representation. Therefore the extraction problem as originally
posed is not well defined for extension fields. We hence formulate a more general
problem for extension fields, the representation problem: Write a secret x hidden
inside the black-box as an algebraic expression in the other elements (generators)
given in the black-box.

When an explicit representation of the field is given outside of the black-box
(say in terms of an irreducible polynomial of degree k over Fp), then one can also
consider the problem of efficiently computing an isomorphism (and its inverse)
between this explicitly given field and the BBF.

1.4 Contributions of This Paper

We present an efficient reduction of the representation problem for a finite black-
box extension field to the extraction problem for the underlying prime field Fp.
If the characteristic p of the field in question is small, or if p is large but an
efficient algorithm for the extraction problem for Fp exists, then this yields an
efficient algorithm for the representation problem for the extension field. Un-
der their respective number-theoretic assumptions one can also use the results
of [Mau94,BL96,MW99].

Theorem 1 (informal). The representation problem for the finite black-box
extension field FB of characteristic p is efficiently reducible to the representation
problem for Fp. If the characteristic p is small (e.g. p = 2) then the representation
problem for FB is effciently solvable.



Furthermore, our algorithms provide an efficiently computable isomorphism
between the black-box field and an explicitly represented (outside the black-box)
isomorphic copy. If we are given preimages of the generators inside the black-box
under some isomorphism from an explicitly represented field into the black-box
or if the black-box allows inserting elements from an explicitly represented field,
we may even efficiently extract any element from the black-box field, i.e., we
can find the element corresponding to an x inside the black-box in the explicit
representation.

In particular, these results imply that any problem posed for a black-box
field (of small characteristic) can efficiently be transformed into a problem for an
explicit field and be solved there using unrestricted (representation-dependent)
methods. For example, this implies that computing discrete logarithms in the
multiplicative group over a finite field (of small characteristic) is not harder in
the black-box setting than in the case where the field is given by an irreducible
polynomial.

1.5 Cryptographic Significance of Black-Box Fields

A BBF Fp can be viewed as a black-box group of prime order p, where the multi-
plication operation of the field corresponds to a Diffie-Hellman oracle; therefore
an efficient algorithm for the extraction problem for Fp corresponds to an effi-
cient generic reduction of the discrete logarithm problem to the computational
Diffie-Hellman problem in any group of prime order p (see [Mau94]). So an ef-
ficient algorithm for the extraction problem for Fp provides a security proof for
the Diffie-Hellman key agreement protocol [DH76] in any group of order p for
which the discrete logarithm problem is hard.2

Boneh and Lipton [BL96] gave a second reason why the extraction problem
is of interest in cryptography, namely to prove the inexistence of certain field-
homomorphic encryption schemes.

The RSA trapdoor one-way permutation defined by x 7→ xe (mod n) is group-
homomorphic: the product of two ciphertexts xe and x′e is the ciphertext for
their product: xe ·x′e = (x ·x′)e. This algebraic property has proven enormously
useful in many cryptographic protocols. However, this homomorphic property is
only for one operation (i.e., for a group), and an open problem in cryptography
is to devise a trapdoor one-way permutation that is field-homomorphic, i.e.,
for addition and for multiplication. Such a scheme would have applications in
multi-party computation, computation with encrypted data (e.g. server-assisted
computation), and possibly other areas in cryptography [SYY99,ALN87,Dom02].

A solution to the extraction problem for Fp implies an equally efficient attack
on any Fp-homomorphic encryption scheme that permits checking the equality of
two encrypted elements (which is for example true for any deterministic scheme).

2 In this context it is not a problem that Maurer’s efficient algorithm [Mau94] for
the extraction problem for Fp is non-uniform, because one can construct a Diffie-
Hellman group of order p together with the help-string and hence the equivalence
really holds.



Indeed, a black-box field can be regarded as an idealized formulation of a field-
homomorphic encryption scheme which allows for equality checks. Any algorithm
that succeeds in recovering an “encrypted” element hidden inside the black-
box will also break an encryption scheme that allows the same operations. In
particular, an efficient algorithm for the extraction problem for Fp implies the
inexistence of a secure Fp-homomorphic one-way permutation.

This generalizes naturally to the extension field case yielding the following
corollary to Theorem 1:

Corollary 1. For fields of small characteristic p (in particular for F2k) there are
no secure field-homomorphic encryption schemes3 that permit equality checks.
In particular, there are no field-homomorphic one-way permutations over such
fields.4

The same holds even for large characteristic p if we admit non-uniform ad-
versaries under the assumption of [Mau94,MW99].

Beyond its cryptographic significance, the representation problem for black-
box extension fields is of independent mathematical interest. The representation
problem for groups, in particular black-box groups, has been extensively studied
[BB99,BS84], inciting interest in the representation problem for other algebraic
black-box structures.

2 The Representation Problem for Finite Black-Box
Fields

2.1 Preliminaries on Finite Fields

We assume that the reader is familiar with the basic algebraic concepts of groups,
rings, fields, and vector spaces and we summarize a few basic facts about finite
fields.

The cardinality of every finite field is a prime power, pk, where p is called
the characteristic and k the extension degree. There exists a finite field for every
prime p and every k. Finite fields of equal cardinality are isomorphic, i.e., for
each cardinality pk there is up to isomorphism only one finite field, which allows
one to refer to it just as Fpk .

Prime fields Fp (i.e., k = 1) are defined as Zp = {0, . . . , p− 1} with addition
and multiplication modulo p. An extension field Fpk can be defined as the poly-
nomial ring Fp[X] modulo an irreducible polynomial m(X) of degree k over Fp.

3 In the public-key case we can efficiently recover the encrypted field element, in
the private-key case this is only possible up to isomorphism, as we may have no
knowledge of the plaintext field.

4 One may be led to believe that field-homomorphic one-way permutations cannot
exist, since a finite field has only a small number of automorphisms, which can be
enumerated exhaustively. However, we assume the target field to be given as a black-
box without explicit representation of the elements. As such it is a priori not clear
how to find the preimage of a random element.



It hence consists of all polynomials of degree at most k − 1 with coefficients in
Fp.

For every x ∈ Fpk , the p-fold sum of x (i.e., x + x + · · · + x with p terms),
denoted px, is zero: px = 0. Moreover, xpk−1 = 1 for all x 6= 0, as pk − 1 is the
cardinality of the multiplicative group of Fpk , which is actually cyclic.

An extension field Fpk is a vector space over Fp of dimension k. For ap-
propriate g ∈ Fpk there exist bases of the form (1, g, g2, . . . , gk−1). The only
automorphisms of a finite field Fpk are the Frobenius automorphisms x 7→ x(pi)

for i = 0, . . . , k−1. In particular, a prime field has no non-trivial automorphisms.
For every ` dividing k, there is a subfield Fp` of Fpk . The trace function

trF
pk /F

p`
: Fpk → Fp` , defined as

trF
pk /F

p`
(a) =

(k/`)−1∑
i=0

a(pi`),

is a surjective and Fp` -linear function [LN97].

2.2 The Black-box Model

We make use of the abstract model of computation from [Mau05]: A black-
box field FB is characterized by a black-box B which can store an (unbounded
number of) values from some finite field Fpk of known characteristic p but not
necessarily known extension degree in internal registers V0, V1, V2, . . .. The first
d + 1 of these registers hold the initial state I = [g0, g1, . . . , gd] of the black-box.
We require the size d+1 of the initial state to be at most polynomial in log(|FB|).

The black-box B provides the following interface: It takes as input a pair
(i, j) of indices and a bit indicating whether addition or multiplication should
be invoked. Then it performs the required operation on Vi and Vj , stores the
result in the next free register, say V`, and reports all pairs of indices (m,n)
such that Vm = Vn.5

Since we only allow performing the field operations + and · on the val-
ues of the black box, the black-box field FB is by definition the field FB =
Fp[g0, g1, . . . , gd] generated6 by the elements g0, g1, . . . , gd ∈ Fpk contained in
the initial state I = [g0, g1, . . . , gd] of the black-box.

A black-box field FB is thus completely characterized by the

– public values: characteristic7 p, size d + 1 of the initial state,
– secret values: initial state I = [g0, g1, . . . , gd] (hidden inside the black-box)

5 Alternatively, equality checks could also be modeled as an explicit operation which
must be called with two indices.

6 By Fp[g0, g1, . . . , gd] we denote the field consisting of all polynomial expressions over
Fp in the generators g0, g1, . . . , gd.

7 If the characteristic p is small it need not be given but can be recovered in time
O(
√

p) using a modified Baby-Step-Giant-Step algorithm [Mau05].



This is probably the most basic yet complete way of describing a finite field.
Observe that the field Fpk , the elements of which the black-box can store, does
not appear in the characterization. Since no algorithm can compute any value not
expressible as an expression in the operators + and ·, and the elements initially
given inside the black-box, we can without loss of generality assume that k is
such that Fpk

∼= FB, where k is unknown, but can be efficiently computed as we
shall see later.

Also, the operations “additive inverse” and “multiplicative inverse” and the
constants 0 and 1 need not be provided explicitly, since they can be computed
efficiently given the characteristic p and the field size |FB| = pk: We can com-
pute the additive inverse for an element a ∈ F∗

B as −a = (p − 1)a, and the
multiplicative inverse is a−1 = apk−2. Furthermore, 1 = apk−1 for any non-zero
a and 0 = pa for any a. These expressions can be evaluated efficiently using
square-and-multiply techniques.

When discussing the complexity of algorithms on black-box fields, we count
each invocation of the black-box as one step. Additionally we will take into
account the runtime of computations not directly involving the black-box.

We consider an algorithm to be efficient if it runs in time polynomial in the
bit-size of a field element, log |FB|.8

2.3 The Representation Problem and Related Problems

We now turn to the problems we intend to solve. Let a characteristic p be
given and let B be a black-box with initial state I = [x, g1, . . . gd] consisting
of generators g1, . . . gd and a challenge x, where FB = Fp[x, g1, . . . gd].We then
consider the following problems:

Definition 1 (Representability Problem, Representation Problem). We
call x representable (in the generators g1, . . . gd) if x ∈ Fp[g1, . . . gd]. The prob-
lem of deciding whether x ∈ Fp[g1, . . . gd] is called the representability problem.
If x is representable, then finding a multi-variate polynomial q ∈ Fp[X1, . . . , Xd]
such that x = q(g1, . . . , gd) is called the representation problem.

We proceed to discuss two problems that are closely related to the repre-
sentation problem. First, we state a generalization of the extraction problem,
defined in [Mau05], that is applicable to all finite black-box fields. To do so, we
need to specify an isomorphism φ from the black-box to some explicitly given
field K. This is necessary for the extraction problem to be well-defined, because
in contrast to prime fields there are many isomorphisms between two isomorphic
extension fields.

Definition 2 (Extraction Problem). Let K be an explicitly given field (e.g. by
an irreducible polynomial) such that K ∼= FB. Let the images φ(g1), . . . , φ(gd) of

8 The requirement that the size d + 1 of the initial state be at most polynomial in
log(|FB|) is imposed so that this makes sense.



the generators g1, . . . , gd under some isomorphism φ : FB → K be given. The
extraction problem is to compute φ(x).9

Remark 1. Note that an efficient solution to the representation problem implies
an efficient solution to the extraction problem. The expression q(g1, . . . , gd) re-
turned as a solution to the representation problem can simply be evaluated
over K, substituting φ(gi) for gi (i = 1, . . . , d), which yields φ(x):

q(φ(g1), . . . , φ(gd)) = φ(q(g1, . . . , gd)) = φ(x).

Finally consider an efficient but representation-dependent algorithm A solv-
ing some problem Q on a finite field K (where the algorithm A requires for
instance that the field K is given by an irreducible polynomial). We are inter-
ested if the existence of such an algorithm A generally implies the existence of a
generic algorithm for the problem Q of comparable efficiency. More specifically,
we are interested in algorithms Φ and Φ−1 efficiently computing an arbitrary iso-
morphism φ : FB → K and its inverse φ−1, yielding a generic solution Φ−1◦A◦Φ
to the problem Q. That is the algorithm Φ maps an x ∈ FB to K by solving the
extraction problem with respect to φ. The inverse map Φ−1 on the other hand
maps a field element x′ ∈ K into the black box field FB by means of construct-
ing φ−1(x′) from the generators inside the black-box using the field operations.
These two algorithms can then be chained together with the original, represen-
tation dependent algorithm A, yielding a black-box, representation independent
algorithm Φ−1 ◦A ◦ Φ. Hence we consider the following problem:

Definition 3 (Isomorphism Problem). Let K be an explicitly given field
such that K ∼= FB. The isomorphism problem consists of computing an (ar-
bitrary but fixed) isomorphism φ : FB → K and its inverse φ−1 for arbitrary
elements of K and FB.

In the following we will exhibit an efficient reduction from the representation
problem for any finite field to the representation problem for the underlying
prime field. Moreover, our solution to the representation problem will also yield
an explicitly given field (by an irreducible polynomial) Fpk

∼= FB with an efficient
solution to the isomorphism problem for Fpk and FB. This allows to solve any
problem posed on the black-box field FB in the explicitly given field Fpk using
the corresponding algorithms.

2.4 The Representation Problem for Fp

First, we shall see that the representation, extraction and isomorphism problems
are equivalent when the black-box field FB is isomorphic to some prime field Fp:

9 The extraction problem also makes sense if the isomorphism φ is given in another
fashion. For example, the black-box might offer an operation that allows inserting
elements from an explicitly given field K. This would for instance correspond to a
field-homomorphic one-way permutation.



Lemma 1. Let FB
∼= Fp be a BBF with initial state I = [x, g1, . . . , gd]. Then

the representation, extraction and isomorphism problems are efficiently reducible
to one another.

Proof. Note that there is a unique isomorphism φ : FB → Fp. Furthermore, as
FB

∼= Fp, there must be a gi 6= 0 (i ∈ {1, . . . , d}). This gi can be efficiently found
by checking the inequality gi + gi 6= gi and the constant 1 can be efficiently
computed inside the black-box as gp−1

i using square-and-multiply techniques.
Reduction extraction to representation: see Remark 1.
Reduction isomorphism to extraction: A solution to the extraction problem

yields an efficient algorithm computing the isomorphism φ. The inverse φ−1

can be efficiently computed using square-and-multiply techniques, constructing
φ−1(a) for a ∈ Fp as a sum of 1s inside the black-box. This solves the isomor-
phism problem.

Reduction representation to isomorphism: A solution to the isomorphism
problem yields an efficient algorithm computing the isomorphism φ. Then we
have φ(x)gp−1

i as a solution to the representation problem. ut

Note that solving the extraction problem for a black-box field FB
∼= Fp with

initial state V 1 = [x] amounts to solving the discrete logarithm problem for a
group of order p (given as a black-box) for which a Diffie-Hellman oracle is given.
The following results are known:

Lemma 2 ([Mau94]). There exists a non-uniform algorithm that, under a
(plausible) number-theoretic conjecture, solves the extraction (representation,
isomorphism) problem for a black-box field FB

∼= Fp in time polynomial in log(p),
and with a polynomial (in log(p)) amount of advice depending on p.

Lemma 3 ([BL96]). There exists a (uniform) algorithm that, under a (plausi-
ble) number-theoretic conjecture, solves the extraction (representation, isomor-
phism) problem for a black-box field FB

∼= Fp in time subexponential in log(p).

For the remainder of this work we will only concern ourselves with reducing
other problems to the representation problem for Fp. The reader may generally
assume that p is small, such that the representation problem for Fp is easy to
solve.

2.5 The Representation Problem for Fpk for a given Fp-Basis

Before we proceed to the general case, we first investigate the simpler case where
the initial state of the black-box B is I = [x, b1, . . . , bk], and b1, . . . , bk form a
basis of FB as Fp-vector space. We efficiently reduce this problem to the repre-
sentation problem for Fp discussed in Section 2.4.

Lemma 4. The representation problem for a black-box field FB of characteristic
p with initial state I = [x, b1, . . . , bk], where b1, . . . , bk form an Fp-basis of FB,
is efficiently reducible to the representation problem for Fp.



Proof. The proof relies on the well-known dual basis theorem (see e.g. [LN97]):
For any Fp-basis {b1, . . . , bk} of Fpk there exists a dual basis {c1, . . . , ck} with the
property that trF

pk /Fp
(cibj) = δij , where δij designates the Kronecker-Delta. We

calculate the dual basis {c1, . . . , ck} for the basis {b1, . . . , bk} inside the black-
box. This can be done efficiently as follows:

We write the elements of the dual basis as ci =
∑k

l=1 αilbl. Furthermore,
let A = (αil)i,l=1,...,k be the coefficient matrix, B = (trF

pk /Fp
(blbj))l,j=1,...,k

the trace matrix, and Ik the identity matrix. Then the definition of the dual
basis yields a matrix equation AB = Ik. Traces can be computed efficiently
inside the black-box using square-and-multiply techniques, so the trace matrix
B can be efficiently computed inside the black-box. Since B always has full rank
[LN97], the matrix equation AB = Ik can be solved for the αil using Gaussian
elimination (inside the box B).

As the characteristic p and the exponent k are known, we can efficiently
compute additive and multiplicative inverses (see Section 2.2). Solving for the k2

unknowns in the matrix A using Gaussian elimination is efficient, and requires
only field operations and equality checks. Hence it can be performed in the
black-box and we can efficiently compute the dual basis elements ci inside the
black-box.

To represent the challenge x in the basis {b1, . . . , bk}, we now calculate ξi =
trF

pk /Fp
(cix) ∈ Fp inside the black-box and have x =

∑k
i=1 ξibi by the dual

basis property. We use an oracle O that solves the representation problem for Fp

(possibly instantiated according to Section 2.4) to extract the ξi from the black
box, obtaining the required representation of x in the given generators (basis)
{b1, . . . , bk}. ut

3 The Representation Problem for Fpk for Arbitrary
Generating Sets

Now we turn to the general case, where a black-box field FB of characteristic p is
not necessarily given by a basis, but by an arbitrary generating set {g1, . . . , gd}
which generates FB as Fp-algebra.

3.1 Main Theorem

Before we get to our main result, we first discuss the representability problem.

Lemma 5. The representability problem for a black-box field FB of characteris-
tic p with initial state I = [x, g1, . . . , gd] can be solved efficiently and the extension
degree k such that FB

∼= Fpk can be found efficiently.

Proof. We need to determine efficiently whether x is representable in the genera-
tors g1, . . . , gd and then find k such that FB

∼= Fpk . To this end we first determine



the size ki := k(gi) := |Fp[gi]| of the subfield Fp[gi] ≤ FB of the black-box field
FB generated by gi, for i = 1, . . . , d. We have

ki := k(gi) = min{j ∈ N : gi = gpj

i } (1)

by the properties of the Frobenius homomorphism y 7→ yp [LN97]. Eq. (1) can
be evaluated efficiently using square-and-multiply.

Now the field element x is representable in the generators g1, . . . , gd if and
only if x ∈ Fp[g1, . . . , gd] or, equivalently, Fp[x] ≤ Fp[g1, . . . , gd]. But the field
Fp[g1, . . . , gd] generated by g1, . . . , gd is isomorphic to the smallest field Fpk′

where k′ = lcml
i=1(ki) that contains all the Fpki . Hence x is representable in

the generators g1, . . . , gd if and only if k(x) | k′. Moreover, independently of the
representability of x we have k = lcm(k(x), k′). ut

We can now state our main result, an efficient reduction from the repre-
sentation problem for an extension field to the representation problem for the
underlying prime field:

Theorem 1. The representation problem for the black-box field FB of charac-
teristic p with initial state I = [x, g1, . . . , gd] (not necessarily a basis) such that x
is representable in g1, . . . , gd is efficiently reducible to the representation problem
for Fp.

We shall see later that from this theorem we can also obtain efficient reduc-
tions of the extraction and isomorphism problems to the representation problem
for the underlying prime field Fp.

3.2 Proof of Theorem 1

By assumption, the challenge x is representable in the generators g1, . . . , gd. We
will show how to efficiently generate a Fp-power-basis {g0, g1, . . . , gk−1} for FB

inside the black-box. The representation problem can then be efficiently reduced
to the representation problem for Fp using Lemma 4.10

Algorithm 1 returns an Fp-power-basis for FB by computing an element
g ∈ FB (a generator), such that Fp[g] = Fpk . To this end Algorithm 1 iter-
ates over the generators g1, . . . , gd, checking if the current gi is already con-
tained in Fp[g] for the current g.11 If not, Algorithm 1 invokes the algorithm

10 One might suspect that the {gj
i }i=1,...,d;j=1,...,k already generate FB as an Fp-vector

space. However, this is not the case. As an example, take F26 . Then we can find
generators g2 ∈ F22 ⊂ F26 and g3 ∈ F23 ⊂ F26 such that F2[g2, g3] = F26 . But
gj

i ∈ F2i , so the Fp-vector space V generated by {gj
i } has dimension dimF2 V ≤

dimF2 F22 + dimF2 F23 = 5 < 6 = dimF2 F26 .
11 Note that the number of generators gi appearing in the representation of the gener-

ator g (and thereby the representation of x) could be reduced by considering only
the generators gi corresponding to the maximal elements in the lattice formed by
the ki under the divisibility relation (these suffice to generate the entire field FB).
For ease of exposition we do not do this.



combine gen(g, gi) to obtain a new g (which we call g′ for now) such that
Fp[g′] = Fp[g, gi]. Clearly, Fp[g] = Fp[g1, . . . , gd] when the algorithm terminates,
and hence {g0, g1, . . . , gk−1} is a Fp-power-basis for Fp[g1, . . . , gd] = FB.

Algorithm 1 Compute power-basis
1: g := 1
2: m := 1
3: for i = 1 to d do
4: ki := k(gi) := min{j ∈ N : gi = gpj

i }
5: if ki - m then
6: m := lcm(m, ki)
7: g := combine gen(g, gi)
8: end if
9: end for

10: return power basis {g0, g1, . . . , gk−1}

As g is computed inside the black-box from the initially given generators
g1, . . . , gd using only field operations, a representation q′(g1, . . . , gd) = g of g
(and therefore of all basis elements) in the generators g1, . . . , gd is known. Now
Lemma 4 gives a representation q′′(g0, g1, . . . , gk−1) = x of the challenge x in
the basis elements, so a representation q(g1, . . . , gd) = x of x in the generators
g1, . . . , gd can be recovered by substitution:

q(g1, . . . , gd) = q′′(g0, g1, . . . , gk−1)

= q′′(q′(g1, . . . , gd)0, q′(g1, . . . , gd)1, . . . , q′(g1, . . . , gd)k−1)

Algorithm 1 is obviously efficient if the algorithm combine gen is efficient. So,
to complete the proof of Theorem 1, we only need to provide an algorithm
combine gen(a, b) that, given two elements a, b ∈ FB, efficiently computes a
generator g such that Fp[g] = Fp[a, b].

Algorithm 2 combine gen(a, b)
1: find k′a , k′b such that

– k′a | k(a), k′b | k(b),
– gcd(k′a, k′b) = 1,
– lcm(k′a, k′b) = lcm(k(a), k(b))

2: find a′ ∈ Fp[a] and b′ ∈ Fp[b] such that k(a′) = k′a and k(b′) = k′b
3: return a′ + b′

Claim. Given two elements a, b ∈ FB, the algorithm combine gen(a, b) efficiently
computes a generator g such that Fp[g] = Fp[a, b].

Proof. We analyze algorithm combine gen(a, b) step by step:



Step 1 can be performed in time polynomial in k (where pk = |FB|), and hence
in log(|FB|), by factoring k(a) and k(b) (which both divide k). 12

Step 2 relies on the following lemma [Len05]:

Lemma 6. Let M ≥ L ≥ K be a tower of finite fields and let b1, . . . , bn be a
K-basis of M . Then {trM/L(b1), . . . , trM/L(bn)} contains a K-basis of L.

Proof. From [LN97, 2.23(iii)] we know that trM/L : M → L is L-linear and
surjective. Hence for all d ∈ L there exists an c ∈ M such that trM/L(c) = d.
Since b1, . . . , bn form a K-basis of M , the element c ∈ M can be expressed as
c =

∑n
i=1 γibi where γi ∈ K (i = 1, . . . , n). Hence using the L-linearity of trM/L

we have

d = trM/L(c) = trM/L(
n∑

i=1

γibi) =
n∑

i=1

γi trM/L(bi).

As we can represent every d ∈ L by a K-linear combination in {trM/L(b1), . . . ,
trM/L(bn)}, this set must contain a K-basis of L. ut

As we know k′a and k(a) from Step 1, and using the fact that the elements
{ai : i = 0, . . . , k(a) − 1} form an Fp-basis of Fp[a], we can compute the set
{trFp[a]/F

p
k′

a
(ai) : i = 0, . . . , k(a) − 1} in time O(k3 log(p)), which contains by

the lemma above an Fp-basis of F
pk′

a
.

The following claim is from [BvzGL01, Lemma 6.2]. For completeness we
provide a short proof sketch.

Claim. Any Fp-basis of an extension field Fp` contains a basis element a′ such
that Fp` = Fp[a′].

Proof (sketch). The Fp-dimension of the span of all proper subfields of Fp` can
be computed by application of the inclusion-exclusion principle (first adding the
dimensions of all maximal subfields, then subtracting the dimensions of their
intersections, then adding the dimensions of the intersections of the intersec-
tions, and so on). Using the Möbius function µ and the Euler function ϕ we
can hence write the Fp-dimension of the span of all proper subfields of Fp` as
−

∑
d|`,d 6=` µ(`/d)d = `−ϕ(`) < `. As the Fp-dimension of the span of all proper

subfields of Fp` is smaller then the Fp-dimension ` of Fp` , there must be a basis
element a′ which is not contained in any proper subfield of Fp` , and therefore
Fp` = Fp[a′]. ut

By the claim above there is a basis element a′, that generates F
pk′

a
, i.e.

F
pk′

a
= Fp[a′]:

∃a′ ∈ {trFp[a]/F
p

k′
a
(ai) : i = 0, . . . , k(a)− 1} : k(a′) = k′a.

12 Bach and Shallit [BS96, Section 4.8] give a much more efficient algorithm for com-
puting such values k′a, k′b of complexity O((log k(a)k(b))2).



By checking this property for all candidate elements in {trFp[a]/F
p

k′
a
(ai) : i =

0, . . . , k(a) − 1} we find the generator a′ in time O(k3 log(p)). Analogously we
may determine b′ such that k(b′) = k′b.

Step 3. To complete the analysis of the algorithm combine gen(x, y), it remains
to show that given a′, b′ from Step 2, we have Fp[a′ + b′] = Fp[a, b]. Since
lcm(k(a′), k(b′)) = lcm(k(a), k(b)) by Step 1, we have Fp[a′, b′] = Fp[a, b], so it
only remains to show that Fp[a′ + b′] = Fp[a′, b′]. We have Fp[a′, b′] = Fp[a′, a′ +
b′] = Fp[a′ + b′, b′] and gcd(k(a′), k(b′)) = 1, therefore

lcm(k(a′), k(b′)) = lcm(k(a′), k(a′ + b′)) = lcm(k(a′ + b′), k(b′)) = k(a′)k(b′).

It is easy to see that then k(a′+b′) = k(a′)k(b′) holds, and therefore Fp[a′+b′] =
Fp[a, b], as required. ut

3.3 Implications of Theorem 1

From Theorem 1 and Remark 1 we obtain the following corollary:

Corollary 2. The extraction problem for any BBF FB of characteristic p is
efficiently reducible to the representation problem for Fp.

The extraction problem asks for the computation of an isomorphism φ :
FB → K. Note that the computation of φ−1 also reduces efficiently to the
representation problem for Fp, because we can efficiently obtain a power-basis
{g0, g1, . . . , gk−1} inside the black-box, as in the proof of Theorem 1. From this
basis we can then compute the basis {φ(g0), φ(g1), . . . , φ(gk−1)} for K. Hence the
isomorphism φ−1 can be simply and efficiently computed by basis representation.

Corollary 3. Let FB be a BBF of characteristic p and K some explicitly given
field (in the sense of [Len91]) such that K ∼= FB. Then the isomorphism problem
for FB and K can be efficiently reduced to the representation problem for Fp.

Proof. We show that it is possible to efficiently find a field K ′ ∼= FB that is
explicitly given by an irreducible polynomial, such that the isomorphism problem
for FB and K ′ efficiently reduces to the representation problem for Fp. The
corollary then follows from [Len91], which states that the isomorphism problem
for two explicitly given finite fields can be solved efficiently.

So, let an oracle O for the representation problem over Fp be given. As in the
proof of Theorem 1 we efficiently compute a power-basis {g0, g1, . . . , gk−1} inside
the black-box. By Lemma 4 we compute a representation q(g0, g1, . . . , gk−1) =
gk of gk in the basis elements. Note that the minimal polynomial fg ∈ Fp[X]
of g over Fp is then exactly fg(X) = Xk − q(X0, X1, . . . , Xk−1). Let K ′ =
Fp[X]/(fg). Then the required isomorphisms φ and φ−1 are efficiently given by
basis representation. ut



4 Conclusions

We have shown that, given an efficient algorithm for the representation problem
for Fp, we can solve the representability, representation, extraction and isomor-
phism problems for a black-box extension field FB

∼= Fpk in polynomial time.
We achieve this by efficiently constructing (in the generators) an Fp-power-basis
{g0, g1, . . . , gk−1} for the black-box field FB inside the black-box, which is inter-
esting in its own right.

For small characteristic p we can immediately solve the above problems ef-
ficiently, as in this case solving the representation problem for Fp (e.g. using
Baby-Step-Giant-Step) is easy.

As a consequence, field-homomorphic one-way permutations over fields of
small characteristic p, in particular over F2k , do not exist, because such a func-
tion would constitute an instantiation of a black-box field13 and could be effi-
ciently inverted using the solution to the extraction problem given above. This
implies that over fields of small characteristic there can be no field-homomorphic
analogue to the group-homomorphic RSA encryption scheme, which constitutes
a group-homomorphic trapdoor one-way permutation.

For the same reason, even probabilistic field-homomorphic encryption sche-
mes (both private-14 and public-key) over fields of small characteristic p, in
particular over F2k , cannot be realized, if they allow for checking the equal-
ity of elements. This is unfortunate because such schemes could have interest-
ing applications in multi-party computation and computation with encrypted
data (e.g. server-assisted computation) [SYY99,ALN87,Dom02]. For instance we
might be interested in handing encrypted field elements to a computing facility
and having it compute some (known) program on them. If the encryption per-
mits equality checks, the computing facility can recover the field elements up to
isomorphism.

Furthermore, a polynomial-time solution to the isomorphism problem implies
that any problem posed on a black-box field (i.e., computing discrete logarithms
over the multiplicative group) can be efficiently transferred to an explicitly rep-
resented field, and be solved there using possibly representation-dependent algo-
rithms (e.g. the number field sieve). The solution can then efficiently be trans-
ferred back to the black-box field. So any representation-dependent algorithm
for finite fields is applicable (in the case of small characteristic) to black-box
fields. For example, computing discrete logarithms in the multiplicative group
over a finite field is no harder in the black-box setting than if the field is given
explicitly by an irreducible polynomial.

Of course these conclusions do apply not only to fields of small character-
istic p, but to any scenario where we can efficiently solve the representation

13 Instead of generators we have here the possibility to “insert” elements of an explicitly
given field into the “black-box” of the image of the function.

14 This result requires Theorem 1 whereas the results above already follow from Lemma
4. Also, note that in the private-key case it is only possible to recover encrypted field
elements up to isomorphism, as we may have no knowledge of the plaintext field.



problem for the underlying prime field Fp. Hence we obtain subexponential-time
solutions to the above problems under a plausible number-theoretic conjecture
applying the work of Boneh and Lipton [BL96] for solving the representation
problem for Fp. Furthermore we can, under a plausible number-theoretic con-
jecture, solve the problems above efficiently, even for large characteristic p, if
we are willing to admit non-uniform solutions (solutions that require a polyno-
mial amount of advice depending on the characteristic p) using an algorithm by
Maurer [Mau94] for solving the representation problem for Fp.

Compared to the case of small characteristic, the situation for fields of large
characteristic is then more complex, because the only known efficient algorithm
for solving the representation problem for Fp is non-uniform [Mau94,MW99],
i.e. it requires a help-string that depends on p. When considering homomorphic
encryption and homomorphic one-way permutations, this means that our impos-
sibility results hold for cases where a malicious party may fix the characteristic
p. In this case the attacker can generate p along with the required help-string to
break the scheme. On the other hand our impossibility results do not apply if
the characteristic p cannot be determined by the attacker, for instance because
it is generated by a trusted party.

It remains an open problem to resolve this issue by providing an efficient
uniform algorithm for the representation problem for Fp, or by proving the
inexistence thereof.
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[BS84] László Babai and Endre Szemerédi. On the complexity of matrix group prob-
lems I. In 25th Annual Symposium on Foundations of Computer Science,
pages 229–240, Singer Island, Florida, 1984. IEEE.

[BS96] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, volume 1 of Foun-
dations of Computing. MIT Press, Cambridge, Massachusetts, 1996.

[BvzGL01] Eric Bach, Joachim von zur Gathen, and Hendrik W. Lenstra, Jr. Factoring
polynomials over special finite fields. Finite Fields and Their Applications,
7:5–28, 2001.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(5):644–654, 1976.



[Dom02] Josep Domingo-Ferrer. A provably secure additive and multiplicative privacy
homomorphism. In Agnes Hui Chan and Virgil D. Gligor, editors, Informa-
tion Security, 5th International Conference, ISC 2002, volume 2433 of Lecture
Notes in Computer Science, pages 471–483. Springer, 2002.

[Len91] Hendrik W. Lenstra, Jr. Finding isomorphisms between finite fields. Mathe-
matics of Computation, 56(193):329–347, 1991.

[Len05] Hendrik W. Lenstra, Jr. Personal Communication, 2005.
[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields, volume 20 of Encyclopedia

of Mathematics and its Applications. Cambridge University Press, 2nd edition,
1997.

[Mau94] Ueli Maurer. Towards the equivalence of breaking the Diffie-Hellman pro-
tocol and computing discrete logarithms. In Yvo Desmedt, editor, Advances
in Cryptology — CRYPTO ’94, volume 839 of Lecture Notes in Computer
Science, pages 271–281. Springer-Verlag, 1994.

[Mau05] Ueli Maurer. Abstract models of computation in cryptography. In Nigel P.
Smart, editor, Cryptography and Coding 2005, volume 3796 of Lecture Notes
in Computer Science, pages 1–12. Springer-Verlag, 2005.

[MW99] Ueli Maurer and Stefan Wolf. The relationship between breaking the Diffie-
Hellman protocol and computing discrete logarithms. SIAM Journal on Com-
puting, 28(5):1689–1721, April 1999.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume
1233 of Lecture Notes in Computer Science, pages 256–268. Springer-Verlag,
1997.

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-interactive CryptoCom-
puting for NC1. In Proceedings of the 40th Symposium on Foundations of
Computer Science (FOCS), pages 554–567, New York, NY, USA, 1999. IEEE
Computer Society Press.


