
Cryptanalysis of the Tiger Hash Function?

Florian Mendel and Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

{Florian.Mendel,Vincent.Rijmen}@iaik.tugraz.at

Abstract. Tiger is a cryptographic hash function with a 192-bit hash
value. It was proposed by Anderson and Biham in 1996. Recently, weak-
nesses have been shown in round-reduced variants of the Tiger hash
function. First, at FSE 2006, Kelsey and Lucks presented a collision at-
tack on Tiger reduced to 16 and 17 (out of 24) rounds with a complexity
of about 244 and a pseudo-near-collision for Tiger reduced to 20 rounds.
Later, Mendel et al. extended this attack to a collision attack on Tiger
reduced to 19 rounds with a complexity of about 262. Furthermore, they
show a pseudo-near-collision for Tiger reduced to 22 rounds with a com-
plexity of about 244. No attack is known for the full Tiger hash function.

In this article, we show a pseudo-near-collision for the full Tiger hash
function with a complexity of about 247 hash computations and a pseudo-
collision (free-start-collision) for Tiger reduced to 23 rounds with the
same complexity.

Keywords: cryptanalysis, hash functions, differential attack, collision,
near-collision, pseudo-collision, pseudo-near-collision

1 Introduction

Tiger is a cryptographic iterated hash function that processes 512-bit blocks and
produces a 192-bit hash value. It was proposed by Anderson and Biham in 1996.
Recent results in the cryptanalysis of Tiger show weaknesses in round-reduced
variants of the hash function. At FSE 2006, Kelsey and Lucks presented a colli-
sion attack on 16 and 17 (out of 24) rounds of Tiger. The attack has a complexity
of about 244 evaluations of the compression function. Furthermore, they present
a pseudo-near-collision for a variant of Tiger reduced to 20 rounds with a com-
plexity of about 248. These results were later improved by Mendel et al. in [3].
They show that a collision can be found for Tiger reduced to 19 rounds with a
complexity of about 262 evaluations of the compression function. Furthermore,
they present a pseudo-near-collision for Tiger reduced to 22 rounds with a com-
plexity of about 244. However, so far no attack is known for the full Tiger hash
function.
? The work in this paper has been supported by the Austrian Science Fund (FWF),

project P18138.

In this article, we present a 1-bit circular pseudo-near-collision for the full
Tiger hash function with a complexity of about 247 hash computations and a
pseudo-collision (free-start-collision) for a variant of Tiger reduced to 23 rounds
with the same complexity. The attack is based on previous attacks presented
in [2] and [3]. Note that in the attacks of Kelsey and Lucks and Mendel et al. on
round-reduced variants of Tiger, the S-boxes of the hash function are addressed
wrongly (big endian instead of little endian). However, this error can be fixed
easily, because there is really a large amount of freedom in these attacks on
round-reduced variants of Tiger.

The remainder of this article is structured as follows. A description of the
Tiger hash function is given in Section 2. In Section 3, we describe the basic
attack strategy on Tiger based on the work of Kelsey and Lucks on round-reduced
Tiger. We follow this attack strategy in Section 4 to construct a 1-bit circular
pseudo-near-collision for Tiger with a complexity of about 247. In Section 5, we
show a pseudo-collision for Tiger reduced to 23 rounds with the same complexity.
Finally, we present conclusions in Section 6.

2 Description of the Hash Function Tiger

Tiger is a cryptographic hash function that was designed by Anderson and Biham
in 1996 [1]. It is an iterative hash function that processes 512-bit input message
blocks and produces a 192-bit hash value. In the following, we briefly describe
the hash function. It basically consists of two parts: the key schedule and the
state update transformation. A detailed description of the hash function is given
in [1]. For the remainder of this article, we will follow the notation given in
Table 1.

Table 1. Notation

Notation Meaning

A � B addition of A and B modulo 264

A � B subtraction of A and B modulo 264

A � B multiplication of A and B modulo 264

A⊕B bit-wise XOR-operation of A and B
¬A bit-wise NOT-operation of A

A � n bit-shift of A by n positions to the left
A � n bit-shift of A by n positions to the right

Xi message word i (64 bits)
Xi[even] the even bytes of message word Xi (32 bits)
Xi[odd] the odd bytes of message word Xi (32 bits)

2.1 State Update Transformation

The state update transformation of Tiger starts from a (fixed) initial value IV
of three 64-bit words and updates them in three passes of eight rounds each. In

each round one 64-bit word X is used to update the three state variables A, B
and C as follows:

C = C ⊕X

A = A � even(C)
B = B � odd(C)
B = B � mult

The results are then shifted such that A,B, C become B,C,A. Fig. 1 shows one
round of the state update transformation of Tiger.

Xi+1

Ai

even

odd

Bi Ci

Ai+1 Bi+1 Ci+1

Fig. 1. The round function of Tiger.

The non-linear functions even and odd used in each round are defined as follows:

even(C) = T1[c0]⊕ T2[c2]⊕ T3[c4]⊕ T4[c6]
odd(C) = T4[c1]⊕ T3[c3]⊕ T2[c5]⊕ T1[c7]

where state variable C is split into eight bytes c7, . . . , c0 with c7 is the most
significant byte (and not c0). Four S-boxes T1, . . . , T4 : {0, 1}8 → {0, 1}64 are
used to compute the output of the non-linear functions even and odd. For the
definition of the S-boxes we refer to [1]. Note that state variable B is multiplied
with the constant mult ∈ {5, 7, 9} at the end of each round. The value of the
constant is different in each pass of the Tiger hash function.

After the last round of the state update transformation, the initial values
A−1, B−1, C−1 and the output values of the last round A23, B23, C23 are com-
bined, resulting in the final value of one iteration (feed forward). The result is
the final hash value or the initial value for the next message block.

A24 = A−1 ⊕A23

B24 = B−1 � B23

C24 = C−1 � C23

2.2 Key Schedule

The key schedule is an invertible function which ensures that changing a small
number of bits in the message will affect a lot of bits in the next pass. While the
message words X0, . . . , X7 are used in the first pass to update the state variables,
the remaining 16 message words, 8 for the second pass and 8 for the third pass,
are generated by applying the key schedule as follows:

(X8, . . . , X15) = KeySchedule(X0, . . . , X7)
(X16, . . . , X23) = KeySchedule(X8, . . . , X15)

The key schedule modifies the inputs (Y0, . . . , Y7) in two steps:

first step second step

Y0 = Y0 � (Y7 ⊕ A5A5A5A5A5A5A5A5) Y0 = Y0 � Y7

Y1 = Y1 ⊕ Y0 Y1 = Y1 � (Y0 ⊕ ((¬Y7) � 19))
Y2 = Y2 � Y1 Y2 = Y2 ⊕ Y1

Y3 = Y3 � (Y2 ⊕ ((¬Y1) � 19)) Y3 = Y3 � Y2

Y4 = Y4 ⊕ Y3 Y4 = Y4 � (Y3 ⊕ ((¬Y2) � 23))
Y5 = Y5 � Y4 Y5 = Y5 ⊕ Y4

Y6 = Y6 � (Y5 ⊕ ((¬Y4) � 23)) Y6 = Y6 � Y5

Y7 = Y7 ⊕ Y6 Y7 = Y7 � (Y6 ⊕ 0123456789ABCDEF)

The final values (Y0, . . . , Y7) are the output of the key schedule and the message
words for the next pass.

3 Basic Attack Strategy

In this section, we briefly describe the attack strategy of Kelsey and Lucks to
attack round-reduced variants of the Tiger hash function. A detailed descrip-
tion of the attack is given in [2]. For a good understanding of our attack it is
recommended to study it carefully. The attack can be summarized as follows.

1. Find a characteristic for the key schedule of Tiger which holds with high
probability. In the ideal case this probability is 1.

2. Use a kind of message modification technique developed for Tiger to con-
struct certain differences in the state variables, which can then be canceled
by the differences of the message words in the following rounds.

These two steps of the attack are described in detail in the following sections.

3.1 Finding a good Characteristic for the Key Schedule of Tiger

To find a good characteristic for the key schedule of Tiger, we use a linearized
model of the key schedule. Therefore, we replace all modular additions and
subtractions by an XOR operation resulting in a linear code over GF (2). Finding

a characteristic in the linear code is not difficult, since it depends only on the
differences in the message words. The probability that the characteristic holds
in the original key schedule of Tiger is related to the Hamming weight of the
characteristic. In general, a characteristic with low Hamming weight has a higher
probability than one with a high Hamming weight.

For finding a characteristic with high probability (low Hamming weight), we
use probabilistic algorithms from coding theory. It has been shown in the past
(cryptanalysis of SHA-1 [4]) that these algorithms work quite well. Furthermore,
we can impose additional restrictions on the characteristic by forcing certain
bits/words to zero. Note that this is needed to find suitable characteristics for
the key schedule of Tiger. For an attack on the Tiger hash function we need
many zeros in the first and last rounds of the hash function.

3.2 Message Modification by Meet-in-the-Middle

In order to construct a collision in Tiger reduced to 16 rounds, Kelsey and Lucks
use a message modification technique developed for Tiger. The idea of message
modification in general is to use the degree of freedom one has in the choice of
the message words to fulfill conditions on the state variables. In the attack on
Tiger this method is used to construct a certain differential pattern in the state
variables, which can then be canceled by the differences of the message words in
the following rounds. This leads to a collision in a round reduced variant of Tiger.
In the following we will briefly describe this message modification technique
according to Fig. 2.

Assume, we are given Ai−1, Bi−1, Ci−1 and A∗
i−1, B∗

i−1, C∗
i−1 as well as

∆⊕(Xi) and ∆⊕(Xi+1). Then the modular difference ∆�(Ci+1) can be forced
to be any difference δ with a probability of 2−1 by using a birthday attack.
We try out all 232 possibilities for Xi−1[odd] to generate 232 candidates for
∆�(odd(Bi)). Similarly, we try out all Xi[even] to generate 232 candidates for
∆�(even(Bi+1)). Subsequently, we use a meet-in-the-middle approach to solve
the following equation:

∆�(Ci+1) = mult � [∆�(Bi−1) � ∆�(odd(Bi))] � ∆�(even(Bi+1)) = δ . (1)

The method can be summarized as follows:

1. Store the 232 candidates for ∆�(odd(Bi)) in a table.
2. For all 232 candidates for ∆�(even(Bi+1)), test if some ∆�(odd(Bi)) exists

in the table with

∆�(odd(Bi)) = (∆�(even(Bi+1)) � δ) � mult−1 � ∆�(Bi−1) .

This technique needs about 236 bytes of storage and takes 233 evaluations of
each of the functions odd and even. This is equivalent to about 229 evaluations
of the compression function of Tiger.

Xi

Ai-1 Bi-1 Ci-1

Xi+1

δ

even

odd

even

odd

Fig. 2. Message Modification by Meet-in-the-Middle.

4 A Pseudo-Near-Collision for Tiger

In this section, we will present a 1-bit circular pseudo-near-collision for the Tiger
hash function. Note that the difference in the final hash value is the same as in
the initial value. In other words, we have a pseudo-collision in the compression
function of Tiger after 24 rounds, but due to the feed forward the collision
after 24 rounds is destroyed, resulting in a 1-bit pseudo-near-collision for the
Tiger hash function. The attack has a complexity of about 247 evaluations of the
compression function. In the attack, we extend techniques invented by Kelsey
and Lucks in the attack on round-reduced variants of Tiger.

We use the characteristic given below for the key schedule of Tiger to con-
struct the pseudo-near-collision in the hash function. This characteristic holds
with a probability of 2−1 which facilitates the attack.

(0, I, 0, 0, 0, I, I ′, 0) → (0, I, 0, I, 0, 0, 0, 0) → (0, I, 0, 0, 0, 0, 0, 0) (2)

I denotes a difference in the MSB of the message word and I ′ := I � 23. Note
that the XOR-difference (denoted by ∆⊕) equals I if and only if the modular
difference (denoted by ∆�) equals I.

In order to have a pseudo-collision in the compression function of Tiger after
24 rounds, it is required that there is a pseudo-collision after round 17. Hence,
the following differences are needed in the state variables for round 14 of Tiger
(see Table 2).

∆⊕(A14) = 0, ∆⊕(B14) = I, ∆⊕(C14) = 0 (3)

Constructing these differences in the state variables for round 14 is the most
difficult part of the attack. We use the message modification technique described
in Section 3.2 for this. In the following sections, we will describe all steps of the
attack in detail.

Table 2. Characteristic for a 1-bit pseudo-near-collision in the Tiger hash function.

i ∆Ai ∆Bi ∆Ci ∆Xi

initial value -1 I 0 0

Pass 1

0 0 0 I 0
1 0 0 0 I
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 * I 0 I
6 * I ′ * I ′

7 * * * 0

Pass 2

8 * * * 0
9 * * * I
10 * * * 0
11 * * K⊕ I
12 * K+ L⊕ 0
13 0 L+ I 0
14 0 I 0 0
15 I 0 0 0

Pass 3

16 0 0 I 0
17 0 0 0 I
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0
23 0 0 0 0

feed forward 24 I 0 0

4.1 Precomputation

The precomputation step basically consists of 2 parts. First, we have to find a
set L of possible modular differences L+ which are consistent to a low weight
XOR-difference L⊕. A modular difference L+ is consistent to L⊕ if there exist
p and p∗ such that p∗ ⊕ p = L⊕ and p∗ � p = L+. Let L′ be the set of modular
differences L+ which are consistent to the XOR-difference L⊕ then we define the
set L of possible modular differences as follows:

L = {L+ ∈ L′ : L+ = odd(B14 ⊕ I) � odd(B14)}

Note that the size of the set L′ is related to the Hamming weight of L⊕, namely
|L′| = 2HW(L⊕). In order to optimize the complexity of the meet-in-the-middle
step used in the attack, we need an L⊕ with low Hamming weight. In [2], the
authors assume that an L⊕ with Hamming weight of 8 exists. However, the best
Hamming weight we found for L⊕ is 10.

L⊕ = 02201080A4020104 (4)

In total we found 502 = |L| possible modular differences (out of 1024 = |L′|)
which are consistent to the XOR-difference L⊕ given above. This facilitates the
attack in the following steps.

Second, we need a set K of possible modular differences K+ which are con-
sistent to a low weight XOR-difference K⊕.

K = {K+ ∈ K′ : K+ = odd(B13 ⊕ L⊕) � odd(B13)}

where K′ is the set of modular differences K+ which are consistent to the XOR-
difference K⊕. Of course, the choice of L⊕ and the number of possible modular
differences L+ ∈ L restricts our choices for B13[odd]. Nevertheless, we found
2 = |K| possible modular differences K+ (out of 256 = |K′|) which are consistent
to the XOR-difference K⊕ given below.

K⊕ = 0880020019000900 (5)

Note that the precomputation step of the attack has to be done only once. It
has a complexity of about 2 · 232 round computations of Tiger. This is approxi-
mately about 228.5 evaluations of the compression function of Tiger.

4.2 Compute B9, C9, and C10

In this step of the attack, we have to compute B9, C9 and C10. Therefore, we first
choose random values for B4 and B5 and compute A5 = (B4 �odd(B5))�mult.
Since there is a difference in the MSB of X5 and no differences in B4 and C4, we
also get ∆�(B5) = I and ∆�(A5) = A∗

5 � A5. Note that there is no difference
in C5, since there are no differences in A4 and B5[even].

Second, we choose a random value for B6. Since there is a difference in
∆⊕(X6) = I ′ and no difference in C5, we also know the modular difference
of ∆�(B6) = (B6 ⊕ I ′) � B6. Once we know B6 and B∗

6 = B6 � ∆�(B6),
we can calculate B9, C9, C10 (and B∗

9 , C∗
9 , C∗

10) by choosing random values for
X7, . . . , X9 and X10[even]. This step of the attack has a complexity of about
12 round computations of Tiger and fixes the message words X7, . . . , X9 and
X10[even].

4.3 Constructing the XOR-difference ∆⊕(C11) = K⊕

To construct the XOR-difference K⊕ in round 11, we use the message modifica-
tion technique described in Section 3.2. For all modular differences K+ ∈ K′, we

do a message modification step and check if ∆⊕(C11) = K⊕. Since the Hamming
weight of K⊕ is 8, this holds with a probability of 2−8. Furthermore, the mes-
sage modification step has a probability of 2−1. Hence, this step of the attack
succeeds with a probability of 2−8 · 2−1 · |K′| = 2−1 and determines the message
words X10[odd] and X11[even].

Finishing this step of the attack has a complexity of about (12 + 232 + 28 ·
232) · 2 ≈ 241 round computations of Tiger. This is approximately about 236.5

evaluations of the compression function of Tiger.

4.4 Constructing the XOR-difference ∆⊕(C12) = L⊕

Once we have fixed X10[odd] and X11[even], we can calculate the state variables
B10, C10, C11 (and B∗

10, C∗
10, C∗

11). To construct L⊕ in round 12, we use the
same method as described before. For all modular differences L+ ∈ L′, we do
a message modification step and check if ∆⊕(C12) = L⊕. Since the Hamming
weight of L⊕ is 10, this equation holds with a probability of 2−10. Hence, this
step of the attack has a probability of 2−10 · 2−1 · |L′| = 2−1 and determines the
message words X11[odd] and X12[even]. Finishing this step of the attack has a
complexity of about (241 + (232 + 232 · 210)) · 2 ≈ 243.6 round computations of
Tiger. This is approximately about 239 evaluations of the compression function
of Tiger.

4.5 Constructing the XOR-difference ∆⊕(C13) = I

Once we have fixed X11[odd] and X12[even], we can compute B11, C11 and C12

as well as the according modular differences. In order to construct the needed
difference ∆⊕(A13) = I in round 13, we apply again a message modification step.
Since the XOR-difference and the modular difference is the same for differences
in the MSB, we do not need to compute the list of modular differences that are
consistent to the XOR-difference I for the message modification step. This step
of the attack succeeds with a probability of 2−1 and determines the message
words X12[odd] and X13[even].

Once we have fixed the message words, we can compute B12, C12 and C13 as
well as the according modular differences. In order to guarantee that ∆�(B12)
can be canceled by ∆�(odd(B13)), we need that ∆�(B12) ∈ K. Since the number
of modular differences ∆�(B12) = K+ consistent to K⊕ is |K′| = 28 and |K| =
2, the probability that ∆�(B12) ∈ K is 2−7. Hence, we have to repeat the
attack about 2 · 27 times to finish this step of the attack. This determines the
message words X12[odd], X13[even] and X13[odd] and has a complexity of
about (243.6 + (232 + 232)) · 28 ≈ 251.6 round computations of Tiger. This is
about 247 evaluations of the compression function of Tiger.

Once we have fixed X13[odd] and X13, we can compute A13, B13 and C13 as
well as the according modular differences. In order to guarantee that ∆�(B13)
can be canceled in round 14 by ∆�(odd(B14)), we need that ∆�(B13) ∈ L.
Due to the choice of L⊕ and K⊕ in the precomputation step this holds with
probability 1.

Hence, we can construct a pseudo-collision in the compression function of
Tiger after 17 rounds, respectively after 24 rounds with a complexity close to
247 evaluations of the compression function of Tiger.

4.6 Computing the message words X0, . . . , X7

The attack fixes the message words X7, . . . , X13 and X14[odd]. To compute the
message words X0, . . . , X7 we use the inverse key schedule of Tiger. Therefore,
we choose a random value for X14[even] and compute X15 as follows:

X15 = (X7 ⊕ (X14 � X13)) � (X14 ⊕ 0123456789ABCDEF)

This guarantees that X7 is correct after computing the key schedule backward.
Since the characteristic we use for the key schedule of Tiger has a probability

2−1 to hold, we expect that we have to repeat this step of the attack (for a
different value of X14[even]) about two times such that the characteristic holds
in the key schedule of Tiger. This adds negligible cost to the attack complexity.

4.7 Computing the initial value IV

Once we have computed the message words X0, . . . , X7, we can run the rounds
6, 5, . . . , 0 backwards to get the initial value IV . Since there is a difference I
induced in round 1 by X1, we have to inject the same difference in the initial
value to cancel it out, namely

∆⊕(A−1) = I .

Since the difference is in the MSB, this happens with probability 1. Of course,
the feed forward destroys the pseudo-collision. After the feed forward we get the
same output differences as in the initial values.

∆⊕(A24) = ∆⊕(A−1 ⊕A23) = I

Hence, we get a 1-bit circular pseudo-near-collision for the Tiger hash function
with a complexity of about 247 evaluations of the compression function of Tiger.
Note that for an ideal hash function with a hash value of 192-bit one would
expect a complexity of about 290 to construct a pseudo-near-collision with a
1-bit difference.

5 A pseudo-collision for 23 rounds of Tiger

In a similar way as we construct the pseudo-near-collision for the full Tiger
hash function, we can also construct a pseudo-collision (free-start-collision) for
Tiger reduced to 23 rounds by using another characteristic for the key schedule.
For the attack we use the key schedule differences given below. It holds with
probability 1.

(0, 0, 0, I, 0, 0, 0, I) → (0, I, 0, 0, 0, 0, 0, I) → (0, 0, 0, 0, 0, 0, 0, I) (6)

This characteristic for the key schedule of Tiger can be used in a similar way
(as in the pseudo-near-collision for the full Tiger hash function) to construct
a pseudo-collision in Tiger reduced to 23 rounds. The attack has a complexity
of about 247 evaluations of the compression of Tiger. It can be summarized as
follows:

0. Precomputation: First, find a set of possible modular differences L+ with a
low Hamming weight XOR-difference L⊕ which can be canceled by a suitable
choice for B12. Second, we have to find a set of possible modular differences
K+ with a low Hamming weight XOR-difference K⊕ which can be canceled
out by a suitable choice for B11. Note that we use in the attack the same value
for L⊕ and K⊕ as in the pseudo-near-collision attack on the full Tiger hash
function. This step of the attack has a complexity of about 228.5 evaluations
of the compression function of Tiger.

1. Choose random values for A2, B2, C2 and X3, . . . , X7 and X8[even] to com-
pute B7, C7 and C8. This step of the attack has a complexity of about 12
round computations of Tiger.

2. Apply a message modification step to construct the XOR-difference K⊕ in
round 9. This has a complexity of about 236.5 and determines the message
words X8[odd] and X9[even].

3. Apply another message modification step to construct the XOR-difference
L⊕ in round 10. Finishing this step of the attack has a complexity of about
239 and determines the message words X9[odd] and X10[even].

4. To construct the XOR-difference I in round 11, we apply again a message
modification step. This step has a complexity of about 240 and determines
the message words X10[odd] and X11[even].

5. Once we have fixed the message words, we can compute B10, C10 and C11

as well as the according modular differences. Since the difference in B10 can
be cancel out with a probability close to 2−7 (cf. Section 4.5), we have to
repeat the attack about 27 times. Hence, finishing this step of the attack has
a complexity of about 247 hash computations.

6. Determine X11[odd] and X12[odd] according to the result of the precompu-
tation step. This adds no additional cost to the attack complexity.

7. To compute the message words X0, . . . , X7, we have to choose suitable values
for X12[even] and X13, . . . , X15 such that X5, X6 and X7 are correct after
computing the key schedule backward. Note that X3 and X4 can be chosen
freely, because we can modify C2 and C3 such that C2 ⊕ X3 and C3 ⊕ X4

stay constant. In detail, we choose arbitrary values for X13 ,X14, X15 and
calculate X13, . . . , X15 as follows.

X13 = (X5 + (X12 + (X11 ⊕ (¬X10 � 23))))⊕X12

X14 = (X6 − (X13 ⊕X12 ⊕ (¬(X12 + (X11 ⊕ (¬X10 � 23))) � 23))) + X13

X15 = (X7 ⊕ (X14 −X13))− (X14 ⊕ 0123456789ABCDEF)

This adds negligible cost to the attack complexity and guarantees that X5,
X6 and X7 are always correct after computing the key schedule backward.

8. To compute the initial chaining values A−1, B−1 and C−1 run the rounds 2,
1, and 0 backwards.

Hence, we can construct a pseudo-collision (free-start-collision) for Tiger reduced
to 23 rounds with a complexity of about 247 applications of the compression
function.

6 Conclusion

In this article, we have shown a 1-bit circular pseudo-near-collision for the full
Tiger hash function with a complexity of about 247 evaluations of the compres-
sion function of Tiger. This is the first attack on the full Tiger hash function.
Furthermore, we show a pseudo-collision for Tiger reduced to 23 (out of 24)
rounds with the same complexity. Our attack is based on the attack of Kelsey
and Lucks on round-reduced variants of the Tiger hash function. This work
shows that the security margins of the Tiger hash function are not as good as
one would expect.

Acknowledgement

The authors wish to thank Sebastiaan Indesteege, and the anonymous referees
for useful comments and discussions.

References

1. Ross J. Anderson and Eli Biham. TIGER: A Fast New Hash Function. In Dieter
Gollmann, editor, FSE, volume 1039 of Lecture Notes in Computer Science, pages
89–97. Springer, 1996.

2. John Kelsey and Stefan Lucks. Collisions and Near-Collisions for Reduced-Round
Tiger. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in
Computer Science, pages 111–125. Springer, 2006.

3. Florian Mendel, Bart Preneel, Vincent Rijmen, Hirotaka Yoshida, and Dai Watan-
abe. Update on Tiger. In Rana Barua and Tanja Lange, editors, INDOCRYPT,
volume 4329 of Lecture Notes in Computer Science, pages 63–79. Springer, 2006.

4. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting Coding
Theory for Collision Attacks on SHA-1. In Nigel P. Smart, editor, IMA Int. Conf.,
volume 3796 of Lecture Notes in Computer Science, pages 78–95. Springer, 2005.

A Collision Attack on Tiger reduced to 16 rounds

In this section, we briefly describe the attack of Kelsey and Lucks on Tiger
reduced to 16 rounds. Note that in the original description of the attack the
wrong S-boxes are addressed. However, the attack can be easily modified to work
with the correct S-boxes as well. Note that the modified attack has a slightly
worse complexity, namely about 247 instead of 244 hash computations. For the

attack the same characteristic is used for the key schedule of Tiger as in the
original attack. The characteristic is shown below.

(I, I, I, I, 0, 0, 0, 0) → (I, I, 0, 0, 0, 0, 0, 0) (7)

It has a probability of 1 to hold in the key schedule of Tiger, which facilitates
the attack. The attack can be summarized as follows.

0. Precomputation: Like in the pseudo-near-collision attack on Tiger described
before, we have to find a set of possible modular differences L+ with a low
Hamming weight XOR-difference L⊕ which can be canceled out by a suitable
choice for B6.

L = {L+ ∈ L′ : L+ = odd(B6 ⊕ I) � odd(B6)}

Second, we have to find a set of possible modular differences K+ with a
low Hamming weight XOR-difference K⊕ which can be canceled out by a
suitable choice for B7.

K = {K+ ∈ K′ : K+ = odd(B5 ⊕ L⊕) � odd(B5)}

Note that we assume in the attack that we can find a XOR-difference L⊕ with
Hamming weight of 10 and a XOR-difference K⊕ with Hamming weight of 8
(as in the pseudo-near-collision attack on the full Tiger hash function). The
precomputation step of the attack has a complexity of about 228.5 evaluations
of the compression function of Tiger.

1. Choose random values for X0, . . . , X1 and X2[even] to compute B1, C1 and
C2. This step of the attack has a complexity of about 6 round computations
of Tiger.

2. Apply a message modification step to construct the XOR-difference K⊕ in
round 3. This step has a complexity of about 236.5 hash computations and
determines the message words X2[odd] and X3[even].

3. Apply a second message modification step to construct the XOR-difference
L⊕ in round 4. Finishing this step of the attack has a complexity of about
239 and determines the message words X3[odd] and X4[even].

4. To construct the XOR-difference I in round 5, we apply again a message
modification step. Finishing this step has a complexity of about 240 and
determines the message words X4[odd] and X5[even].

5. Once we have fixed the message words, we can compute B4, C4 and C5 as
well as the according modular differences. To cancel the difference in B4 we
need that ∆�(B4) ∈ K. Since we assume that the Hamming weight of K⊕

is 8, this has (in the worst case) a probability of 2−7.
In order to guarantee that the difference in B5 is canceled, we need that
∆�(B5) ∈ L. Since L⊕ has a Hamming weight of 10, this has a probability
(in the worst case) of 2−9. Hence, we expect that we have to repeat the
attack about 216 to finish this step. However, by choosing L⊕ and K⊕ care-
fully this can be improved. Form our analysis (for the pseudo-near-collision
for the full Tiger hash function), we expect that this probability can be im-
proved by a factor of 29, resulting in an attack complexity of about 247 hash
computations.

6. Determine X5[odd] and X6[odd] according to the results of the precompu-
tation step. This adds no additional cost to the attack complexity.

Hence, a collision can be constructed in Tiger reduced to 16 rounds with a
complexity close to 247 evaluations of the compression function. Note that the
other attacks on round-reduced variants of Tiger can be adjusted in a similar
way.

B Collision Attack on Tiger reduced to 19 rounds

In this section, we show how the collision attack on Tiger-19 presented in [3] has
to be modified to work with the correct S-boxes. The complexity of the attack
is close to 262 evaluations of the compression function of Tiger. To construct
a collision in Tiger-19 the key schedule difference given in (8) is used. It has
probability 1 to hold in the key schedule of Tiger which facilitates the attack.

(0, 0, 0, I, I, I, I, 0) → (0, 0, 0, I, I, 0, 0, 0) → (0, 0, 0, I, I, I, I, I) (8)

Since the key schedule difference from round 3 to 18 is the 16-round difference
used in the attack on Tiger-16, the same attack strategy can be used for the
collision attack on Tiger-19 as well. The attack can be summarized as follows:

1. Choose arbitrary values for X0, . . . , X4 and compute the state variables A3,
B3, and B4.

2. Employ the attack on 16 rounds of Tiger, to find the message words X5, . . . , X7

and X8, X9[odd] such that the output after round 18 collides.
3. To guarantee that X8, X9[odd] are correct after applying the key schedule,

we use the degrees of freedom we have in the choice of X0, . . . , X4. Note
that for any difference injected in X0 and X1 one can adjust X2, X3, X4

accordingly such that A3, B3 = C2 ⊕X3 and B4 = C3 ⊕X4 stay constant.
Furthermore, we get the following equations for X8 and X9 from the key
schedule of Tiger.

X8 = Y0 � Y7

X9 = Y1 � (X8 ⊕ (¬Y7 � 19))

where

Y0 = X0 � (X7 ⊕ A5A5A5A5A5A5A5A5)
Y1 = X1 ⊕ Y0

Y2 = X2 � Y1

Y3 = X3 � (Y2 ⊕ (¬Y1 � 19))
Y4 = X4 ⊕ Y3

Y5 = X5 � Y4

Y6 = X6 � (Y5 ⊕ (¬Y4 � 23))
Y7 = X7 ⊕ Y6

To solve these equations the following method is used:
(a) Choose a random value for Y0. This determines Y7 and X0.
(b) Choose a random value for X9[even]. This determines X1.
(c) Adjust X2, X3, X4 accordingly such that A3, B3 = C2 ⊕ X3 and B4 =

C3 ⊕X4 stay constant.
(d) Once we have fixed X2, X3, and X4, we have to check if Y7 is correct

(this holds with a probability of 2−64). After repeating the method about
264 times for different values of Y0, we expect to find a match.

Hence, this step of the attack has a complexity of at about 264 key schedule
computations and 4 · 264 round computations of Tiger. This is equivalent to
about 262 evaluations of the compression function of Tiger.

Thus, we can construct a collision in Tiger reduced to 19 rounds with a complex-
ity of about 262 + 247 ≈ 262 evaluations of the compression function of Tiger.

