
On Second-Order Differential Power Analysis?

Marc Joye1,??, Pascal Paillier2, and Berry Schoenmakers3

1 CIM-PACA, Centre de Micro-électronique de Provence – George Charpak
Avenue des Anénomes, Quartier Saint Pierre, 13120 Gardanne, France

marc.joye@gemplus.com
2 Advanced Research and Security Centre, Gemplus S.A.

34 rue Guynemer, 92447 Issy-les-Moulineaux, France
pascal.paillier@gemplus.com

3 Dept of Mathematics and Computing Science, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Nederlands

berry@win.tue.nl

Abstract. Differential Power Analysis (DPA) is a powerful cryptana-
lytic technique aiming at extracting secret data from a cryptographic
device by collecting power consumption traces and averaging over a se-
ries of acquisitions. In order to prevent the leakage, hardware designers
and software programmers make use of masking techniques (a.k.a. data
whitening methods). However, the resulting implementations may still
succumb to second-order DPA. Several recent papers studied second-
order DPA but, although the conclusions that are drawn are correct, the
analysis is not.
This paper fills the gap by providing an exact analysis of second-order
DPA as introduced by Messerges. It also considers several generaliza-
tions, including an extended analysis in the more general Hamming-
distance model.

Keywords. Side-channel analysis, differential power analysis, second-
order attacks.

1 Introduction

Undoubtedly, power analysis attacks constitute a cheap yet powerful cryptana-
lytic approach for extracting secret data from smart cards or other embedded
crypto-enabled devices. Among them, Differential Power Analysis (DPA) as sug-
gested in [8] presents the practical advantage of allowing data extraction even
though the attacker has only a weak knowledge of the device being attacked.
However, the original statistical technique behind DPA may require the acqui-
sition of many power traces to average away random and computational noises.
Many first-order variations of DPA, as well as other approaches such as direct
? The work described in this paper has been supported in part by the European Com-

mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
?? Seconded from Gemplus.

correlation (e.g., [5]), have emerged since [8] that lead to performance improve-
ments by lowering the number of recorded power traces.

The commonly suggested way to thwart first-order power analysis is random
masking [6] a.k.a data whitening wherein intermediate computations are handled
under a probabilistic form to defeat statistical correlation. In fact, Boolean and
arithmetic maskings are certainly the most intensively used approach to protect
power-sensitive cryptographic software as it appears that data randomization
usually works well in practice, even when hardware countermeasures are not
available. It is known, however, that masking can be defeated if the attacker
knows how to correlate power consumption more than once per computation.
This is known as second-order, or more generally higher-order, power analysis
and was originally suggested by Messerges in [12]. These attacks are known to be
more complex and delicate to carry out because they usually require the attacker
to have a deeper knowledge of the device, although this might be alleviated in
particular cases [16]. Investigating second-order power attacks, however, is of
major importance for practitioners as it remains the only known way that is
powerful enough to break real-life, DPA-protected security products.

Amazingly, second-order power analysis has remained essentially empirical
so far and has never been investigated analytically, i.e., by the means of a direct
mathematical reasoning. Second-order attacks are often described in a specific
statistical setting that relies on first-order DPA one way or another, thereby leav-
ing expected observations vague and cost estimations without a clear statement.
This paper adopts a totally different approach. We formally compute what one
expects from second-order attacking any randomized algorithm and express the
amplitude of observed peaks as a function of hardware-dependent parameters.
Although we essentially consider the case of Boolean masking, our results extend
in several directions.

The rest of this paper is organized as follows. The next section reviews the
concept of power analysis, including SPA, DPA and its higher-order generaliza-
tions. Section 3 is the core of our paper. We explain why and when second-order
DPA works and carefully evaluate the height of the expected DPA peak. Next,
in Section 4 we extend our main result from the Hamming-weight model to the
Hamming-distance model. An experimental validation on a 1st-order protected
implementation of RC6 is provided in Section 5. Finally, we conclude in Section 6.

2 Power Analysis

The power consumption of a (cryptographic) device can be monitored with an
oscilloscope by inserting a resistor between the ground or Vcc pins and the
actual ground. As the power consumption may vary depending on the manipu-
lated data, some secret information may leak. This is the basic idea behind power
analysis, and differential power analysis [8] in particular. In addition to power
consumption, other side channels have been considered, including timing [11]
and electromagnetic radiation (EM) [7, 14, 3].

2.1 SPA attacks

In simple power analysis (SPA) attacks, an adversary tries to relate the power
consumption to the data being handled from essentially a single power consump-
tion trace (which may in turn be obtained as the average trace for a number of
traces corresponding to identical data, to reduce the noise level).

To be successful in this kind of attack, however, the adversary should have
(or get) the knowledge of implementation details of the system being attacked.

2.2 DPA attacks

Differential power analysis (DPA) attacks are more powerful due to their generic
nature. In this kind of attack, an adversary collects several power consumption
traces for different inputs and applies statistical techniques to retrieve secret
information.

As an illustration, consider the following example. Suppose that at some
point, an intermediate value, say I(x, s), only depends on known data x and on
a small portion of secret data s (i.e., small enough so that all possible values for
s can be exhausted). Then for each possible value ŝ for s, the attacker prepares
two sets, S0(ŝ) and S1(ŝ), defined as:

Sb(ŝ) =
{
x | g(I(x, ŝ)) = b

}
for b ∈ {0, 1} (1)

where g is an appropriate Boolean selection function (see later). The next step
consists in averaging the corresponding power consumption traces. With 〈·〉 de-
noting the average operator and C (t) denoting the power consumption of the
device under analysis at time period t, the adversary evaluates the (first-order)
DPA trace

∆1(ŝ, t) = 〈C (t)〉x∈S1(ŝ) − 〈C (t)〉x∈S0(ŝ) . (2)

Hence, ∆1(ŝ, t) is the difference of the average power consumption for sets S1(ŝ)
and S0(ŝ), for each time period t. Assuming that (i) the intermediate data I(x, s)
always occurs at the same time period t = τ , and (ii) there are sufficiently many
values for x so that I(x, ŝ) is close to the uniform distribution, the DPA trace
∆1(ŝ, t) exhibiting the highest peak (at time period τ) is likely the one for which
ŝ = s. This way, the adversary recovers the value of secret data s.

Why does this work? Basically, the purpose of DPA is to magnify the effect
of a single bit within a machine word. Suppose that a random word in a Ω-
bit processor is known. Suppose further that the associated power consumption
obeys the Hamming-weight model, which means that power variations are corre-
lated to the Hamming weight (i.e., number of non-zero bits) of the manipulated
data words. If the selection function g(w) used to construct the sets S0(ŝ) and
S1(ŝ) (see Eq. (1)) returns the value of a bit in the representation of word w,
it follows that the words I(x, ŝ) of set S0(ŝ) have an average Hamming weight
of (Ω − 1)/2 whereas the words I(x, ŝ) of set S1(ŝ) have an average Hamming
weight of (Ω + 1)/2. As a result, the DPA trace has the property of causing a
DPA peak when the selection bit, g(I(x, s)), is handled.

2.3 Higher-order DPA attacks

kth-order DPA attacks generalize (first-order) DPA attacks by considering si-
multaneously k samples — within the same power consumption trace — that
correspond to k different intermediate values.

The main application of higher-order DPA attacks is to attack systems pro-
tected against first-order DPA [12]. A method commonly used to thwart (first-
order) DPA attacks is the so-called data whitening method. Each intermediate
sensitive data is xor-ed with a random value, unknown to the adversary. Back
to our illustration of Section 2.2, this means that the value of w = I(x, s) is
xor-ed with a random value r. Therefore, the adversary sees no longer a DPA
peak in ∆1(s, t) (cf. Eq. (2)) when t = τ and the attack fails.

However, if the adversary knows the time periods, τ1 and τ2 (τ1 6= τ2), when
the values of r and of w⊕ r are manipulated, respectively, then she can evaluate

∆2(ŝ) =
〈|C (τ2)− C (τ1)|

〉
x∈S1(ŝ)

− 〈|C (τ2)− C (τ1)|
〉

x∈S0(ŝ)
. (3)

The value ŝ for which ∆2(ŝ) is maximal (in absolute value) is likely ŝ = s and
again the adversary recovers the value of secret data s [12].

In case the adversary only knows the offset δ = τ2 − τ1 (but not τ1 nor τ2),
the previous attack can be extended as follows (cf. “known-offset 2DPA” of [16]).
The adversary evaluates the second-order DPA trace

∆2(ŝ, t) =
〈|C (t + δ)− C (t)|〉

x∈S1(ŝ)
− 〈|C (t + δ)− C (t)|〉

x∈S0(ŝ)
.

Again, under certain assumptions, the second-order DPA trace exhibiting the
highest DPA peak will likely uncover the value of s.

3 Evaluating Second-Order DPA Peaks

3.1 Basic result

Let H(x) denote the Hamming weight of x. A simple model for power leak-
age is the (generalized) Hamming-weight model. This model assumes that the
(instantaneous) power consumption C is linearly related to Hamming weight:

C (t) = εH(w) + ` , (4)

for some hardware-dependent constants ε and `, and where w is the n-bit word
manipulated at time period t.

Define, for n ≥ 1,†

En = 2−2n
∑

w,r∈{0,1}n

|H(w ⊕ r)− H(r)| .

† Note that the expression of En simplifies to En = 2−2nP
w,r∈{0,1}n |H(w)− H(r)|.

Then, with the notations of Section 2.3, we get
〈|C (τ2)− C (τ1)|

〉
w,r∈{0,1}n

g(w)=0

= |ε| 〈|H(w ⊕ r)− H(r)|〉w,r∈{0,1}n

g(w)=0

= |ε| 〈|H(w ⊕ r)− H(r)|〉
w,r∈{0,1}n−1

= |ε|En−1 . (5)

Moreover, since

En =
1
2

〈|H(w ⊕ r)− H(r)|〉w,r∈{0,1}n

g(w)=0

+
1
2

〈|H(w ⊕ r)− H(r)|〉w,r∈{0,1}n

g(w)=1

=
1
2

En−1 +
1
2

〈|H(w ⊕ r)− H(r)|〉w,r∈{0,1}n

g(w)=1

,

we also get
〈|C (τ2)− C (τ1)|

〉
w,r∈{0,1}n

g(w)=1

= |ε| (2En − En−1) . (6)

Subtracting Eqs (6) and (5), we obtain

D2 :=
〈|C (τ2)− C (τ1)|

〉
w,r∈{0,1}n

g(w)=1

− 〈|C (τ2)− C (τ1)|
〉

w,r∈{0,1}n

g(w)=0

= 2|ε| (En − En−1) . (7)

It turns out that there is a nice closed formula for En:

Proposition 1. For any integer n ≥ 1, we have

En = 2−2n n

(
2n

n

)
. (8)

Proof. From
∑2n

t=0

(
2n
t

)
= 22n and since

∑n
t=0

(
2n
t

)
=

∑2n
t=n

(
2n
t

)
, we get

n∑
t=0

(
2n
t

)
= 1

2

(
22n +

(
2n
n

))
= 22n−1 +

(
2n−1

n

)
,

and similarly,
∑n−1

t=0

(
2n−1

t

)
= 1

2

∑2n−1
t=0

(
2n−1

t

)
= 22n−2. Hence, by Lemma 1 (on

page 6), we have

22nEn =
∑

−n≤t≤n

|t|(2n
n−t

)
= 2

n∑
t=0

(n− t)
(
2n
t

)

= 2
n−1∑
t=0

n
(
2n
t

)− 2
n−1∑
t=0

t
(
2n
t

)
= 2n

n−1∑
t=0

(
2n
t

)− 4n
n−2∑
t=0

(
2n−1

t

)

= 2n
([

22n−1 +
(
2n−1

n

)− (
2n
n

)]− 2
[
22n−2 − (

2n−1
n−1

)])

= 2n
(
2n−1

n

)
= n

(
2n
n

)
.

ut

Therefore En−En−1 = 2−2n+1
(
2n−2
n−1

)
, and we find the exact value of D2 and

its asymptotic behavior, using equation (7):

D2 = |ε| 2−2n+2

(
2n− 2
n− 1

)
≈ |ε|√

πn
(9)

as asymptotic value for D2.‡ If there are sufficiently many acquisitions, it also
represents an asymptotic value for ∆2(ŝ) (cf. Eq. (3)). This approximation for
D2 is already close for small values of n. It follows, for example, that one may
expect peaks of size ≈ |ε|√

π16
= 0.141 |ε|, for n = 16 (this has to be compared

with the exact value of 0.144 |ε|, see Table 1).

3.2 Optimizing peak values

The higher-order DPA attacks, as described in Section 2.3, use the absolute
difference between the power consumption at different time periods as the basic
quantity for the analysis. This quantity fits well with the Hamming-weight model
and we have shown how to determine the expected peak value in an exact way. A
natural question is which other quantities can be used, and in particular, which
quantities give rise to higher peak values.

In this section we analyze the peak values obtained for the following gener-
alization of Eq. (7):

D2
(α)

=
〈|C (τ2)− C (τ1)|α

〉
w,r∈{0,1}n

g(w)=1

− 〈|C (τ2)− C (τ1)|α
〉

w,r∈{0,1}n

g(w)=0

for arbitrary α. Extending our basic result for this case yields

D2
(α)

= 2|ε|α (E(α)
n − E

(α)
n−1) , (10)

where E
(α)
n is defined as:

E(α)
n = 2−2n

∑

w,r∈{0,1}n

|H(w ⊕ r)− H(r)|α . (11)

Next we show how to find closed formulas for E
(α)
n for various values of α,

from which we may then determine the corresponding expected peak values.

Lemma 1. For any integer n ≥ 1,

∑

w,r∈{0,1}n

|H(w ⊕ r)− H(r)|α =
∑

−n≤t≤n

|t|α
(

2n

n− t

)
.

‡ This expression corrects the analysis given in [12] and in the subsequent papers.

Proof.
∑

w,r∈{0,1}n

|H(w ⊕ r)− H(r)|α =
∑
h

∑
r∈{0,1}n

H(r)=h

∑
i

∑
w∈{0,1}n

H(w⊕r)=i

|H(w ⊕ r)− H(r)|α

=
n∑

h=0

(
n
h

) n∑
i=0

(
n
i

)|i− h|α =
∑

−n≤t≤n

|t|α
n−t∑
i=0

(
n

t+i

)(
n
i

)

=
∑

−n≤t≤n

|t|α(
2n

n−t

)
.

ut
Theorem 1. For any integer n and α ≥ 0:

E(α)
n =

1 , α = 0 ,

2−2n n
(
2n
n

)
, α = 1 ,

n
(
nE

(α−2)
n − (

n− 1
2

)
E

(α−2)
n−1

)
, α ≥ 2 .

Proof. By induction on α. Cases α = 0 and α = 1 have been proved already. For
the case α ≥ 2, we have:

E(α)
n = 2−2n ∑

−n≤t≤n

|t|α(
2n

n−t

)
= 2−2n

∑
0≤t≤2n

|n− t|α(
2n
t

)

= 2−2n ∑
0≤t≤2n

|n− t|α−2 (n− t)2
(
2n
t

)

= n2 2−2n ∑
0≤t≤2n

|n− t|α−2
(
2n
t

)− 2−2n
∑

0≤t≤2n

|n− t|α−2(2n− t)t
(
2n
t

)

= n2E(α−2)
n − 2−2n ∑

1≤t≤2n−1

|n− t|α−2 2n(2n− 1)
(
2n−2
t−1

)

= n
(
nE(α−2)

n − 2(2n− 1)2−2n ∑
0≤u≤2(n−1)

|n− 1− u|α−2
(
2(n−1)

u

))

= n
(
nE(α−2)

n − (n− 1
2)E(α−2)

n−1

)
.

ut
Alternatively, we have the following equivalent formulation:

Theorem 2. For any integer n and β ≥ 0:

E(2β)
n = Pβ(n) and E(2β+1)

n = Qβ(n) 2−2nn

(
2n

n

)

where

Pβ(n) =

{
1 , β = 0 ,

n
(
nPβ−1(n)− (n− 1

2)Pβ−1(n− 1)
)
, β ≥ 1 ,

(12)

and

Qβ(n) =

{
1 , β = 0 ,

n
(
nQβ−1(n)− (n− 1)Qβ−1(n− 1)

)
, β ≥ 1 .

(13)

ut

Polynomials Qβ(n) (resp. Pβ(n)) are known as the Gandhi polynomials
(resp. ‘companion’ Gandhi polynomials) — except that the Gandhi polynomi-
als do not have alternating signs for the coefficients (but this difference is not
essential). See [1, 2] and the references therein.

For illustration, we list below the so-obtained expression for E
(α)
n for the first

few values of α.

Proposition 2. We have:

E(0)
n = P0(n) = 1

E(1)
n = Q0(n) 2−2n n

(
2n
n

)
= 2−2n n

(
2n
n

)

E(2)
n = P1(n) = n/2

E(3)
n = Q1(n) 2−2n n

(
2n
n

)
= 2−2n n2

(
2n
n

)

E(4)
n = P2(n) = n(3n− 1)/4

E(5)
n = Q2(n) 2−2n n

(
2n
n

)
= 2−2n n2(2n− 1)

(
2n
n

)

E(6)
n = P3(n) = n(15n2 − 15n + 4)/8

E(7)
n = Q3(n) 2−2n n

(
2n
n

)
= 2−2n n2(6n2 − 8n + 3)

(
2n
n

)

E(8)
n = P4(n) = n(105n3 − 210n2 + 147n− 34)/16

E(9)
n = Q4(n) 2−2n n

(
2n
n

)
= 2−2n n2(24n3 − 60n2 + 54n− 17)

(
2n
n

)

E(10)
n = P5(n) = n(945n4 − 3150n3 + 4095n2 − 2370n + 496)/32 .

ut
As a result, we find the following peak values:

D2
(α) ≈ |ε| 1√

π
n−1/2, for α = 1

D2
(α)

= |ε|2, for α = 2

D2
(α) ≈ |ε|3 1√

π
n1/2, for α = 3

D2
(α) ≈ |ε|4 3√

π
n , for α = 4 .

So the pattern that emerges is:

D2
(α) ≈ |ε|α cα n(α−2)/2 , (14)

where cα denotes a constant depending on α. Thus depending on the values of
|ε| and n it may determined for which α the largest peak value is reached.

In Table 1, we tabulate the expected height, D2
(α)

, of the second-order DPA
peaks for various values of n and α. We see for α = 1 that larger values for n

(i.e., the bit-length manipulated by the processor) yields lower (second-order)
DPA peaks. More surprisingly, for α = 2, the height of the DPA peaks does not
depend on n, and for larger values of α (two last columns in Table 1) the height
increases with the value of n.

Table 1. Exact values of D2
(α)

for some common sizes of n.

n α = 1 α = 2 α = 3 α = 4

8 0.209 |ε| |ε|2 4.61 |ε|3 22 |ε|4
16 0.144 |ε| |ε|2 6.65 |ε|3 46 |ε|4
32 0.101 |ε| |ε|2 9.49 |ε|3 94 |ε|4
64 0.071 |ε| |ε|2 13.48 |ε|3 190 |ε|4

160 0.045 |ε| |ε|2 21.37 |ε|3 478 |ε|4
256 0.035 |ε| |ε|2 27.05 |ε|3 766 |ε|4
512 0.025 |ε| |ε|2 38.28 |ε|3 1534 |ε|4

1024 0.018 |ε| |ε|2 54.15 |ε|3 3070 |ε|4

The results listed in Table 1 are useful for practical purposes assuming that
sufficiently many acquisitions are available. To see how fast D2

(α)
actually con-

verges to its expected value as a function of α, we determine the relevant signal-
to-noise ratio (SNR), following, e.g., [13]. In the present paper, we are concerned
with so-called algorithmic noise only, so the value of SNR tells us how many
traces we need (for different values of input data x) to get a successful DPA
attack.

Consider the following random variable D:

D := D(ŝ) = (2g(ŵ)− 1) |ε|α |H(w ⊕ r)− H(r)|α ,

where r is a uniformly random n-bit string, w = I(x, s) with x representing the
input data, and ŵ is the outcome corresponding to the guessed secret ŝ, that is,
ŵ = I(x, ŝ). The process of evaluating quantity ∆2(ŝ) (and its generalization for
arbitrary α) may be viewed as sampling the random variable D.

The expected value of D is equal to D2
(α)

, and since D2 = |ε|2α |H(w⊕ r)−
H(r)|2α, we obtain for the variance of D:

var(D) = 〈D2〉 − 〈D〉2 = |ε|2α
(
E(2α)

n − 4(E(α)
n − E

(α)
n−1)

2
)

.

Noting that the variance of D is independent of ŝ, we take as the relevant signal-
to-noise ratio (for one signal):

SNR :=
〈D〉√
var(D)

=
2
(
E

(α)
n − E

(α)
n−1

)
√

E
(2α)
n − 4

(
E

(α)
n − E

(α)
n−1

)2
. (15)

From this formula for SNR, we get the following results. Firstly, SNR is
independent of ε; this corresponds to the results found in, e.g., [13], where SNR

is also independent of ε if there is no (non-algorithmic) noise. Secondly, SNR
drops off to 0 quickly as n gets larger, which was also observed in [13]. Finally,
however, by evaluating SNR for fixed values of n, n ≥ 3, searching for the optimal
value of α we have found that SNR is maximized consistently at α = 3, where
SNR at α = 3 is about 1.55 times higher than at α = 1.

3.3 Analysis of other correlated operations

So far, we have focused on the use of ⊕-masking, which is the basic way of imple-
menting data whitening. Since many attacks are proposed to defeat ⊕-masking
it is conceivable that implementors try other forms of masking, hoping to avoid
such DPA attacks. For example, w⊕r may be computed using the following for-
mula: (w ∧ r) ∨ (w̄ ∧ r̄). Our calculations show that in such a case the medicine
is worse than the disease, as a second-order DPA for the ∧ operation yields
better peaks than for ⊕ operation.

We illustrate this by determining D2 (cf. Eq. (7)) where τ1 is the time period
when r is manipulated and τ2 is the time period when w ∧ r is manipulated.

We have:
〈|C (τ2)− C (τ1)|

〉
w,r∈{0,1}n

g(w)=0

= |ε| 〈|H(w ∧ r)− H(r)|〉w,r∈{0,1}n

g(w)=0

=
|ε|
2

(〈|H(w ∧ r)− H(r)|〉 w,r∈{0,1}n

g(w)=0,g(r)=0

+
〈|H(w ∧ r)− H(r)|〉 w,r∈{0,1}n

g(w)=0,g(r)=1

)

=
|ε|
2

(〈|H(w ∧ r)− H(r)|〉
w,r∈{0,1}n−1 +

〈|H(w ∧ r)− H(r)− 1|〉
w,r∈{0,1}n−1

)
.

and
〈|C (τ1)− C (τ2)|

〉
w,r∈{0,1}n

g(w)=1

= |ε| 〈|H(w ∧ r)− H(r)|〉w,r∈{0,1}n

g(w)=1

= |ε| 〈|H(w ∧ r)− H(r)|〉
w,r∈{0,1}n−1 .

Therefore, we get

D2 =
|ε|
2

(〈|H(w∧r)−H(r)|〉
w,r∈{0,1}n−1−

〈|H(w∧r)−H(r)−1|〉
w,r∈{0,1}n−1

)
.

To find the peak values we use the following lemma.

Lemma 2. For any integer n ≥ 1,

2−2n
∑

w,r∈{0,1}n

|H(w ∧ r)− H(r)| = n

4
,

and
2−2n

∑

w,r∈{0,1}n

|H(w ∧ r)− H(r)− 1| = n

4
+ 1 .

Proof. We only prove the first part.
∑

w,r∈{0,1}n

|H(w ∧ r)− H(r)| = ∑
h

∑
r∈{0,1}n

H(r)=h

∑
i

∑
w∈{0,1}n

H(w∧r)=i

|H(w ∧ r)− H(r)|

=
n∑

h=0

(
n
h

)
2n−h

h∑
i=0

(
h
i

)|i− h| =
n∑

h=0

(
n
h

)
2n−h

h∑
i=0

(
h
i

)
(h− i)

=
n∑

h=0

(
n
h

)
2n−h h

h∑
i=0

[(
h
i

)− (
h−1
i−1

)]
=

n∑
h=0

(
n
h

)
2n−h h

h∑
i=0

(
h−1

i

)

=
n∑

h=0

(
n
h

)
2n−hh 2h−1 = 2n−1

n∑
h=0

(
n
h

)
h = n 22n−2 .

ut
Hence, the resulting expected peak value becomes

D2 = −|ε|/2 . (16)

This results in a higher peak value compared to the peak for ⊕-masking (cf.
Eq. (9)).

Other binary operations such as logical or can be handled as well using basic
properties such as H(w ∨ r) = H(w) + H(r)− H(w ∧ r).

4 Extension to the Hamming Distance Model

The basic assumption for the Hamming-weight model is that the power con-
sumption for an operation on some data word w is linearly related to H(w). In
terms of electronics this would mean, however, that the hardware state just prior
to the moment that a data word is handled is (re)set to all-zero (or, all-one).
This is the case only for a few types of electronic circuits, e.g., those that use
precharged logic.

In many cases it is necessary to assume that the actual power consumption
is linearly related to the Hamming distance to an (unknown) hardware state
that existed just prior the moment when data word w is handled. For instance,
each time an instruction I within a fixed program is executed involving w, what
actually happens is that the CPU must fetch the opcode from memory (by
sending the program counter over the bus and receiving the opcode in return, and
decoding it). The values of the program counter and the opcode are fixed (for I)
and therefore the power consumption incurred by transferring these values over
the bus is the same each time I is executed. Subsequently, when w is handled,
the energy required for transferring w over the bus will be related to the number
of bits that need to switched. See [5] for more details.

So, we assume that there exist two reference values R1 and R2, that represent
the states prior to the time periods τ1 and τ2, respectively. The power consump-
tion at these time periods is therefore related to H(R1 ⊕ r) and H(R2 ⊕ w ⊕ r),
respectively.

We now show that the same DPA trace as before will enable us to recover
the secret value, without using any knowledge about the values of R1 and R2.

Let R′1 denote R1 but with the bit indicated by g omitted, and similarly for
R2. Let also δ = g(R2)− g(R1). Then, noting that for any fixed R1 and R2, and
for any δ:

〈|H(R2 ⊕ w ⊕ r)− H(R1 ⊕ r) + δ|〉 =
〈|H(w ⊕ r)− H(r) + δ|

=
〈|H(w)− H(r) + δ| ,

it follows that
〈|C (τ2)− C (τ1)|

〉
w,r∈{0,1}n

g(w)=0

= |ε| 〈|H(R2 ⊕ w ⊕ r)− H(R1 ⊕ r)|〉w,r∈{0,1}n

g(w)=0

=
|ε|
2

(〈|H(R2 ⊕ w ⊕ r)− H(R1 ⊕ r)|〉 w,r∈{0,1}n

g(w)=0,g(r)=0

+

〈|H(R2 ⊕ w ⊕ r)− H(R1 ⊕ r)|〉 w,r∈{0,1}n

g(w)=0,g(r)=1

)

=
|ε|
2

(〈|H(R′2 ⊕ w ⊕ r)− H(R′1 ⊕ r) + δ|〉
w,r∈{0,1}n−1+

〈|H(R′2 ⊕ w ⊕ r)− H(R′1 ⊕ r)− δ|〉
w,r∈{0,1}n−1

)

= |ε|
〈∣∣H(w)− H(r) + |δ|

∣∣
〉

w,r∈{0,1}n−1
.

Similarly, letting δ′ = 1− g(R2)− g(R1), we have
〈|C (τ2)− C (τ1)|

〉
w,r∈{0,1}n

g(w)=1

= |ε| 〈|H(R2 ⊕ w ⊕ r)− H(R1 ⊕ r)|〉w,r∈{0,1}n

g(w)=1

=
|ε|
2

(〈|H(R2 ⊕ w ⊕ r)− H(R1 ⊕ r)|〉 w,r∈{0,1}n

g(w)=1,g(r)=0

+

〈|H(R2 ⊕ w ⊕ r)− H(R1 ⊕ r)|〉 w,r∈{0,1}n

g(w)=1,g(r)=1

)

=
|ε|
2

(〈|H(R′2 ⊕ w ⊕ r)− H(R′1 ⊕ r) + δ′|〉
w,r∈{0,1}n−1+

〈|H(R′2 ⊕ w ⊕ r)− H(R′1 ⊕ r)− δ′|〉
w,r∈{0,1}n−1

)

= |ε|
〈∣∣H(w)− H(r) + |δ′|∣∣

〉
w,r∈{0,1}n−1

.

Define, for n ≥ 1,

En,m = 2−2n
∑

w,r∈{0,1}n

|H(w)− H(r) + m| . (17)

These sums may be evaluated using the following recurrence relation:

f(0,m) = |m|
f(n,m) = f(n− 1,m− 1) + 2f(n− 1,m) + f(n− 1,m + 1)

where
f(n,m) =

∑

w,r∈{0,1}n

|H(w)− H(r) + m| ,

for any integers n, m, n ≥ 0.
In particular, the first few terms are:

f(n, 0) = n

(
2n

n

)
, f(n, 1) = (n + 1)

(
2n

n

)
, f(n, 2) =

n2 + 5n + 2
n + 1

(
2n

n

)
.

Noting that |δ′| = 1− |δ|, we then have:

D2 = |ε|(En−1,1−|δ| − En−1,|δ|) , (18)

which generalizes the previous results (compare with Eq. (7)).
If g(R1) = g(R2) we get the same result as before. If g(R1) = 1 − g(R2) we

get the same result as before, except that the sign is inverted. So we are actually
able to get 1 bit of information on the values R1 and R2 as well.

By varying the selection function g to target other bits, all the bits of R1⊕R2

can be recovered this way.

5 Experimental Results and Observations

The experimental validation of our results led us to choose the RC6-w/r/b block-
cipher [15], in which the word size w = n, the number of rounds r and the length
b of the encryption key in bytes are easily customizable. Besides, RC6 contains
no fixed-length substitution boxes that would have limited the testing of the
range n ∈ [8, 1024]. Arithmetic operations (+,−,×) are defined modulo 2n. The
encryption software takes as input a plaintext m ∈ {0, 1}4n stored in four n-bit
input registers A,B, C,D, and an extended key S0, . . . , S2r+3 where Si ∈ {0, 1}n.

1. B = B + S0 and D = D + S1

2. for i = 1 to r do
(a) t = (B × (2B + 1)) <<< log2 n and u = (D × (2D + 1)) <<< log2 n
(b) A = ((A⊕ t) <<< u) + S2i and C = ((C ⊕ u) <<< t) + S2i+1

(c) (A, B, C, D) = (B, C, D, A)
3. A = A + S2r+2 and C = C + S2r+3

Fig. 1. Encryption with RC6-n/r/b.

The protection against first-order attacks relies on a data whitening tech-
nique mixing boolean and two forms of arithmetic masking. We denote by 〈〈x〉〉
the variable x randomized by a boolean mask, i.e., 〈〈x〉〉 = (x ⊕ ρ, ρ) for some
ρ ∈ {0, 1}n. Similarly, we note [[x]] = (x + ρ′, ρ′) an arithmetic randomization

of x modulo 2n. We make use of Goubin’s conversion technique [6] to compute
[[x]] from 〈〈x〉〉 securely, and on a technique due to Coron and Tchoulkine to come
back to boolean masking [[x]] 7→ 〈〈x〉〉 (provably) without first-order information
leakage. Conversions [[x]] 7→ 〈〈x〉〉 rely on a precomputed look-up table of con-
stants embedded into the code. We chose to re-randomize the output after each
conversion.

Dealing with rotations. RC6 involves circular rotations with variable offset
denoted by x <<< u such that 2n − 1 <<< u = 2n − 1 for any u ∈ {0, 1}n and
x <<< u = x×2u mod n mod (2n − 1) for any x 6= 2n−1 and any u ∈ {0, 1}n. We
suggest a technique to compute 〈〈x <<< u〉〉 from 〈〈x〉〉 and 〈〈u〉〉. First, we apply
Goubin’s conversion to 〈〈u〉〉 with respect to word size log2 n, thereby computing
securely [[u]]o = (u − α mod n, α) where α is randomly taken from {0, 1}log2 n.
Now if 〈〈x〉〉 = (x⊕ρ, ρ), we rotate the two shares twice each by u−α mod n and
then α bit positions to the left:

〈〈x〉〉, [[u]]o 7→ 〈〈x <<< u〉〉 = 〈〈((x⊕ ρ) <<< (u− α)) <<< α, (ρ <<< (u− α)) <<< α〉〉 .

Description of our 1-st-order-protected RC6. We assume that the ex-
tended key is stored as [[S0]], . . . , [[S2r+3]] where each Si ∈ {0, 1}n is arithmetically
randomized§. We show how to protect all the internal steps. The computation
B = B + S0 in Step 1 consists in randomly masking B into [[B]], computing
[[B + S0]] from [[S0]], [[B]] and then converting [[B]] into 〈〈B〉〉. The same is done
for D. We also randomly mask A and C into 〈〈A〉〉 and 〈〈C〉〉. In Step 2a, we
convert 〈〈B〉〉 7→ [[B]], securely compute [[B × (2B + 1)]] from [[B]] = (B1, B0) as
[[B × (2B + 1)]] = (B1 × (2B1 + 1)− γ ×B0, B0 × (4B1 + 2B0 + γ + 1)) for a
random γ ∈ {0, 1}n, convert this into 〈〈B × (2B + 1)〉〉 and rotate each share by
log2 n bits to get (t). We apply the same process to compute u. In Step 2b, we
compute 〈〈A〉〉, 〈〈t〉〉 7→ 〈〈A⊕ t〉〉 and convert 〈〈u〉〉 7→ [[u]]o. Then from 〈〈A⊕ t〉〉, [[u]]o we
get 〈〈(A⊕ t) <<< u〉〉 which we convert into [[(A⊕ t) <<< u]] to add it to [[S2i]]. The
result is stored as [[A]] which we convert into 〈〈A〉〉. We do the same for register
C. Lastly, Step 3 consists in converting 〈〈A〉〉 into [[A]], adding it to [[S2r+2]] and
subtracting the two shares to get A (the same applies to C). From 〈〈B〉〉, 〈〈D〉〉, we
recover B and D.

Attack strategy. Assuming that we know subkeys S0, . . . , S2j−2, S2j−1 for
some j ∈ [0, r− 1], we recover subkeys S2j , S2j+1 involved in the j-th round. As
our technique applies to boolean masking, we focus on the last computation of
Step 2b that converts [[A]] 7→ 〈〈A〉〉 just after S2j has been added to A. Noting
〈〈A〉〉 = (A1, A0), we know that our conversion routine handles A1 first and then
A0 two clock cycles later. This gives us an offset δ = 2 and power traces will
reveal S2j . We apply the same technique to the conversion [[C]] 7→ 〈〈C〉〉 in the
same round to get S2j+1. We mention for concreteness that similar strategies
apply to Steps 1, 3 to get S0, S1, S2r+2, S2r+3.
§ Each [[Si]] involves its own randomness. In our implementation, [[Si]] is re-randomized

after use and updated in volatile memory for later calls to RC6.

Data Treatment and Observations. The execution of our code is simulated
with Mathematica 5.0 and power traces generated with ε = 1 and ` = 0. We
chose r = 8 and j = 5 arbitrarily, α = 3 to maximize the SNR, and the selection
function g(w) is the most significant bit of w. The value of 〈〈A〉〉 when converting
[[A]] 7→ 〈〈A〉〉 in the 5-th round is identical to the value of 〈〈B〉〉 before the conversion
〈〈B〉〉 7→ [[B]] in Step 2a of round 6. The conversion routine from boolean to
arithmetic masking also admits an offset of two cycles. Therefore, power traces
present two attack locations and two (potential) simultaneous peaks.

Fig. 2. Second-order DPA trace ∆2(ŝ, t) with wrong guess s 6= ŝ (left) and correct
guess s = ŝ (right). About 3000 power traces are enough to see peaks for n = 8 (top).
More than 20000 power traces are necessary for n = 16 (bottom), indicating a loss of
efficiency as n grows. Arrows indicate attack locations in the 5-th and 6-th rounds.

For n = 8, we measure peaks of height 5.52 to be compared with the theoret-
ical value of 4.61. For n = 16, we observe peaks at 6.45 for an expected height of
6.65. Standard deviations are 0.82 and 1.60 respectively. This seems to confirm
our theoretical results. Experiments for n ≥ 32 show that a much larger number
of power traces are needed to mount a practical attack.

6 Conclusions

We provided a formal exploration of second-order attacks by estimating the ex-
act height of expected peaks. Our results allow to anticipate the efficiency of
second-order attacks on a given hardware by providing a theoretical measure-
ment of information leakage as a function of hardware-dependent parameters.
We believe that our results constitute the theoretical basis of practical general-
purpose second-order power attacks. We see many open issues for future research,
in particular how to extend our results to take non-algorithmic noise into ac-
count.

References

1. 〈http://www.research.att.com/projects/OEIS?Anum=A036970〉. Triangle of coef-
ficients of Gandhi polynomials. In On-Line Encyclopedia of Integer Sequences.

2. 〈http://www.research.att.com/projects/OEIS?Anum=A083061〉. Triangle of coef-
ficients of a companion polynomial to the Gandhi polynomial. In On-Line Ency-
clopedia of Integer Sequences.

3. D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM Side-
Channel(s). In Cryptographic Hardware and Embedded Systems − CHES 2002,
vol. 2523 of Lecture Notes in Computer Science, pp. 29–45. Springer-Verlag, 2002.

4. G. Boros and V. Moll. Irresistible Integrals: Symbolics, Analysis and Experiments
in the Evaluation of Integrals. Cambridge University Press, 2004.

5. É. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In Cryptographic Hardware and Embedded Systems − CHES 2004, vol.
3156 of Lecture Notes in Computer Science, pp. 16–29. Springer-Verlag, 2004.

6. J.-S. Coron and L. Goubin. On Boolean and arithmetic masking against differential
power analysis. In Cryptographic Hardware and Embedded Systems − CHES 2000,
vol. 1965 of Lecture Notes in Computer Science, pp. 231–237. Springer-Verlag,
2000.

7. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete re-
sults. In Cryptographic Hardware and Embedded Systems − CHES 2001, vol. 2162
of Lecture Notes in Computer Science, pp. 251–261. Springer-Verlag, 2001.

8. P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology − CRYPTO ’99, vol. 1666 of Lecture Notes in Computer Science, pp.
388–397. Springer-Verlag, 1999.

9. M. Joye. Smart-card implementations of elliptic curve cryptography and DPA-
type attacks. In Smart Card Research and Advanced Applications VI, pp. 115–125.
Kluwer Academic Publishers, 2004.

10. D.E. Knuth. The Art of Computer Programming (Vol. 1: Fundamental Algo-
rithms). Addison Wesley, 3rd edition, 1997.

11. P.C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Advances in Cryptology − CRYPTO ’96, vol. 1109 of Lecture
Notes in Computer Science, pp. 104–113. Springer-Verlag, 1996.

12. T.S. Messerges. Using second-order power analysis to attack DPA resistant soft-
ware. In Cryptographic Hardware and Embedded Systems − CHES 2000, vol. 1965
of Lecture Notes in Computer Science, pp. 238–251. Springer-Verlag, 2000.

13. T.S. Messerges, E.A. Dabbish, and R.H. Sloan. Examining smart-card security
under the threat of power analysis attacks. IEEE Transactions on Computers,
51(5):541 552, 2002.

14. J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA): Measures
and couter-measures for smard cards. In Smart Card Programming and Security
(E-smart 2001), vol. 2140 of Lecture Notes in Computer Science, pp. 200–210.
Springer-Verlag, 2001.

15. R.L Rivest, M.J.B. Robshaw, R. Sideney, and Y.L. Yin. The RC6 block cipher.
RSA Laboratories, v1.1, August 20, 1998.

16. J. Waddle and D. Wagner. Towards efficient second-order power analysis. In Cryp-
tographic Hardware and Embedded Systems − CHES 2004, vol. 3156 of Lecture
Notes in Computer Science, pp. 1–15. Springer-Verlag, 2004.

