
The “Backend Duplication” Method

A Leakage-Proof Place-and-Route Strategy for ASICs

Sylvain Guilley, Philippe Hoogvorst, Yves Mathieu, and Renaud Pacalet

GET/Télécom Paris, CNRS LTCI
Département communication et électronique

46 rue Barrault, 75634 Paris Cedex 13, France.
{guilley, hoogvorst, mathieu, pacalet}@enst.fr

Abstract. Several types of logic gates suitable for leakage-proof com-
putations have been put forward [1–4]. This paper describes a method,
called “backend duplication” to assemble secured gates into leakage-proof
cryptoprocessors. To the authors’ knowledge, this article is the first CAD-
oriented publication to address all the aspects involved in the backend
design of secured hardware. The “backend duplication” method achieves
the place-and-route of differential netlists. It allows for 100 % placement
density and for balanced routing of dual-rail signals. Wires of every other
metal layer are free to make turns. In addition, the method does not re-
quire any modification to the design rules passed to the router. The
“backend duplication” method has been implemented in 0.13 µm ASIC
technology and successfully tested on various ciphers. The example of
the design of a DES module resistant against side-channel attacks is
described into details.

Keywords: Information leakage, secured backend, differential signals.

1 Introduction: Using Differential Logic to Thwart SCA

It has been shown that sensitive information can be extracted from cryptographic
hardware either by spying physical quantities or by injecting faults. The first type
of attack is often referred to as “side-channel attack” (SCA [5–7]), whereas the
second one is also known as “fault attack” (FA). Two classes of countermeasures
against SCA have been put forward. The first idea is to shield the hardware at
the algorithmic level: the data manipulated by the cryptoprocessor is masked or
protected by secret-sharing methods. The second idea is to build the hardware
using only leakage-proof gates, so as make sure that the overall cryptoprocessor
is, in turn, leakage-proof.

This article focuses on the implementation of the latter class of counter-
measures. Many leakage-proof logic styles have been published. The level of
protection the secured gates provide depends upon their specification:

1. SABL [1] is a logic consuming a nearly constant current.

2. WDDL [2] uses dual gates pairs to ensure a constant activity, although the
power consumed by each gate of the pair is not the same.

3. Speed-independent (SI) logic presented in [3] features a consumption inde-
pendent on the input data configuration. It also shields against the leakage
of the signal transitions timing by synchronizing the inputs.

4. Refinements [4] of the previous solution also ensure that parasitic capaci-
tances are unconditionally unloaded between two computations.

Some of those methods, for instance methods 3 and 4 above (nicknamed “SI-
WDDL” in the rest of this article) can also embed an error-detection feature.
The mechanism, based on an alarm propagation, is explained in [3]. Nevertheless,
resistance to faults injection is not covered in this paper.

The logical part (coding, functionality verification, refinements for synthesis)
in a design targeting FPGA or ASIC implementation is called frontend. The
physical part (mainly consisting in place-and-route, but extensive description is
provided in Sect. 2) is called backend. The common point to the secure gates
listed above is the use of differential logic with a 4-phase protocol, such as “re-
turn to zero” (RTZ) or any variation [8]. It has already been stressed that the
security of individual gates can extend to a netlist of gates only provided that the
interconnect is kept differential [9]. Nonetheless, most articles evade the question
of the implementation of a secure backend design.

Given the complexity of backend flows in sub-micron technologies, a simple
way to realize the secure backend is necessary. We provide in this article a
method, called “backend duplication”, that integrates the secure place-and-route
into any preexisting backend flow without modifying the design rules.

The rest of the article is organized as follows: the “backend duplication” is
presented in Sect. 2. The method is applied to some secured gates primitives
in Sect. 3. A case study, namely a DES cryptoprocessor, is provided in Sect. 4.
This example was actually fabricated in HCMOS9GP 0.13 µm technology from
STMicroelectronics using the method presented in this paper. This section con-
tains an evaluation of the cost and of the security increase provided by the use
of the “backend duplication”. Finally, Sect. 5 concludes the article.

2 The “Backend Duplication” Method

2.1 Regular “Place-and-Route” ASIC Design Flow

In a standard cell flow, cryptographic functions are synthesized into a netlist of
primitive gates. Then, the gates are placed into rows (see Fig. 1(a)). In each row,
the gates are abutted, so that they share the ground (VSS) and the power (VDD)
lines. When two gates are not placed side by side, a “filler” cell can be added
in-between to ensure the continuity of the supply lines. In sub-micron technolo-
gies, there are enough levels of metal to allow the routing of the interconnect
over the standard cell rows. For this reason, the rows are themselves abutted.
Thus, the supply lines are shared between adjacent rows. This is achieved by
flipping upside-down every other row: the ground (resp. the power) of one row

is merged with the ground (resp. the power) of the lower (resp. the upper) row,
(see Fig. 1(b)).

Sub-micron technologies allow for 45 degree wire routes, but this feature is
not yet implemented in commercial routers: currently, the routing is still Man-
hattan. Moreover, the most popular routers are also grid-based. Metal wires are
only instantiated along a virtual routing tracks superimposed on the floorplan
(see Fig. 1(c)). It is thus customary to attribute a preferred direction to every
routing layer. However, routers consider the preferred direction only as a recom-
mendation. The convention we use in this paper is that odd metal levels (metal
1, metal 3, and so forth) are preferentially routed vertically, whereas even metal
levels are preferentially routed horizontally.

I2 I3

I4 I5

I9 I10I8I7I6

I1I0

I12I11

(b) Place OK (c) Route OK(a) Floorplan OK

Placement row #1

(upside-down)

Placement row #2

(regular orientation)

(upside-down)

Placement row #3

Placement row #4

(regular orientation)

VDD

VSS

VDD

VSS

VDD

Fig. 1. Illustration of the regular (and unsecure) “Place-and-Route” ASIC design flow.

2.2 The “Backend Duplication” Method Overview

The “backend duplication” addresses the strengthening against SCA of sensi-
tive ASICs (smartcards, hardwired cryptoprocessors, etc.) It consists in a single
manipulation of the backend layout to ensure the security of its interconnect.
However, this method shall not be confused with the tailored duplication method
for software or dedicated hardware implementations [10].

The basic idea of the “backend duplication” method is to apply a regular
backend flow on a single-ended (as opposed to duplicated) netlist, taking care to
leave enough room on the floorplan for the duplication of the placed-and-routed
netlist. The duplication basically demands that every other row be kept free,
which is typically achieved by obstructing every other row for placement.

The next aspect concerned with duplication is the interconnect. To make
it possible to duplicate the interconnect, the vertical wires, that connect every
other row, are forced to occupy only one routing channel in two. This ensures
that a simple right shift of the vertical routing by a routing pitch (i.e. the distance

separating two routing tracks) does not create electrical shorts. As a consequence,
vertical wires must be straight. If they were able to make turns, they would cross
the adjacent routing tracks that are kept free for the duplicated vertical routes.
On the contrary, wires of the “horizontal routing layers” are left free to make
turns, as long as they remain in their placement row. Indeed, if the horizontal
routing is confined within one row over two, the duplication of the “horizontal”
wires in the upper or the lower rows does not interfere with the wires in the
current row.

The constraints imposed to the place-and-route tool summarize as follows:
as the design must be translated vertically by the height of one placement
row (ROW HEIGHT) for placement reasons and horizontally by one routing pitch
(PITCH) for routing reasons, the whole placed-and-routed design is scheduled to
move by a (δx, δy) = (PITCH, ROW HEIGHT) vector translation. In backend taxon-
omy, this translation actually coincides with the minimum “placement site”.

At that point, the result of the duplication is two identical netlists interleaved
one into the other. Notice that the netlists cannot be “de-interleaved” because
they are not independent: some signals must be exchanged locally between abut-
ted gates. As we will see in Sect. 3, it happens for the inverter gate in SABL
and WDDL (Tab. 1(b)) and for all gates in SI-WDDL (Fig. 7).

The chip finishing steps shall not delete the indistinguishability of the two
netlists. For instance, the dummies generator must be constrained to add dum-
mies (metal pieces added randomly to fulfill the minimum density design rules)
only in the rows in which placement is allowed. Afterwards, dummies are du-
plicated and translated by a placement site: they end up in the same routing
environment as initially (no short is created) since the routing was duplicated
in the same manner.

2.3 The Constraints Required by the “Backend Duplication”

As mentioned above, the “backend duplication” method is implemented by (1)
constraining the design and (2) duplicating the placed-and-routed design. The
constraints can be generated automatically by a script setting the following
obstructions:

– placement blockages one row over two and on the rightmost placement
site of the placeable row,

– routing blockages of one track channel over two for vertical metals and
over the rows already marked obstructed for standard cell placement for
horizontal metals.

Figure 8(a) illustrates these constraints on a 16 × 2-site piece of floorplan. As
far as the routing is concerned, these constraints are more flexible than the ones
proposed in the “fat wire” method [9], since only vertical wires are forced to re-
main strictly straight. The metals whose preferred routing direction is horizontal
are free to zigzag, provided they stay within their row. This degree of freedom
is not negligible, since there are typically around 12 routing channels per row.
This allows for both a more successful and a faster routing.

2.4 Insertion into an Existing Design Flow

As seen in Sect. 2.3, the “backend duplication” method need not redefine the de-
sign rules. It only relies on constraints on the CAD software. A typical backend
flow includes the steps shown in Fig. 2. The insertion of the “backend duplica-
tion” consists in adding three steps (i, ii and iii).

- Floorplanning

- Place-and-route

- Clock tree generation

- Scan chain optimization

- Antenna effects correction

- Custom steps, like ECO or SI fix

- Dummies placement

: Obstructions implementation

: Duplication

i

ii

iii

Flow compatible with the “backend
duplication”. Added steps:

Regular backend flow:

: Floorplan dimensioning

Fig. 2. Typical backend flow and modifications (steps i, ii and iii) to implement the
“backend duplication” method.

i. Floorplan dimensioning. As a matter of fact, the floorplan of an design
block is made up of two parts: the core, devoted to the standard cells placement
and the die, that covers the core and an extra channel surrounding it. It is used
for example to route a supply ring. The core horizontal dimension must be an
even number of the routing PITCH and the vertical dimension an even number of
ROW HEIGHT. This condition ensures that the placement and the routing within
the core do not extend out of the core after duplication.

The core can either be checked and repaired if one of the figures is odd or
generated automatically. To end up with a core of density d and of aspect ratio
r, the first step is to generate a core of density d/2 and of aspect ratio r/2 before
duplication. Then the core dimensions (x, y) are retrieved, and a new core with
the dimensions:

x′ =

⌈

x

2 × PITCH

⌉

× 2 × PITCH , y′ =

⌈

y

2 × ROW HEIGHT

⌉

× 2 × ROW HEIGHT

is regenerated. Its density is slightly less than d and its aspect ratio roughly
equal to r.

ii. Obstructions instantiation. The constraint script described previously in
Sect. 2.3 can be generated automatically as soon as the floorplan dimensions are
known. This script is sourced after floorplanning and before place-and-route.

iii. Duplication. As far as standard cells are concerned, the duplication consists
in a translation by a placement site followed by an horizontal flipping of each
row.

The routing duplication is a bit more complex than a mere translation. In-
deed, the design pins extend over the core to reach the die boundary. If the
routing was simply translated, the duplicated design would have pins both in-
side and outside the die. To avoid this shortcoming, the routing extremities (u, v)
of every wire undergo this transformation:

– if (u, v) belongs to the core, then (u′, v′) = (u + PITCH, v + ROW HEIGHT),
– otherwise (u′, v′) = (u, v).

Additionally, to prevent shorts, the constraints described in Sect. 2.3 actually
extend till to die limits and the routing channels that are entirely outside the
core are obstructed. These transformations are illustrated on Fig. 8(b).

The information needed to apply the duplication is the orientation and posi-
tion of standard cells and the routing coordinates. The design exchange format
(DEF) typically contains all this information. Given the simplicity of the DEF
syntax and the availability of parsers [11], the duplication can be implemented
easily.

It is also a good idea to apply the duplication on the Verilog netlist: it consists
in duplicating all wires and all leaf instances (i.e. standard cells). Verilog parsers
are easy to write, even from scratch. The key benefit of generating the duplicated
Verilog netlist is to enable LVS verification.

2.5 Comparison with Related Works

K. Tiri [12] noticed that the balancedness of the routing is crucial to effectively
protect a differential circuit against SCA. The solution put forward in [9] is
based on “fat wires” routing: a large wire is first routed and then split into two
minimum-sized wires. This method implies that:

– Specific design rules must be written for the “fat wires”.
– The only way for a wire to turn is to change layers.
– For the “fat wire” to access the pins of standard cells, their layout must be

redefined.

The “backend duplication” implies none of these assumptions.
The experimental DPA [6] of F.G. Bouesse et al. [13] also showed that the

weakest nodes in a differential layout correspond to unbalanced pairs. The back-
end correction flow described in [14] is iterative: the design is successively routed
and analyzed, until every dual-rail pair is balanced. The analysis consists in the
collection for every node of the sum of the parasitic elements extracted after ev-
ery routing (more details in Sect. 4.2). This method requires a complex strategy
to constrain the router and a non trivial algorithm to guide the iterative process
towards a convergence point. On the contrary, the routing generated by “back-
end duplication” is balanced by design. However, the “backend duplication” only
handles pairs of signals, whereas the iterative method [14] can route both dual
and single-rail signals (data is dual-rail; acknowledge is single-ended.)

3 Suitability of the “Backend Duplication” Method with

some Logic Styles

3.1 Backend Duplication for WDDL

The wave dynamic differential logic (WDDL, [2]) is a design style that uses
standard cells by pairs, in such a way that at any step of the computation,
one and only one of the two gates has a transition. This behavior masks the
fluctuations of the power consumption due to irregular activity: the activity of a
WDDL circuit is constant. The computations are split into successive precharge

and evaluation steps. A Boolean function ei∈{0,1,··· } 7→ f(ei) is computed using
the two dual gates fT (ei) and fF (ei) that satisfy:

{

During precharge: ∃i, fT (ei) = fF (ei) ,

During evaluation: ∀i, fT (ei) = fF (ei) .
(1)

Table 1(a) provides some examples of dual gates pairs suitable for WDDL.
If the condition on the precharge in (1) cannot be met, the identity shown in
Tab. 1(b) solves the problem out. The truth table of two dual gates (refer to

Table 1. Duality: definition, examples (a) and WDDL identity for the invertor (b).

(a) Regular gate Dual gate

Definition f(ei) f(ei)

Examples

NOT NOT

NAND NOR

Π Σ ei Σ Π ei

(b)

e1

e0 e0

e1

e0

e1

e1

e0

⇔

Dual invertor

Regular invertor

Table. 2) shows a symmetry, that can also be observed at the transistor level, as
shown in Table. 3.

The symmetry illustrated in Table. 3 suggests that standard cells are ready
to be used in a WDDL flow using the “backend duplication” method. This is
actually only partially true: the structures in transistors indeed perfectly su-
perimpose, but in practice, PMOS (symbol:) are drawn wider than NMOS
(symbol: .) For this reason, in a commercial standard cell library, the pins
of a gate (regular orientation: or R0) and of the X-symmetric (orientation:

or MX) of its dual do not match exactly. Nevertheless, as they are located on
the routing grid, they usually overlap.

Fortunately, it is easy to work around this difficulty. The procedure begins
with an enlargement of the pins. Then, the pins are merged considering the
intersection of the enlarged pins. The routing obstructions are basically made
up of the metal not included in the union of the newly created pins:

{

PIN= PIN(NAND) ∩ PIN(NOR), (in Fig. 5)
OBS= (OBS(NAND) ∪ OBS(NOR)) ∪ (PIN(NAND) 4 PIN(NOR)) . (in Fig. 5)

Table 2. Truth table of the
two dual functions NAND/NOR.

NAND NOR

e0 e1 e0 · e1 e0 + e1

0 0 1
x

x

1

0 1 1 0

1 0 1 0

1 1 0 0

Table 3. Illustration of the NAND/NOR dual gate cou-
ple symmetry {fT , (N, P), MX} ↔ {fF , (P, N), R0}.

Regular gate fT (NAND) Dual gate fF (NOR)

Orientation: or MX Orientation: or R0

VDD

VSS

A1 B1

A1

B1

Y1

x

x

VDD

VSS

A0 B0

A0

B0

Y0

This procedure can be applied on the sole abstract view of the standards cells.
Thus a simple LEF parser [11] can be used turn a standard cell library into a
WDDL-compliant library. Instead of describing the parser into details, a graph-
ical example on the NAND/NOR and AND/OR gate couples is shown in Fig. 5.

As far as cell placement duplication is concerned, the method presented in
step iii (refer to Sect. 2.4) demands that, in addition to the duplication and the
flipping, the gate be replaced by its dual.

3.2 Backend Duplication for Other Logic Gates

In order to apply the “backend duplication” method to SABL or SI-WDDL, the
gates must be split into two parts: one computing true values, the other false

values.

The splitting is straightforward for SABL, as shown in Fig. 6.

As for SI-WDDL, the division is a bit less trivial, but is sane since it forces the
symmetry of the transistor schematic to be kept in layout view. The placement
of each building block of the cell along with the indication of their orientation
is provided in Fig. 7.

For both SABL and SI-WDDL, the gate pins must be designed in such a way
they are left unchanged in a symmetry y ← ROW HEIGHT− y (or R0 ↔ MX). This
condition ensures that a connection to the pin of a regular gate (placed first)
also arrives on a pin of the other half of the gate (placed while duplicating the
backend at step iii). Additionally, the routing converges faster if the pins are
placed on every other vertical routing track: the pins are better accessed if they
are not below a vertical routing obstruction.

4 Implementing a Duplicated Netlist

4.1 The Example of a Secured DES Cryptoprocessor Design

In this section, we explain how a placed-and-routed netlist obtained by the “back-
end duplication” method can be embedded into a whole design. First of all, let us
notice that after duplication, even global signals are duplicated: the duplicated
backend has two clocks and two resets, that must be shorted together. The two
scan chains can either be joined or be considered independently.

Most often, the whole cryptoprocessor need not be secured. The reason is that
when implementing a non proprietary algorithm such as DES, the computation
steps are public. As a consequence, the control leaks non confidential information.
In most designs, the control (algorithm steps) can be clearly dissociated from
the datapath (data processing).

It is relevant to derive the control of the duplicated datapath (dual-rail en-
coding, RTZ protocol) from the original control of the insecure datapath (single-
ended, no RTZ): it allows to debug a single-ended control, which is easier to
understand and faster to simulate. The method to update the regular control to
make it compatible with the duplicated datapath requires that:

– The state machine can be frozen: it has an enable input. This enable forces
the state machine to work twice as slow as initially to mimic RTZ.

– The control is wrapped by a converter single-to-dual rail for the datapath
inputs and dual-to-single rail for its outputs. In addition to converting the
control signals exchanged between the datapath and the control, the control
wrapper also converts the datapath input and output data. Thus, seen from
the outside, the cryptoprocessor keeps a single-ended interface. However, the
internal architecture of the datapath is dual-rail RTZ secure logic obtained
by “backend duplication”.

When the control is disabled (enable = 0), all the input signals of the data-
path (provided by the control wrapper) are set to the precharge state (e.g. 00).
This solution emulates the dual-rail RTZ protocol required by the duplicated
architecture of the datapath. Moreover, this architecture is well suited for asyn-
chronous gates implementations, such as SI-WDDL, because the datapath inputs
(both data and control) are kept behind a register barrier, which guarantees that
those signals are glitch-free. This condition is mandatory for SI-WDDL logic to
work securely.

The schematic of Fig. 3 shows the secure architecture of a DES module. Let
us notice that the control input signals (a simple start command, named GO in
Fig. 3) is memorized as GO Q over the two phases (precharge and evaluation), to
prevent it from being discarded if it arrives when the control is disabled. The
GO command can actually be activated at any time, because the cryptoprocessor
environment is not aware of the RTZ behavior of the secured DES.

4.2 Method Cost and Security Evaluation

The method overhead is assessed below:

memorization

generation

Pipeline barrier
that filters glitchs

OR

Registers : ()

Command (GO)

Phase (enable)

clk

1

ram in

EOC
1 1

88
ram out

enable

sel

1
web

8
ram add

GO Q

DES CONTROL

GO

SDES CONTROL

phase

0 0 0 0

sel1 sel0

ram out 2rail ram in 2rail

SDES DATAPATH

2 × #control signals2 × 82 × 8

sel 2rail

SI-WDDL logic

Fig. 3. Secured DES architecture. The duplicated datapath (SDES DATAPATH), for ex-
ample implemented in SI-WDDL logic, is obtained according to the method de-
scribed in Sect. 2. The regular control (DES CONTROL) is encapsulated into a wrapper
(SDES CONTROL) that can interface to the dual-rail datapath of DES.

– The circuit frequency is unchanged, but every encryption takes twice more
time to execute because of the RTZ protocol.

– The area increase of the datapath depends on which secured gates are
used. If WDDL gates are chosen, SDES DATAPATH is simply twice as large
as DES DATAPTH. If SI-WDDL gates are chosen, we obtain a 15 times area
increase1. The overhead of the control area is 14%: the area of the module
DES CONTROL (resp. SDES CONTROL) is 12 942 µm2 (resp. 14 788 µm2.)

The increase of security can be assessed by the ratio of the two dual lines rout-
ing capacitances and resistances. The capacitance “C” accounts for the power
dissipation occurring at every transition: 1

2
× C × (VDD − VSS)

2
. The resis-

tance “R” is responsible for the delay R × C of the transition propagation.
The wire pairs are all the more balanced as the ratios C(true)/C(false) and
R(true)/R(false) do not spread much around 1. Figure 4 shows the repartition
of those ratios for the 2 211 internal wire couples of SDES DATAPATH. The three
data samples correspond to a dual placed-and-routed design, obtained by the
“backend duplication” method, a dual placed and regular routed design, and
a regular placed-and-routed design. Both the capacitances and resistances were

1 The SI-WDDL gates were not optimized: a much better ratio can probably be ob-
tained, even without any trade-off on the gate symmetry.

obtained using the RC extractor tool of Cadence SOC/Encounter. The tech-
nological information was produced by the Cadence coyote field solver.

The resistance of a “backend duplicated” circuit against EMA [7] has not
been evaluated yet.

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
in

 C
ou

nt

C(true) / C(false)

500

1000

1500

2000

Dual place-and-route
Dual place, regular route
Regular place-and-route

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
in

 C
ou

nt

R(true) / R(false)

500

1000

1500

2000

Dual place-and-route
Dual place, regular route
Regular place-and-route

Fig. 4. Ratio of the capacitances and the resistances of SDES DATAPATH dual nets.

5 Conclusion

Securing a cryptoprocessor against physical attacks (either SCA or FA) can be
done at the algorithmic or at the implementation level. This paper focuses on
the countermeasures on the hardware implementation. Many types of primitive
gates suitable for secure computation have been proposed [1–4], but the issue
of building cryptoprocessor out of them is seldom addressed. To the authors’
knowledge, only the “fat wire” method [9] partially tackles this problem.

We provide a complete description of a backend flow compatible with all of
the above-mentioned gates. The method we describe can apply to all existing
flows and requires no modification of the design rules.

The “backend duplication” method is illustrated on the example of a DES
cryptoprocessor. This example also shows that the method is compatible with a
secure partitioning of the design: only the datapath is duplicated. The emphasis

is placed on the insertion of the duplicated datapath into the whole DES, whose
interface remains unchanged. This case study proves that the hardening of a
cryptoprocessor can be fully automated and that the integration of the “backend
duplication” method into an existing flow is seamless.

Acknowledgements

This work has been partially funded by the “conseil régional Provence Alpes
Côte d’Azur” and the Research Ministry, through ACI SI MARS. The authors
are also grateful to the AST division of STMicroelectronics (Rousset, France),
for help in the design and the fabrication of the secured DES ASIC prototype.

References

1. Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards. In: Proceedings of ESSCIRC’02. (2002) pp 403–406.

2. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation. In: Proceedings of DATE’04. (2004) pp
246–251.

3. Moore, S., Anderson, R., Cunningham, P., Mullins, R., Taylor, G.: Improving
Smart Card Security using Self-timed Circuits. In: Proceedings of ASYNC’02.
(2002) pp 211–218.

4. Guilley, S., Hoogvorst, P., Mathieu, Y., Pacalet, R., Provost, J.: CMOS Structures
Suitable for Secured Hardware. In: Proceedings of DATE’04. (2004) pp 1414–1415.

5. Kocher, P., Jaffe, J., Jun, B.: Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In: Proceedings of CRYPTO’96. Volume
1109 of LNCS., Springer (1996) pp 104–113.

6. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis: Leaking Secrets. In:
Proceedings of CRYPTO’99. Volume 1666 of LNCS., Springer (1999) pp 388–397.

7. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Proceedings of CHES’01. Volume 2162 of LNCS., Springer (2001) pp 251–261.

8. Sokolov, D., Murphy, J., Bystrov, A.: Improving the Security of Dual-Rail Circuits.
In: Proceedings of CHES’04. LNCS, Springer (2004) pp 282–297.

9. Tiri, K., Verbauwhede, I.: Place and Route for Secure Standard Cell Design. In:
Proceedings of CARDIS’04. (2004) pp 143–158.

10. Goubin, L., Patarin, J.: DES and Differential Power Analysis (The ”Duplication”
Method). In: Proceedings of CHES’99. LNCS, Springer (1999) pp 158–172.

11. LEF/DEF parsers: (website) http://openeda.si2.org/projects/lefdef/ or
http://www.cadence.com/partners/languages/languages.aspx.

12. Tiri, K., Verbauwhede, I.: ”Securing Encryption Algorithms against DPA at the
Logic Level: Next Generation Smart Card Technology. In LNCS, ed.: Proceedings
of CHES’03. Volume 2779 of LNCS., Springer (2003) pp 125–136.

13. Bouesse, G., Renaudin, M., Robisson, B., Beigné, E., Liardet, P.Y., Prevosto, S.,
Sonzogni, J.: DPA on Quasi Delay Insensitive Asynchronous Circuits: Concrete
Results. In: Proceedings of DCIS’04. (2004) Bordeaux, France.

14. Bouesse, G., Renaudin, M., Dumont, S., Germain, F.: DPA on Quasi Delay Insen-
sitive Asynchronous Circuits: Formalization and Improvement. In: Proceedings of
DATE’05. (2005) pp 424–429. Munich, Germany.

A Appendix: Graphical Illustrations of the “Backend

Duplication” Method

Figures 5, 6 and 7 show how WDDL, SABL and SI-WDDL gates must be trans-
formed prior to being used in the “backend duplication” design flow.

Figure 8 illustrates the “backend duplication” (steps ii and iii) on a floor-
plan suitable for the duplication (step i was already executed: the floorplan
dimensions are even.)

N
O
R

N
O
R

N
A
N
D

N
A
N
D

OR OR OR

(f
al

se
)
R
0

AND AND AND

NAND / NOR AND / OR

A

VSS

Y B A

VDD

VSS

Y B

VDD

D
ua

l g
at

e
R

eg
ul

ar
 g

at
e

A
Y

VDD

VSS

B

A
Y

VDD

VSS

B

VSS

VDD

Y

B

A

VSS

VDD

Y

B

A

VSS

VDD

Y

B

A

(t
ru

e)
M
X

VSS

VDD

A

B
Y

VSS

VDD

A

B
Y

VSS

VDD

A

B
Y

couplecouple

Fig. 5. Transformation on the abstracted views of the standard cells to make them
WDDL-compliant [2]. This resulting gate couple satisfies the following condition: the
abstract couples {fT , (N, P), MX} and {fF , (P, N), R0} perfectly superimpose.

VSS

VDD

A1

B1 A0 B0

clk

clk

Y0Y1

VSS

VSS

clk

(false)

R0

(true)

MX

A1

B1

clk

Y1

A0 B0

clk

clk

VDD

Y0

(a)

(b)

Fig. 6. Transformation of a NAND gate implemented in SABL [1] (a) into two dual gates
(b), for subsequent use in the “backend duplication” design flow.

VSS
(false)
R0

(true)
MX

A0

B0

A0

B1

A1

A1

B0

B1

Y0

Y1

Y0

Y1

A0

B0

A1

B1

A0

B0

A1

B1

VSS

(a) (b)

Fig. 7. Transformation of a NAND gate implemented in SI-WDDL [3] (a) into two dual
gates (b). Notice that the two halves of the gate exchange signals.

V
SS

V
D

DV
SS

V
D

D

V
er

ti
ca

l
ro

u
te

s:
-

fo
rb

id
d
en

-
al

lo
w

ed

A

P
I
T
C
H
:

(a
)

F
lo

or
p
la

n
af

te
r

st
ep

ii
of

S
ec

t.
2.

4
(b

)
F
lo

or
p
la

n
af

te
r

st
ep

ii
i

of
S
ec

t.
2.

4

101112 13456789

B

Y

Y

B N
A
N
DN
O
R

A

16
×

P
I
T
C
H

2× ROW HEIGHT

ROW HEIGHT

Horizontal routes forbidden Horizontal routes allowed

O
ri

en
ta

ti
on

:
M
X

O
ri

en
ta

ti
on

:
R
0

P
la

ce
m

en
t

fo
rb

id
d
en

P
la

ce
m

en
t

al
lo

w
ed

2

Fig. 8. (a) Place and route constraints, illustrated on a floorplan containing 16 × 2
placement sites. In PITCH units, the placement site is 1× 12 and the routing grid offset
is 1

2
× 1

2
. (b) Final floorplan containing one single NAND gate (and its dual NOR gate). The

horizontal wires can turn (wires connecting ports A, B and Y), whereas the vertical
ones are straight. The vias that contact horizontal and vertical wires are noted .

