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1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{kumar,cpaar,pelzl}@crypto.rub.de

2 Institute of Computer Science and Applied Mathematics, Faculty of Engineering,
Christian-Albrechts-University of Kiel, Germany

{gp,masch}@informatik.uni-kiel.de

Abstract. Cryptanalysis of symmetric and asymmetric ciphers is computationally extremely de-
manding. Since the security parameters (in particular the key length) of almost all practical crypto
algorithms are chosen such that attacks with conventional computers are computationally infeasible,
the only promising way to tackle existing ciphers (assuming no mathematical breakthrough) is to
build special-purpose hardware. Dedicating those machines to the task of cryptanalysis holds the
promise of a dramatically improved cost-performance ratio so that breaking of commercial ciphers
comes within reach.

This contribution presents the design and realization of the COPACOBANA (Cost-Optimized Par-
allel Code Breaker) machine, which is optimized for running cryptanalytical algorithms and can
be realized for less than US$ 10,000. It will be shown that, depending on the actual algorithm,
the architecture can outperform conventional computers by several orders in magnitude. COPA-
COBANA hosts 120 low-cost FPGAs and is able to, e.g., perform an exhaustive key search of the
Data Encryption Standard (DES) in less than nine days on average. As a real-world application,
our architecture can be used to attack machine readable travel documents (ePass). COPACOBANA
is intended, but not necessarily restricted to solving problems related to cryptanalysis.

The hardware architecture is suitable for computational problems which are parallelizable and
have low communication requirements. The hardware can be used, e.g., to attack elliptic curve
cryptosystems and to factor numbers. Even though breaking full-size RSA (1024 bit or more) or
elliptic curves (ECC with 160 bit or more) is out of reach with COPACOBANA, it can be used
to analyze cryptosystems with a (deliberately chosen) small bitlength to provide reliable security
estimates of RSA and ECC by extrapolation3.

1 Introduction

All modern practical ciphers, both symmetric and asymmetric ones, use security parameters (in
particular the key-length) which makes them secure against attacks with current computers.
Depending on the security margin chosen in a given application, many ciphers are potentially
vulnerable to attacks with special-purpose machines which have, say, a cost-performance ratio
which is several orders of magnitude better than that of current PCs. This contribution describes
a design and successful prototype realization of such a special-purpose cryptanalytical machine
based on low-cost FPGAs.

Cryptanalysis of modern cryptographic algorithms requires massive computational effort,
often between 256 to 280 operations. A characteristic of many (but not all) cryptanalytical
algorithms is that they can run in a highly parallel fashion with very little interprocess com-
munication. Such applications map naturally to a hardware based design, requiring repetitive
mapping of the basic block, and can be easily extended by adding more chips as required.
However, it should be stressed that the mere availability of computational resources is not the

3 The basic architecture of COPACOBANA was presented as a poster at a hardware workshop (not disclosed
here in order to keep this submission anonymous).



core problem, but providing massive computational resources at affordable costs is. The non
recurring engineering costs for ASICs have put special-purpose hardware for cryptanalysis in
almost all practical situations out of reach for commercial or research institutions, and have
been considered only feasible by government agencies.

An alternative approach to distributed computing with loosely coupled processors is based
on using the idle cycles of the huge number of computers connected via the Internet, for instance
the SETI@home project [16]. The results of this approach has been quite successful for some
applications (even though the confirmed detection of extraterrestrial life is still an open problem)
and is used for selected problems which are not viable with the computing power within a single
organization. Using distributed computing, however, has the disadvantage of, first, having to find
individuals who would be interested in joining to solve a problem and, secondly, trusting the
nodes from introducing errors. Finally, for many code-breaking application, shared computation
is not a method of choice in many cases.

With the recent advent of low-cost FPGA families with much logic resources, field pro-
grammable gate arrays provide a very interesting alternative tool for the massive computational
effort required for cryptanalytic applications. Reconfigurable computing has been emerged as a
cost effective alternative for various applications which require the power of a custom hardware
but require the flexibility provided by a software based design, e.g., in rapid prototyping. In
addition, to the cost-performance advantage over PC-based machines, such a machine has the
advantage over ASIC-based designs that it can be used to attack various different cryptosystems
without the need to rebuilt a new machine each time. In cryptanalysis, certain algorithms are
very well suited for special-purpose hardware. A prime example for this is an exhaustive key
search of the Data Encryption Standard (DES) [10]. Such a brute-force attack is more than two
orders of magnitude faster when implemented on FPGAs than in software on general purpose
computers at equivalent costs4.

This contribution describes the design, implementation, and applications of COPACOBANA,
a massively parallel machine based on FPGAs. The hardware is suitable for computational
problems which are parallelizable and have low communication requirements and can be used,
e.g., to attack elliptic curve cryptosystems and to factor numbers. Even though breaking full-
size RSA (1024 bit or more) or elliptic curves (ECC with 160 bit or more) is out of reach with
COPACOBANA, it provides for the first time a tool for a reliable security estimation of RSA
and ECC. Even more relevant is the fact that resource constrained applications, in particular
mobile devices, sometimes settle with shorter parameters, such as the 112 bit and 128 bit ECC
systems recommended by the SECG standard, which become vulnerable with our machine. Also,
assuming Moore’s law, we can predict the security margin of RSA and ECC in the years to come.

Another interesting application emerges in the area of machine readable travel documents
(ePass): The International Civil Aviation Organization (ICAO) initiated biometric and RFID
technologies for border and visa control. Current realizations of Basic Access Control deploy
symmetric cryptography (Triple-DES) and generate the corresponding encryption and authenti-
cation keys from passport information. As pointed out by many experts however, the low entropy
of the key allows for attacks of complexity of not more than single DES. Using our hardware
architecture this kind of attack can be mounted in much shorter time, and even real-time, i.e.,
the time needed to pass the inspection system.

4 Based on our existing implementations, a single FPGA at a cost of US$ 50 (current market price) can test 400
million keys, a PC (Pentium4, 2GHz) for US$+ 200 approx. 2 million keys per second. Hence, 4 FPGAs can
perform the same task approximately 800 times faster than a PC at the same cost.



The outline of the paper is as follows: In the next Section, we identify a model for an opti-
mized hardware architecture for breaking codes which we realized as a custom-designed comput-
ing machine. We will present the architectural concept and the prototype of COPACOBANA,
consisting of a backplane, an FPGA DIMM module, and a controller card. In Section 3, crypt-
analytical applications which are suited for running on low-cost FPGAs will be discussed: First,
we show how cryptographically weak systems can be attacked with COPACOBANA. An im-
plementation of the Data Encryption Standard (DES) on COPACOBANA impressively shows
how DES can be broken with low effort in less than nine days, making many existing legacy
implementations of DES vulnerable to attacks by nearly everyone. Furthermore, we show how
the DES implementation at hand can be used for attacks on machine readable travel documents,
which use Triple-DES with keys of low entropy. Secondly, we briefly sketch how an efficient hard-
ware implementation of the elliptic curve method (ECM) on COPACOBANA can be used to
factor composite integers in parallel. As another asymmtetric cryptanalytical example, a spe-
cially tweaked implementation of Pollard’s rho algorithm, can be used for breaking elliptic curve
cryptosystems (ECC).

2 Proposed Architecture for Cryptanalysis

As we will see in Section 3, many algorithms tackling the most important problems in crypt-
analysis can be implemented on FPGAs. However, code breaking involves more effort than
programming just a single FPGA with a particular algorithm. Due to the enormous dimensions
of cryptanalytical problems, much more resources than a single FPGA are required. What is
needed is a powerful massively parallel machine, tweaked to the needs of the targeted algorithms.

Most problems can be parallelized and are perfectly suited for a distributed architecture.
In many cases, not much communication overhead is required. Conventional parallel computing
architectures, such as provided by Cray, can in theory also be used for cryptanalytical appli-
cations. However, the cost-performance ratio is not optimized with this approach, resulting in
prohibitively expensive attack machines. Similarly, many features of current high-end processors
are not required for the targeted cryptanalytical problems. For instance, high-speed communi-
cation between CPUs, fast floating point operations, etc., cannot be used in our context. All of
these features usually increase the cost of such a device, which is in particular annoying when
they are superfluous. Even a simple grid of conventional PCs is not efficient, as can be seen from
implementations of DES: An implementation on a single FPGA can be more than 100 times
faster than an implementation on a conventional PC, while the FPGA is much cheaper than the
PC. Therefore, a custom design is inevitable in order to obtain a low-cost architecture with the
required performance.

Our metric to decide whether an architecture is “good” or not is a function of performance,
flexibility, and monetary cost. A good performance metric for hardware implementations is the
area-time (AT) complexity. Whenever we can minimize the AT-complexity, the design can be
called efficient. ASIC implementations can be AT-minimal and are the best choice for high-
volume applications. However, ASICs are not flexible since they can implement only a single
architecture. FPGAs in contrast are reprogrammable and, thus, are flexible. Moreover, if only
a relatively small number of chips (< 10 000) is required, FPGAs are preferable since the
production of ASICs is profitable only when targeting high volumes.

In the following, we describe an optimized architecture for cryptanalytical purposes and
its implementation as custom-designed FPGA machine which hosts 120 FPGAs and can be
produced for less than US$ 10,000, including material and manufacturing costs.



2.1 An Optimal Architecture to Break Ciphers

All targeted algorithms (see Section 3) have the following common characteristics: First, the
computational expensive operations are parallelizable. Secondly, single parallel instances do not
need to communicate with each other. Thirdly, the overall communication overhead is low, driven
by the fact that the computation phase heavily outweighs the data input and output phases.
In fact, computation time dominates compared to the time for data input or output. Ideally,
communication is almost exclusively used for initialization and reporting of results. A central
control instance for the communication can easily be accomplished by a conventional (low-cost)
PC, connected to the instances by a simple interface. No high-speed communication interface
is required. Forthly, all presented algorithms and their corresponding implementations call for
very little memory. As a consequence, the available memory on contemporary low-cost FPGAs
such as the Xilinx Spartan3 is sufficient.

2.2 Realization of COPACOBANA

Recapitulating, the Cost-Optimized Parallel Code Breaker (COPACOBANA) fitting our needs
consists of many independent low-cost FPGAs, connected to a host-PC via a standard interface,
e.g., USB or Ethernet. Furthermore, such a standard interface allows to easily extend a host-PC
with more than one COPACOBANA device. The initialization of FPGAs, the control, and the
accumulation of results is done by the host. Since the cryptanalytical applications demand for
plenty of computing power, the targeted platform aggregates up to 120 FPGAs (Spartan3-1000).
Building a system of such a dimension with commercially available FPGA boards is certainly
feasible, but comes with a cost penality. Hence we decided to design, layout, and build our
own hardware. We considered several different design options. Our cost-performance optimized
design became only feasible by strictly restricting all functionality to those directly necessary for
code breaking, and to make several design choices based on readily available components and
interfaces. The design of COPACOBANA is depicted in Figure 1 and consists of

Fig. 1. Architecture of COPACOBANA
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– FPGA modules for the actual implementation of the presented hardware architectures,
– a backplane, connecting all FPGA modules to a common data bus, address bus, and power

supply,
– and a controller card, connecting the data bus and address bus to a host-PC via USB.



FPGA Modules: We decided to pick a contemporary low-cost FPGA for the design, the Xilinx
Spartan3-1000 FPGA (XC3S1000, speed grade -4, FT256 packaging). This comes with 1 million
system gates, 17280 equivalent logic cells, 1920 Configurable Logic Blocks (CLBs) equivalent to
7680 slices, 120 Kbit Distributed RAM (DRAM), 432 Kbit Block RAM (BRAM), and 4 digital
clock managers (DCMs) [20].The choice for this chip was derived by an evaluation of size and
cost over several FPGA series and types.

A step towards an extendable and simple architecture has been accomplished by the design of
small pluggable FPGA modules. We decided to settle with small modules in the standard DIMM
format, comprising 6 Xilinx XC3S1000 FPGAs. Figure 4 (Appendix A) shows its realization as
custom made 4-layer printed circuit board. The FPGAs are directly connected to a common
64-bit data bus on board of the FPGA module which is interfaced to the backplane data bus via
transceivers with 3-state outputs. While disconnected from the bus, the FPGAs can communicate
locally via the internal 64-bit bus on the DIMM module. The DIMM format allows for a very

Fig. 2. FPGA module (DIMM)

compact component layout, which is important to closely connect the modules by a bus. Figure 2
depicts the chip arrangement. From the experience with current implementations on the same
FPGA type, we dispense with active cooling of the FPGAs at these times. Depending on the heat
dissipation of future applications, passive or active cooling might be an option for an upgrade.

Backplane: The backplane hosts all FPGA-modules and the controller card. All modules are
connected by a 64-bit data bus and a 16-bit address bus. This single master bus is easy to control
because no arbiter is required. Interrupt handling is totally avoided in order to keep the design
as simple as possible. If the communication scheduling of an application is unknown in advance,
the bus master will need to poll the FPGAs.

Moreover, the power supply is routed to every FPGA module and the controller interface.
The backplane distributes two clock signals from the controller card to the slots. Every FPGA
module is assigned a unique hardware address, which is accomplished by Generic Array Logic
(GAL) attached to every DIMM socket. Hence, all FPGA cores can have the same configuration
and all FPGA modules can have the same layout. They can easily be replaced in case of a defect.
Figure 5 (Appendix A) shows the prototype of the backplane equipped with one FPGA module
and the control interface card which will be described in the next subsection. The entire bus
has been successfully tested by use of the prototype FPGA module with frequencies of up to
50 MHz. For the fully equipped board, the bus speed will be limited to 33 MHz due to power
dissipation.



Control Interface: Data transfer from and to the FPGAs and to the host-PC is accomplished
by the control interface. We decided to pick a small development board with an FPGA (CESYS
USB2FPGA [3]) in favor of a flexible design. The development board comes with a Xilinx
XC2S200 SPARTAN II FPGA (PQ208), an integrated USB controller (CYPRESS FX-2), and 1
MByte SRAM. Moreover, the board provides an easy-pluggable 96-pin connector which we use
for the connection to the backplane. In later versions of the design, it is also possible to replace
the FPGA development board by a small microcontroller with a standard USB or Ethernet
interface.

The controller hardware has to handle the adaptation of different clock rates: The USB
interface uses a clock rate of 24 MHz, the backplane is clocked with 33 MHz, and the controller
itself is running at an internal clock of 133 MHz. The internal clock is generated by an external
clock synthesizer, the system clock is derived from a digital clock manager (DCM) present on
the FPGA.

The main state machine of the control interface is used to decode and execute host commands
received via USB, program the FPGAs via the data bus in slave parallel mode, initialize (write
to) FPGAs and start the computation, and regularly poll the FPGAs and check for new results.

Programming can be done for all FPGAs simultaneously, for a set of such, or for a partic-
ular one. Since the targeted cryptanalytic applications do not require different code on distinct
FPGAs, a concurrent programming of all devices is very helpful.

Host-PC: The top level entity of COPACOBANA is a host-PC which is used to program and
control all FPGA implementations. For this purpose, a software library has been written to issue
commands to the USB connected controller card of COPACOBANA. All software routines are
based on the closed source library provided by the board manufacturer (CESYS). With the low-
level functions, FPGAs can be addressed and data can be stored and read to/ from a particular
FPGA. Further functions include the detection of the hardware and some configuration routines
such as, e.g., a backplane reset. Higher-level functions comprise commands at application level.
E.g., for the DES Cracker, we can store a certain plaintext in the DES units, check its status,
etc.

3 Cryptanalytic Motivation for COPACOBANA

In this section, we will point to possible applications in cryptanalysis. COPACOBANA can be
used to break cryptographically weak or outdated algorithms such as DES, A5, and SHA-1
which have an attack complexity of at most 270 operations. But, clearly, COPACOBANA can
not recover keys from actual strong cryptosystems such as AES, ECC, and RSA. However, the
hardware approach allows to implement attacks on such systems with a deliberately chosen small
bitlength and to extrapolate the results to finally obtain a much better estimate of the security
of actual cryptosystems against attacks with special-purpose hardware.

We will investigate the complexity of following attacks:

– An exhaustive key search of DES (Subsection 3.1). DES still is used for compatibility reasons
and/ or in legacy products. Out-dated DES-based cryptosystems such as Norton Diskreet
(a very popular encryption tool in the 1990ies which was of the well-known Norton Utilities
package) can be broken with COPACOBANA. Diskreet was used to encrypt single files as
well as to create and manage encrypted virtual disks.



– Attacks on machine readable travel documents (ePass): With the DES implementation at
hand, an intimidating real-world example of a weak cryptosystem, namely the recently intro-
duced ePass by ICAO, can be attacked in certain ways which we will sketch in Subsection 3.2.

– Factoring composites with the elliptic curve factorization method (ECM) (Subsection 3.3).
ECM can be used as a crucial step for factoring actual RSA moduli and a reliable estimate of
its complexity is indispensable for the security evaluation of factorization-based cryptosys-
tems such as RSA.

– Attacks against ECC with a parallel variant of Pollard’s rho method (Subsection 3.4). The
hardware implementation of an algorithm solving the discrete logarithm problem on elliptic
curves gives rise to a more realistic estimate of the security of ECC against attacks with
special-purpose hardware.

3.1 Exhaustive Key Search of DES

Ideally, the security of symmetric ciphers is dependent on the impracticability of an exhaustive
key search. This requires examining through each key in the possible key space. The cost of
the attack is calculated based on the available technology and expected future developments.
Usually, the key size is chosen such that it allows for a fast and efficient implementation of the
cryptosystem but making such brute force attacks impracticable.

The Data Encryption Standard (DES) with a 56-bit key size was chosen as the first com-
mercial cryptographic standard by NIST in 1977 [10]. A key size of 56-bits was considered to
be good choice considering the huge development costs for computing power in the late 70’s,
making a search over all the possible 256 keys impractical. But DES has survived long beyond its
recommended lifetime and still is being used in legacy systems or due to backward compatibility
reasons. The advances in the hardware and decreasing costs have made DES vulnerable to brute
force attacks.

Previous Work: There has been a lot of feasibility studies on the possible use of parallel hard-
ware and distributed computing for breaking DES. The first estimates were proposed by Diffie
and Hellman [5] for a brute force machine that could find the key within a day at US$ 20 million.

A first ever detailed hardware design description for a brute force attacker was presented
by Michael Wiener at the rump session of CRYPTO’93 and is reprinted in [18]. The machine
could be built for less than a million US$ with 57, 000 DES chips that could recover a key every
three and half hours. The estimates were updated in 1998 due to the advances in hardware for
a million dollar machine to 35 minutes for each key recovery [19].

Ian Goldberg and David Wagner estimated the cost for building a DES brute force attacker
using FPGAs at US$ 45,000 for a key recovery within a year [6]. In 1997, a detailed cost estimate
for three different approaches for DES key search: distributed computing, FPGAs and custom
ASIC designs, was compiled by a group of cryptographers [1].

The real practical attempts at breaking DES were encouraged by the RSA Secret Key chal-
lenge launched in 1997 [15]. The first challenge was solved by Rocke Verser, Matt Curtin, and
Justin Dolske using the DESCHALL distributed network in 1997. The RSA DES Challenge II-1
was broken by distributed.net within 39 days in 1998. The RSA DES Challenge II-2 was won
by the Electronic Frontier Foundation (EFF) DES hardware cracker called Deep Crack in 1998
within 56 hours [6]. The DES cracker consisted of 1, 536 custom designed ASIC chips at a cost
of material of around US$ 250,000 and could search 88 billion keys per second. The final blow
to DES was given by the DES Challenge III which was solved in 22 hours 15 minutes using the
combined effort of Deep Crack and distributed.net



A first low-cost approach in attacking a DES-based protocol was realized by [4]. The authors
describe their experiences attacking the IBM 4758 CCA with an off-the-shelf FPGA development
board.

Though this proved to be an end for DES for many applications, the huge cost involved to
producing a machine like Deep Crack and access to foundries makes building such machines still
impractical for smaller organizations. Therefore, we propose a more practical approach of an
off-the-shelf-FPGA based hardware cracker.

DES on FPGAs: When DES was first proposed as a standard, its main application was seen
in hardware based implementations. Hence DES is extremely efficient in terms of area and speed
for hardware but unsuitable for a good software implementation due to the bit-level addressing
in the design. Therefore an FPGA implementation of DES can be more than a 100 times faster
than an implementation on a conventional PC at much lower costs. This allows a hardware
based key search engine to be much faster and efficient compared to a software based approach.

The main aim of our key search engine is to check as many keys as possible in the least
time to find the right key that could encrypt a known plaintext to its ciphertext that is made
available. It is obvious that such a key search can be done in a highly parallelized fashion by
partitioning the key space. This requires hardly any inter-process communication, as each of the
DES engines can search for the right key within its allocated key subspace.

For the DES engine, we implemented a highly pipelined design of the Université Catholique
de Louvain’s Crypto Group [14]. The design can test one key per clock per engine and the
pipelined architecture is adjusted such that the critical path is as small as possible, allowing
for a fast implementation. For COPACOBANA, we can fit four such DES engines inside a
single FPGA, and therefore allow for sharing of control circuitry and the key space as shown
in Figure 3. It consists of a 64-bit Plaintext register and 64-bit Ciphertext register. The key
space is allocated to each chip as the most-significant 15-bits of the key which is stored in the
Key register. The Counter is used to run through the least significant 39 bits of the key. The
remaining two bits of the 56-bit key for each of the DES engines is hardwired and is different
for each of them. Thus, for every such FPGA, a task is assigned to search through all the keys
with the 15 most-significant bits fixed, that is 241 different keys. The partitioning of the key
space is done by the host-PC such way that each chip takes around 90 minutes (at 100 MHz) to
check through its allocated key subspace, thus, avoiding huge communication requirements. This
also allows the machine to restart the key search easily from a previous state if a power failure
occurs. The generated cipher text (CT) is compared to that of the given Ciphertext stored in the
register, using the comparator (cmp) block. The results of the four comparators are ORed and
reported to the controller. If any of the DES engines provides a positive match, the controller
reports the counter value to the host-PC. The host-PC keeps track of the key range that is
assigned to each of the FPGAs and, hence, can match the right key from a given counter value.
If no match is found until the counter overflows, the FPGA reports completion of the task and
remains idle until a new key space is assigned. Since each FPGA can search through its key space
totally independent of any other FPGA, only the host-PC needs to keep track of the number
of FPGAs and the allocated key space. The estimated time to complete the key search using
COPACOBANA is discussed in the following.

Exhaustive Key Search with COPACOBANA: We can operate each of the FPGAs at
100 MHz and, therefore, each FPGA can check four keys every 10 ns. Consequently, a partial
key space of 241 keys can completely be checked in 239 · 10 ns by a single FPGA, which is
approximately 92 minutes. Since COPACOBANA hosts 120 of these low-cost FPGAs, the key



Fig. 3. Overview of an FPGA with four DES key search units
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search machine can check 4 · 120 = 480 keys every 10 ns, i.e., 48 billion keys per second. To find
the right key, COPACOBANA has to search through an average of 255 different keys. Thus on
average, COPACOBANA can find the right key after (255 · 10)/480 ns which is approximately
8.7 days. The time required for loading the plaintext, ciphertext and key space allocation are
ignored as they are negligibly small compared to the overall running time.

3.2 ePass

One important application of our architecture concerns the current scheme for machine readable
travel documents, also known as ePass, which is initiated by organizations5 in United States and
several other countries to deploy biometric and RFID technologies for border and visa control.
The claimed goal is to enhance security, protect against forgery and manipulation of travel
documents and ease identity checks. The initiative has been subject to many political and tech-
nical debates. Several researchers have pointed out the security and privacy weaknesses of the
deployed schemes and proposed improvements (see, e.g. [8, 9]). The cryptographic parts of the
scheme shall consist of a Passive Authentication, Basic Access Control and an Active Authenti-
cation. Whereas Passive Authentication means that the data stored on an ePass are signed by
the issuing nation, Basic Access Control should setup a secure (confidential) channel between
the reader device (part of the inspection system) and the ePass chip and Active Authentication
is deployed for anti-clonig purposes and requires an integer factorization based signature scheme
implemented on the ePass chip. Note, that both Basic Access Control and Active Authentication
are optional mechanisms. Basic Access Control is already implemented, e.g., in Germany and
the Netherlands.

5 More concretely, the International Civil Aviation Organization (ICAO).



Current realizations of Basic Access Control deploy symmetric cryptography (Triple-DES)
and generate the corresponding encryption and authentication keys from passport information
that is visible in the physical document (e.g., serial number, date of birth and expiration date).
More concretly, the key derivation scheme (e.g., implemented in reader devices) includes three
computations of SHA-1, one to derive the chip individual key K Seed, and two consecutive
computations that derive encryption key K Enc and authentication key K MAC. One of the
main concerns pointed out by many experts is the low entropy of this visible information being
insecure for key generation. The scheme has been already successfully attacked using offline
dictionary attacks6.

Using our hardware architecture this kind of attack can be mounted in much shorter time,
and even real-time, i.e., the time needed to pass the inspection system. Note that the dictionary
attack can be accelerated by pre-computing possible encryption keys using SHA-1 in advance.
Then our hardware only has to check for a matching of ciphertexts implementing Triple-DES
only.

Moreover, we are currently working on a device that can continuously read and record RF
based communication at public places with high ePass density like airports. After the real-time
decryption with our DES cracker, the information can be injected into distributed databases.
Having installed such devices on many different airports and other similar places one can trace
any person similar to tracing packages sent using postal services such as UPS.

3.3 Factorization

Since the introduction of public-key cryptography, the problem of factoring large composites
is of increased interest. These days, the by far most popular asymmetric cryptosystem is RSA
which was developed by Ronald Rivest, Adi Shamir and Leonard Adleman in 1977 [13]. The
security of the RSA cryptosystem relies on the difficulty of factoring large numbers. Hence, the
development of a fast factorization method could allow for cryptanalysis of RSA messages and
signatures. The best known method for factoring large integers is the General Number-Field
Sieve (GNFS). One important step within the GNFS is the factorization of mid-size numbers
for smoothness testing, an efficient algorithm for which is the Elliptic Curve Method (ECM).
Since ECM is suitable for parallelization, it is promising to be implemented in hardware.

The algorithm itself is almost ideal for improving the area-time product through special
purpose hardware. First, it performs a very high number of operations on a very small set of input
data, and is, thus, not very I/O intensive. Secondly, it requires relatively little memory. Thirdly,
the operands needed for supporting GNFS are well beyond the width of current computer buses,
arithmetic units, and registers, so that special purpose hardware can provide a much better fit.
This justifies the higher development costs compared to a solution with DSPs. Lastly, it should
be noted that the nature of the application allows for a very high degree of parallelization.

The first reported implementation of ECM in hardware was used to factor numbers of up
to 200 bit [11]. However, the monetary cost of the used System-on-Chip hardware is quite high.
Practical applications demand for a cheap realization of such ECM units. Therefore, a hardware
platform consisting of many low-cost FPGAs seems to be an appropriate choice. As a result
of the simple control logic for the ECM algorithm, no complex microcontroller is required and
most logic can easily be put into the FPGA.

6 Experiments on the Netherlands’ epass demonstrated that the encrypted information can be revealed in 2
hours after intercepting the communication, see http://www.riscure.com/news/passport.html. The issuing
scheme in the Netherlands has about 35 bits of entropy.



We propose to extend the proof-of-concept implementation of [11] to a highly parallel design
comprised of many (cheap) FPGAs which can be used to assist attacks on RSA cryptosystems
with moduli of sizes up to 1024 bit. For larger moduli, such a design demands for large quantities
of ECM engines such that an ASIC implementation is preferable.

All algorithms are chosen such that they allow for an implementation with a low area con-
sumption and a relatively high speed. At the time of writing, a basic ECM unit has been realized
with a very efficient ALU and first performance results are available in Table 1 (the values in-
clude overhead for memory access). A single unit can be clocked with 40 MHz and requires

Table 1. ECM implementation (200 bit modulus) (Xilinx XC3S1000, 40MHz)

Operation Time

modular addition/ subtraction 100 ns
modular multiplication/ squaring 5.13 µs

point addition 31.4 µs
point duplication 26.0 µs

approximately 40% of the slices of the Spartan3 device. Most memory has been realized with
internal dual-port RAM.

3.4 Solving Elliptic Curve Discrete Logarithms

Besides factorization, many public-key cryptosystems are based on the difficulty of solving
discrete logarithms in cyclic groups, known as the Discrete Logarithm Problem (DLP). A popular
choice of such is the Elliptic Curve Cryptosystem (ECC) [7].

Attacking ECC requires the same algorithmic primitives as the cryptosystem itself, namely
point addition and point doubling. Similar to the case of ECM in the previous section, these
primitives can be implemented very efficiently in hardware. A parallel Pollard’s Rho (PR) algo-
rithm is described in [17].

The PR algorithm essentially does a great many computations without the necessity of
communication. Only particular results have to be reported to a central control unit, which can
be realized by, e.g., a host-PC connected to the FPGA. The parameterization of the algorithm
can be optimized for a low area-time product and a low communication overhead. Hence, the
reports of the PR units to the host occur not very frequently. As with the ECM unit, a single
PR unit is comprised of an ALU, some memory and a control logic. The ALU for PR comprises
modular inversion as additional function. Opposed to ECM, every single PR unit requires an
individual control flow. Hence, the logic overhead for the algorithmic state machine is slightly
higher. For curves defined over prime fields of 160 bit, two independent PR units can be loaded
onto a XC3S1000 device. In this case, the maximum clock frequency is approximately 40 MHz
and the area usage is 6067 slices (79%). With 160 bit curves, a point addition requires 846 cycles
(21.15 µs) and 47 280 point operations can be performed per second by one unit. Consequently,
a single FPGA can compute approximately 94 500 point operations per second.

We can parallelize Pollard’s rho for COPACOBANA with the method presented in [17]. All
instances of the algorithm can run independently from each other. Solely certain values have to
be collected by a host-PC. Unlike ECM, we need a separate control logic for every single PR
unit, yielding a slight overhead in logic on the FPGA. All units can be addressed individually
by the host-PC using a unique address.



The chosen parameterization of the algorithm allows for a moderate communication over-
head. In principle, all units compute point additions until they hit a point of a certain structure
(so-called distinguished points). In such a case, the distinguished point is loaded to an output
buffer for transmission to the host-PC while the computation continues.

For successfully solving the discrete logarithm problem over curves defined over prime fields
Fp, we have to compute approximately

√
q points, where q is the largest prime power of the

order of the curve. Appendix B provides estimates for solving the Certicom ECC challenges in
hardware and software.

4 Conclusion and Future Work

The work at hand presents the design and first prototype of a cost-efficient hardware for running
cryptanalytical algorithms. COPACOBANA can be built for for less than US$ 10,000 and hosts
120 low-cost FPGAs which can be adopted to any suitable task which is parallelizable and
has low communication requirements. For instance, we demonstrated how the Data Encryption
Standard (DES) can be broken within 9 days with the hardware at hand at an average rate of
48 billion keys per second.

We described how the DES implementation at hand can be used to attack the recently intro-
duced machine readable travel documents. Furthermore, we introduced to two cryptanalytical
algorithms which can be used to attack asymmetric algorithms. We propose a massively parallel
implementation of the elliptic curve method for factorization. Building an efficient ECM machine
is believed to speed-up the factorization of current RSA moduli. Furthermore, we can analyze
the security of elliptic curve cryptosystems by solving the ECDLP with a hardware architecture
for the parallel Pollard’s rho algorithm.

Even though breaking full-size RSA (1024 bit or more) or elliptic curves (ECC with 160 bit
or more) is out of reach with COPACOBANA, our machine provides for the first time a tool
for a reliable security estimation of RSA and ECC. Even more relevant is the fact that resource
constrained applications, in particular mobile devices, sometimes settle with shorter parameters,
such as the 80 bit and 112 bit ECC systems recommended by the SECG standard, which become
vulnerable with our machine. Also, assuming Moore’s law, we can predict the security margin
of RSA and ECC in the years to come.

Recapitulating, COPACOBANA is the first and currently the only available cost-efficient
design to solve cryptanalytical challenges. COPACOBANA was intended to, but is not neces-
sarily restricted to solving problems related to cryptanalysis. Almost certainly there will exist
more interesting problems apart from cryptology, which can be solved efficiently with the design
at hand. In an ongoing project, we plan to apply the Smith-Waterman algorithm [21, 12] for
scanning sequences of DNA or RNA against databases.

Future work includes optimization of the parallel implementations of the presented cryptan-
alytical algorithms to guarantee the best possible throughput. Furthermore, it seems promising
to mount a real-world attack on the ePass and on other cryptographically weak systems such as
SHA-1 with help of COBACOBANA.
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A Realization of COPACOBANA

Figure 4 shows the realization of a single FPGA DIMM module as printed circuit. COPA-
COBANA with a 19 DIMM modules is depicted in Figure 5.

Fig. 4. FPGA module (4-layer printed circuit board)

Fig. 5. COPACOBANA backplane with FPGA modules



B Certicom ECC Challenges

To show how secure ECC is (and, thus, how hard it is to solve the discrete logarithm problem
on elliptic curves), the company certicom announced challenges for different bit-sizes [2]. The
latest challenge solved was for a curve defined over a prime field of size of 109 bit. The challenge
was estimated to take approximately 9 · 106 machine days on a conventional PC. For q ≈ 109
bit, we would need to compute approximately 254 point additions. In this case we would send
every 230th point to a host-PC for subsequent comparisons. With COPACOBANA, the discrete
logarithm could be solved in approximately 106 days with a single FPGA. Since the targeted
FPGA is low-cost (approx. US$ 50 per piece at small quantities7), it is fair to assume that we
can buy more than one FPGA for the price of a single PC. We assume that COPACOBANA
can solve the challenge approximately 90 times faster than a PCs at equivalent costs.

Table 2 provides a comparison of the expected running time in days of a conventional PC
versus the running time of COPACOBANA built of 120 FPGAs8. Furthermore, we assume the
presence of 3, 2, and 1 PR unit(s) on a single FPGA for the bit-length 79-97, 109-191, and
239, respectively. Furthermore, a fixed clock rate of 40 MHz is assumed. The estimates for the
machine days are taken from [2].

Table 2. Expected runtime on different platforms and for different Certicom ECC challenges

Challenge Pentium M@1.7GHz COPACOBANA

ECCp-79 49.0 d 0.13 d
ECCp-89 4.64 y 4.90 d
ECCp-97 74.7 y 93.4 d
ECCp-109 5570 y 24.2 y
ECCp-131 1.40 · 107 y 6.17 · 104 y
ECCp-163 1.09 · 1012 y 7.63 · 109 y
ECCp-191 2.17 · 1016 y 1.58 · 1014 y
ECCp-239 4.44 · 1023 y 7.18 · 1021 y

7 Xilinx offers this particular FPGA for US$ 12 at large quantities (> 250, 000 pcs.).
8 For simplicity, we neglect the central control instance and the required memory which is, in fact, the same for
both the PC and the FPGA solution.


