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Abstract. Many Field-Programmable Gate Array (FPGA) based sys-
tems utilize third-party intellectual property (IP) in their development.
When they are deployed in non-networked environments, the question
raises how this IP can be protected against non-authorized use. We de-
scribe an offline authentication scheme for IP modules. The scheme im-
plements mutual authentication of the IP modules and the hardware
platform, and enables us to provide authentication and integrity assur-
ances to both the system developer and IP provider. Compared to the
Trusted Computing Platform’s approach to hardware, software authenti-
cation, our solution is more lightweight and tightly integrates with exist-
ing FPGA security features. We are able to demonstrate an implementa-
tion of the authentication scheme that requires a symmetric cipher and
a Physically Unclonable Function (PUF). In addition to the low hard-
ware requirements, our implementation does not require any on-chip,
non-volatile storage.

1 Introduction

The latest generation of Field Programmable Gate Arrays (FPGAs) can accom-
modate complex systems containing embedded hardware and software. While
they are often used in a constrained, non-networked environment, their con-
figuration presents a valuable piece of intellectual property that merits protec-
tion. Our contribution is an offline mutual authentication scheme for both the
hardware and software configuration of a reconfigurable platform. The mutual
authentication involves the FPGA chip manufacturers, who provide a standard
security module in each of their FPGAs, and the IP providers, who commit to
an identity for each release of their software. An FPGA system developer com-
bines chips and IP components in their product. Using the hardware identity
provided by the chip manufacturers and software identity committed to by the
IP providers, they are able to construct a product where hardware and software
components can authenticate each other.
In this section, we briefly review the roles that the chip manufacturers, IP

providers, and system developers play in the authentication scheme, along with
what it means to have a software or hardware identity. Also discussed is the
meaning of software in an FPGA and the role it plays in modern FPGA design.
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Fig. 1. Parties involved in modern FPGA design

1.1 Securing Intellectual Property in Modern FPGA Design

The rapidly increasing design capacity of FPGAs enables more complex and
bigger designs than ever before. Many current models of FPGAs not only support
traditional hardware design, but also have the ability to run embedded software.
The software in an FPGA executes in either an embedded hardcore processor like
the PowerPC, or in a softcore [1] that is synthesized with the rest of the hardware
design. These software modules are often developed and distributed by third-
party IP Providers. While design protection in FPGAs has been available for
some time in the form of configuration encryption [2], this technique is ineffective
at protecting third-party intellectual property and software modules. We point
out two key issues.
The first issue is that IP-methodologies require additional authentication. As

shown in Fig. 1, system developers design their product with a plug-and-play
methodology in which they adopt third-party intellectual-property components
(IP) for integration onto a chip. This IP can possibly come from multiple vendors
in the case of so-called System-on-Chip design (SoC). The result is an intriguing
multi-level authentication problem. At one level, system developers would like
to authenticate the IP they are running (Fig. 1, A), and at another level the IP
providers would like to authenticate the system into which they are integrated
(Fig. 1, B). In this paper, we will specifically consider the integration of software
IPs onto an FPGA platform, but it is understood that the need for authentication
in IP-methodologies is generic.
The second issue is that current FPGA security mechanisms have a lim-

ited scope, focused on the hardware configuration. Bitstream encryption [3] for
example will enforce bitstream privacy and integrity, but it will not protect
the software running on the processors configured in the FPGA. In the case of
third-party IP, and specifically in the case of software IPs, additional protection
mechanisms are required.
We present a solution to the above to problems, in the form of a protocol

and an architectural extension for FPGA-based design. We also demonstrate a
sample implementation and report on the complexity and performance of this
implementation.
The system setup that we are considering for our protocol development is

shown in Fig. 2. A hardware platform, designed by a System Developer, will be
configured into an FPGA. The System Developer will also use third-party soft-
ware IPs that execute on top of the platform. The System Developer can apply
bitstream encryption to protect the hardware configuration in the FPGA, but



an additional hardware-software authentication mechanism is needed to protect
the software IPs.
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Fig. 2. Levels of Authentication

The outline of this paper is as follows. In Section 2 we describe the protocol
for enrolling the hardware and software identities in the authentication scheme.
Then, in Section 3 we discuss the protocol for distributing mutually authenti-
cated IP to system developers. After discussing the authentication protocol in
Sections 2 and 3, we analyze the security properties in Section 4. Finally, a low-
cost implementation of the offline, hardware, software authentication scheme is
presented in Section 5.

2 Enrollment Protocol

The enrollment phase involves three parties: the chip manufacturers, IP providers
and a trusted third-party that is used to store and communicate identity in-
formation among the participants. As shown in Fig. 3, the enrollment phase is
composed of two communication channels. One channel is used by the chip man-
ufacturer to communicate hardware identities to the trusted third-party, and the
other channel is used by the IP provider to communicate software identities. The
definition of hardware and software identities is given in the following sections.

use the direct method instead

Fig. 3. Enrollment Phase

2.1 Hardware Enrollment

In this phase, the manufacturer would like to distribute FPGAs that have the
ability to securely run third-party IP. To enable their customers to securely run
third-party IP, the FPGA manufacturers implement a standard security module
in each chip. This security module contains two distinct hardware blocks:

1. PUF - Used for hardware authentication and key generation
2. Block Cipher - Used for symmetric encryption and software authentication



The PUF is a device that maps inputs (challenges) to outputs (responses).
The mapping from a challenge to a response is determined by the physical prop-
erties of the chip it is implemented in. Therefore, an identical PUF circuit im-
plemented on two different chips will result in different responses for the same
challenge. Several implementations for PUFs have been reported in literature [4,
5].

After building their FPGAs, the manufacturer enrolls them in the authen-
tication scheme by sending each chip’s identification information to the trusted
third-party. The identity is composed of two data items:

HW#: Public, unique 128-bit value that identifies the chip

−−−→
CRP : Private list of challenge, response pairs produced by the chip

To communicate the identity for each chip, the manufacturer opens an au-
thenticated and secure link to the trusted third-party (over SSL, SSH, etc.).
Over the authenticated and secure link, the manufacturer sends:

Manufacturer −→ TTP : HW#,
−−−→
CRP

2.2 Software/IP Enrollment

The enrollment of IP providers in the authentication scheme allows system de-
velopers to verify the integrity and authenticity of the software they are running.
The identification information the IP provider sends to the trusted third-party
is composed of two data items:

IP# : Public, unique 128-bit value that identifies the name
and version of the intellectual property

Hash(SW, IP#) : Public hash of the IP# and software that the IP is
composed of

Like the chip manufacturer, the IP provider opens a secure and authenticated
link to the trusted third-party. For each version or release of their software, the
IP provider sends:

IPP −→ TTP : IP# , Hash(SW, IP#)

Since the IP Provider only has to commit to a hash of their IP, they don’t have
to trust the third-party with the actual software. Also, the IP provider doesn’t
have to make any changes to their development process to enroll in the authen-
tication scheme. They simply commit to a version and hash for each software
release. There is no need to embed watermarks [6], or any other identification
information in their software.



3 Authenticated IP Request and Distribution

Once the system developer has purchased FPGAs that have been enrolled in
the authentication scheme, the developer can request authenticated IP from the
trusted third-party. The request and distribution of an authenticated hardware-
software configuration requires four messages per IP module. The first three
messages, involving the trusted third-party, form the online phase of the protocol.
The fourth message does not require the trusted third-party and forms the offline
phase of the protocol.
The messages of the online phase are exchanged over a standard secure, and

authenticated link.
First, some definitions of the symbols used in the protocol:

Nonce : Number used once, a unique token used to ensure the freshness
of a message

Cttp, Rttp : Challenge, response pair used by the trusted third-party to
communicate the IP authentication and integrity data to the
system developer

Rip : Response used by the IP provider to encrypt and package their
software for the target hardware platform

Cip : Challenge that the target hardware can use to generate the Rip

used to encrypt the software.

3.1 Request and Distribution Messages

(1) SYS −→ TTP : IP#, HW#, Nonce

(2) TTP −→ SYS : IP#, HW#, Cttp, {IP#, Hash (SW, IP#) , Cip, Nonce}
Rttp

(3) TTP −→ IPP : IP#, HW#, Nonce,Rip

(4) IPP −→ SYS : IP#, HW#, {length,Nonce, SW}Rip
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Fig. 4. Distribution Phase



3.2 Messages Explained

As shown in Fig. 4, the request and distribution of an authenticated hardware-
software configuration requires four messages between the system developer,
trusted third-party and the IP provider.

1. Message #1 is the system developer IP request to the trusted third-party.

2. Message #2 is sent by the trusted third-party to the system developer. The
message is encrypted using a CRP that the security module can generate
and use to decrypt the message. The message contains the requested IP’s
identity and integrity information. Also contained in this message is the
challenge that can be used by the security module to generate the response
used by the IP provider to encrypt their software.

3. Message #3 is the trusted third-party forwarding the system developer’s
request for IP to the IP provider. This message contains the response that
the IP provider will use as the key to encrypt their software.
After message #3, the trusted third-party is no longer involved in the mu-
tual authentication, and the protocol becomes off-line. At this point, the
IP provider can now securely package their software for a unique hardware
identity. While this package could be sent over the network, it could also be
in the form of a ROM chip that is given to the system developer.

4. Once the system developer has received message #4 from the IP provider,
this data can be merged with authentication information contained in mes-
sage #2. At this point, the system developer has the following information:

(a) Cttp, {IP#, Hash (SW, IP#) , Cip, Nonce}
Rttp

(b) {length,Nonce, SW}Rip

Part (a) of the message contains the necessary information to validate the
authenticity and integrity of the software, and the software is assured that
only the target hardware can decrypt the IP contained in part (b). Since the
security module is the only one that can generate the required responses to
decrypt the data, the merged message can then be saved to insecure storage
by the system developer. This IP containing message can then be validated,
loaded, and run by the offline FPGA indefinitely.

While the initial request and distribution of the messages involve active com-
munication, the last stage of verification is able to be performed in an offline
context. It is important that the last authentication stage can be performed of-
fline because many systems are deployed in non-networked environments. This is
an important distinction from protocols that require interactive zero-knowledge
proofs [7, 8], or active dialogue to perform authentication [9].



4 Analysis

The protocol is secure against cheating attempts by either the system developer,
or IP provider.

4.1 Tampering with Data from the TTP

Since the response from the TTP in message #2 is encrypted with a random
response, only the developer who possesses the target hardware with a valid
security module, will be able to decrypt the message. Also, in order to create a
fake encrypted portion of the message, the attacker needs to know the mapping
from Cttp to Rttp, which is infeasible due to the properties of the PUF. Invalid
messages in this step can be detected when the plaintext IP# doesn’t match
the IP# contained in the encrypted portion of the message.

4.2 Tampering with Data from the IP Provider

There are two hurdles an attacker must overcome to tamper with the software
received by the system developer in Message #4. The first hurdle is that the
attacker must not only know the Cip the TTP sent in Message #2, but also
the mapping from Cip to Rip. In addition, any modifications to the data will
be detected when the Hash(SW, IP#) doesn’t match the expected data, or the
Nonces don’t agree.

4.3 Collusion Scenarios

Using an example from today’s marketplace, it is interesting to look at the
possible sources of cheating and fraud between the various parties. The parties
are defined as follows:

System Developer: Customer designing a product or prototype

TTP: Fabless company that designs the actual FPGAs

IP Developer: Value-added seller that produces IP for a specific
company’s FPGAs

Chip Manufacturer: Third-party company that manufacturers the TTP
designed chips

The company that designs the actual FPGAs is the trusted third-party in
this scenario, because they have an incentive to be trustful to both the system
developers that purchase their chips, and the IP providers that develop for their
FPGAs. Since the FPGA designer is in the business of selling chips, it is desirable
to have a a complete design portfolio of IP components available for their FPGAs.
By designing the security module into their chips, they can assure IP providers



that their chips provide a secure environment from IP piracy. Therefore, if the
FPGA designing company wants to stay in business, they must stay trustworthy
to both their chip purchasing customers and IP providers. For example, if they
distributed a CRP that enabled a system developer to pirate an IP module, the
FPGA designer would lose all trust and likely see an exodus of IP providers from
their platform.

By having the trusted third-party directly generate the list of CRPs, the au-
thentication system also protects the FPGA designer from a chip manufacturer
who overbuilds and directly sells the FPGA designer’s product. Since the over-
built chips will not be in the TTP database, these chips will not be authorized
to run authenticated, third-party IP. In addition, when a system developer uses
a counterfeit chip, the FPGA designer will directly notice the counterfeits.

4.4 Implementation Practicality

One system issue is the ability of the TTP to store the authentication data. As
an example, for each chip the TTP must store the hardware ID along with a
CRP list. Making a rough estimate of 1,000 CRPs for each chip, this results in a
storage requirement of 250KB per chip. Therefore, a TTP would be able to store
the authentication data for a 1,000,000 chips on a single 250GB disk. Given that
many of today’s workstations have 250GB worth of storage, this is certainly a
reasonable storage requirement.

Also, implementing IP authentication into the development process is a rea-
sonable consideration as well. Given the fact that FPGA designers already dis-
tribute development software to system developers, implementing IP authenti-
cation into these tools would be of similar complexity. Therefore, integrating
an authenticated IP distribution scheme into the development process does not
appear to be an unreasonable task.

5 Results

The security module for the reconfigurable platform was developed on a Xilinx
Spartan-3 FPGA. The security module block diagram is presented in Fig. 5. The
authenticated IP is stored in an off-chip memory module and loaded into the
FPGA on power-up. The security module’s Protocol Controller is responsible
for detecting the presence of authenticated IP on the input lines and coordinat-
ing the load of authenticated IP. The transfer from the external store into the
security module is done over an 8-bit bus, with full-handshaking. Once the data
is inside the security module, all data is passed over a shared 128-bit bus be-
tween the Protocol Controller, AES module and the PUF. All processing is done
in a fully parallel manner, such that the AES block, PUF and IO can overlap
execution. Therefore, after one IP block has completed authentication and is be-
ing loaded into FPGA for execution, another can be undergoing authentication,
while the next IP block is simultaneously being loaded into the security module.
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Fig. 5. Security Module block diagram

Whether the security module is loading authenticated IP or generating CRPs
is determined by a leading opcode. Currently the opcode is one byte, with two
predefined opcodes. One opcode is used to instruct the security module to gener-
ate a CRP, while the other causes IP to be loaded through the security module.
Therefore, authenticated IP is stored in the following three-part format:

1. Opcodeload

2. Cttp, {IP#, Hash (SW, IP#) , Cip, Nonce}
Rttp

3. {length,Nonce, SW}Rip

An important note is that the authentication scheme is not limited to loading
a single authenticated IP module. The FPGA can load an arbitrary number of
IP components through the security module. Even while running, the system can
be configured to load new IP modules, or to swap old ones out of the system.

Generating a
−−−→
CRP requires the following message:

1. OpcodeCRP , seed,# of pairs to generate

Where the seed is a random number used to seed the PUF, and the number of
pairs to generate is a 64-bit integer. The CRP list is generated by the following:

C0 = PUF (PUF (seed)) (1)

R0 = PUF (C0) (2)

For i = 1 to # of pairs to generate

Ci = Ri−1 (3)

Ri = PUF (Ci) (4)

The system was designed and simulated using the the GEZEL language and
environment [10]. In addition to decrypting incoming IP modules, the AES cipher
is also used to compute hashes as in Cohen’s AES-hash NIST proposal [11]. We
have not yet built a PUF implementation, but have simulated its behavior using
another AES block with a fixed key.
Since GEZEL is a cycle-based hardware description language, most of the

work and simulation was completed before translating the GEZEL code to
VHDL. The translation from GEZEL to VHDL was done by the fdlvhd tool
provided by the GEZEL environment. After translation, the VHDL was synthe-
sized and mapped to a Spartan-3 FPGA using Xilinx’s toolchain. The results
are summarized in Table 1.



Table 1. Security Module Synthesis

Component HW Slices Speed

Protocol Controller (Input) Spartan-3 169 202 MHz
Protocol Controller (Output) Spartan-3 142 187 MHz
AES Spartan-3 2046 124 MHz
Simulated PUF Spartan-3 2025 124 MHz

As expected, the hardware requirements are dominated by the AES and sim-
ulated PUF. The important note though, is the low complexity and requirements
of the Protocol Controller. Couple this protocol model with some of literature’s
low cost symmetric cipher and PUF implementations and this offline mutual
authentication scheme not only fills a needed security gap in modern FPGA
design, but is also low cost.

5.1 Related Work

While AES was chosen as the symmetric cipher, and a simulated PUF was used,
it’s important to note that our offline hardware, software authentication scheme
only requires a single symmetric cipher, and a single PUF. This is in contrast to
the Trusted Computing Group’s (TCG) authentication scheme that requires the
following components be implemented in their trusted platform module (TPM)
[12, 13]:

Non-volatile storage for storing various keys and authorization data

True random-bit generator for key and nonce generation

SHA-1 Engine for computing signatures

RSA Key Generation for at least a 2048-bit modulus

RSA Engine for digital signatures and encryption/decryption

Compared to the recommended components for the TPM, our security mod-
ule is more practical to implement as a standard module in FPGAs. Also, the
TPM requirement for secure on-chip non-volatile storage isn’t likely to be met
by current reconfigurable platforms.
In [14] the authors present a solution to the shortcomings of the TCG spec-

ifications with regards to sealed data. Our work is orthogonal to [14] because
their focus is primarily on data that has been sealed to a particular TPM. This
results in a different problem domain because the data we are protecting is not
unique. While the data that an individual produces can be unique and irreplace-
able, the protected software delivered to our security module is neither unique,
nor irreplaceable. Instead, the software is able to duplicated by the IP provider
on demand. Therefore, when switching to a new FPGA, the system developer



can simply make a request to the TTP for another copy of the IP. The previ-
ously distributed software doesn’t have to be exported in a secure way because
it can be duplicated by the IP provider. If our authentication scheme was to be
extended to protecting not only hardware and software, but also unique data,
the ideas from [14] would be good addition for managing the secure data.
Other relevant work was done in [15] where the authors implemented a secure

and cost-optimized verson of a TPM for hand-held devices. The work describes
an architecture to cleanly implement the Trusted Computing Group specifica-
tions [12] in a hand-held context. By focusing on the ability to implement the
TCG specifications though, this implementation has the same requirements as
a standard TPM. A notable exception to the standard TPM implementation is
that the authors discuss the possibility of using a PUF based system to avoid
the need for onchip non-volatile memory to store secrets. Other relevant work
that our security module could benefit from is in the [15] authors work on secure
debugging interfaces and methods.

6 Conclusions

The use of intellectual-property components in FPGA-based design leads to
new and particular security requirements. The protection of the configuration
bitstream itself is insufficient to cope with multiple IP originators, and moreover
it does not offer adequate guarantees with respect to IP protection. Our results
show that a protocol can be designed that offers the required protection while
meeting the constraints of a small embedded and offline implementation. We also
don’t require a major modification of the design process. In fact, our protocol
can be made backward compatible with existing approaches for downloading
FPGA bitstreams.
We believe that our scheme is applicable to situations outside of FPGA de-

sign, and are presently investigating its use in the context of other implemen-
tation technologies, as well as in the context of different forms of IP, including
data and hardware IP blocks.
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