
Unified Point Addition Formulæ and

Side-Channel Attacks

Douglas Stebila1,? and Nicolas Thériault2

1 Institute for Quantum Computing,
University of Waterloo, Waterloo, ON, Canada,

dstebila@iqc.ca
2 Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, ON, Canada,

ntheriau@math.uwaterloo.ca

Abstract. The successful application to elliptic curve cryptography of
side-channel attacks, in which information about the secret key can be
recovered from the observation of side channels like power consumption,
timing, or electromagnetic emissions, has motivated the recent develop-
ment of unified formulæ for elliptic curve point operations. In this paper,
we show how an attack introduced by Walter can be improved and used
against the unified formulæ of Brier, Déchène and Joye when it relies
on a standard field arithmetic implementation, both in affine and pro-
jective coordinates. We also describe how the field arithmetic might be
implemented to obtain more uniform operations that avoid this type of
attack.

Keywords: elliptic-curve cryptography, side-channel attacks, unified
point addition formulæ, projective coordinates.

1 Introduction

The study of elliptic curves in cryptography [1, 2] has been ongoing for a number
of years. Elliptic curve cryptography offers higher security per key bit compared
to other public key cryptosystems and the smaller key size is more suitable for
implementation on small devices such as smart cards. In recent years, a new
class of attacks has been developed, called side-channel attacks [3], which use
information observed during the execution of the algorithm to help to determine
the secret key. There are two classes of side-channel attacks: simple side-channel
attacks, which analyze the trace of a single execution of a cryptographic proto-
col, and differential side-channel attacks, which compare the traces of multiple
executions of a protocol. The attack in this paper is only considered in a simple
side channel context.

The central operation in an elliptic curve cryptosystem is the point multipli-
cation operation, in which a point is multiplied by a scalar. The basic method for

? Supported by NSERC, Sun Microsystems, CIAR, MITACS, CFI, and ORDCF.



implementing point multiplication is the double-and-add technique, which uses
a binary representation of the scalar and performs a sequence of point additions
and point doublings depending on the bits of the scalar. In double-and-add point
multiplication, a point doubling is done for every bit of the key k, but a point
addition is done only when a bit of the key is 1. If, in a side-channel analysis,
a point addition is distinguishable from a point doubling, then the bits of the
secret key can be determined; this has been demonstrated experimentally using
timing [3], power analysis [4], and electromagnetic emissions [5]. Techniques for
counteracting this problem include: performing dummy operations, such as forc-
ing a point addition at each iteration [6]; using alternate point multiplication
algorithms, such as Montgomery point multiplication [7]; using alternate curve
parameterizations, such as the Jacobi or Hessian forms; and unifying the algo-
rithms for point addition and point doubling so that they use the same sequence
of field operations and hence are indistinguishable. It is this last technique that
we address in this paper.

A unified formula for point addition and point doubling for elliptic curves
in Weierstraß form, in which point addition and point doubling use the same
sequence of field operations, was first given by Brier and Joye [8] in affine and
projective form. Walter [9] demonstrated a theoretical side-channel attack on an
implementation of the formula of Brier and Joye that, instead of exploiting any
irregularity in the sequence of field operations performed, exploits an irregularity
in the implementation of the field operations themselves in the context of the
unified point addition formula. A subsequent paper of Brier, Déchène, and Joye
[11] offers an infinite family of unified point addition formulæ in affine form.

In this paper, we give a projective version of the unified point addition for-
mulæ of Brier, Déchène, and Joye. Whereas Walter’s attack used the occurrence
of the conditional subtraction in a Montgomery field multiplication, we note that
a conditional addition is often an integral step of field subtraction. A typical al-
gorithm for computing prime field subtraction is given in Fig. 1; the conditional
addition is step 2.3

Input: Integers c, d, q such that 0 ≤ c, d ≤ q − 1.
Output: Integer e such that e = c− d mod q and 0 ≤ e ≤ q − 1.

1. e← c− d
2. if e < 0 then e← e+ q

Fig. 1. Field subtraction algorithm

We find that the ability to detect the occurrence of the conditional addition
in field subtractions in both the affine and projective form decreases the amount
of work necessary to recover the key. In the projective case in Montgomery
representation, the effect is substantial when combined with Walter’s original

3 Similarly, a field addition contains a conditional subtraction, however our techniques
of Sec. 5 do not make use of this conditional subtraction.

2



attack. This observation reinforces the fact that a secure implementation re-
quires constant-runtime field operations, not just unified point arithmetic. In
fact, security against side-channel attacks needs to be addressed at three levels:
the hardware level, the software level, and the algorithmic level.

We also provide some performance results for the various unified formulæ and
discuss the applicability of timing attacks. We find in timing experiments that the
runtime of a field subtraction with the conditional addition takes substantially
longer than without (520 ns versus 330 ns) and thus seems exploitable.

This paper is organized as follows: Section 2 provides a short introduction to
elliptic curve cryptography. In Sec. 3, we describe the unified formula of Brier
and Joye and describe an attack by Walter. In Sec. 4, we describe the family of
unified formulæ in affine coordinates given by Brier, Déchène, and Joye and give
our derivation of the formulæ for projective coordinates. In Sec. 5, we present an
extension of Walter’s attack, analyze its effect on the implementation of the for-
mulæ, and discuss countermeasures. Section 6 contains performance results and
discusses the possibility of timing attacks on double-and-add projective unified
point multiplication.

The attacks we discuss in this paper only apply to elliptic curves over prime
fields and do not apply to curves over binary fields. The countermeasures we
present are not intended to be secure against differential side channel attacks;
standard countermeasures for that context should still be applied.

2 Background

For fields IK of prime characteristic other than 2 or 3, the Weierstaß form of an
elliptic curve is given by the equation y2 = x3+ax+b, where a, b ∈ IK. The set of
points in IK×IK on the curve, joined with the point at infinity O, forms an abelian
group, denoted E(IK). Two points P = (x1, y1) and Q = (x2, y2), P 6= −Q, can
be added to obtain a third point P + Q = (x3, y3), where x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1, and

λ =

{

y2−y1

x2−x1
, if P 6= Q (addition)

3x2
1+a

2y1
, if P = Q (doubling)

. (1)

Because λ is defined differently depending on whether or not P = Q, the formula
for point addition differs from the formula for point doubling.

The formula given above uses affine coordinates. The formula for λ requires
an inversion, which can be computationally expensive in practice. This has mo-
tivated the development of formulæ using projective coordinates. In the ordinary
projective case, a point is represented by three coordinates, P = (X,Y, Z), with
x = X/Z and y = Y/Z. Denominators are used for all of the point additions
and point doublings comprising a point multiplication, and only at the end is
the inversion Z−1 computed to return the final result to affine coordinates.

3



3 Unified Formula of Brier and Joye

The formula for λ in (1) when P 6= Q cannot be used for point doubling because
x1 = x2 in that case and the denominator is 0. Starting with the point addition
form of λ, Brier and Joye [8] use a series of algebraic manipulations to obtain a
form of λ that is defined for both point addition and point doubling:

λ =
(x1 + x2)

2 − x1x2 + a

y1 + y2
, if y1 + y2 6= 0 . (2)

However, this formula for λ is not defined when y1 + y2 = 0 (see Section 4.1).
Brier and Joye subsequently derive a projective formula for point addition using
this unified value of λ, with xi = Xi/Zi, yi = Yi/Zi:

X3 = 2FW , Y3 = R(G− 2W )− L2 , Z3 = 2F
3 , (3)

where U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, Z = Z1Z2, T = U1 +
U2,M = S1 + S2, F = ZM,L = MF,G = TL,R = T 2 − U1U2 + aZ2, and
W = R2−G. This formula requires 13 field multiplications and 5 field squarings.

3.1 Walter’s Side-Channel Attack

Walter’s side-channel attack [9] is an attack that assumes the occurrence of
a conditional subtraction in a Montgomery modular multiplication operation
can be detected. This attack should be considered successful if a non-negligible
proportion of the keys can be computed significantly faster than they would
with an attack on the whole keyspace. We will see that in some cases, the attack
becomes practical as a (relatively) high proportion of keys can be found with
(relatively) few computations.

Walter considers the effect of being able to detect a conditional subtraction
in Montgomery modular reductions in a point multiplication using the unified
formula of Brier and Joye. For a point doubling using the projective formula of
(3), the computations of U1 and U2 are identical, as are the computations of S1
and S2. The occurrence of a conditional subtraction in the Montgomery multi-
plication for U1 must be the same as that for U2, for a point doubling. Thus,
if a conditional subtraction is observed in the computation of one of U1 or U2
but not the other, then a point doubling could not have occurred and the op-
eration must be a point addition. (The same argument allows the computations
of S1 and S2 to distinguish a point addition.) The probability that a conditional
subtraction occurs in the computation of one of U1, U2 but not the other (and
similarly for S1 and S2) is

pdiff = 2psub(1− psub) ≈
3

8
. (4)

where psub is the probability of a conditional subtraction occurring; for Mont-
gomery modular reduction in practice, usually psub ≈ 1/4. Hence, the probability

4



that the occurrence of conditional subtractions in the computations of U1, U2, S1,
and S2 can be used to distinguish a point addition from a point doubling is

pdist = 1− (1− pdiff)
2 ≈

39

64
≈ 0.61 . (5)

In the sequence of operations in a double-and-add point multiplication algo-
rithm, the position of a point addition determines the point doublings on either
side of it. Let n be the size in bits of the prime field. Given pdist, the expected
total number of determined operations is:

3

2
(n− 1)pdist − (n− 2)

(

1

2
pdist

)2

. (6)

The probabilistic analysis given above does not give the best estimate of
the number of determined operations. In experiments, Walter found that, with
a set of 512 samples, it is most efficient to just pick the sample that has the
greatest number of distinguished point additions. This approach, combined with
additional substring restrictions, can give effective keyspaces for a 192-bit prime
curve of size just 217.6, which can be easily searched. The analysis in Sec. 5 gives
a probabilistic argument that generalizes Walter’s experimental sampling.

4 Unified Formulæ of Brier, Déchène, and Joye

4.1 Affine Coordinates

The unified point addition formula of Brier and Joye from the previous section is
defined when y1+y2 6= 0, which always holds in the case of point doubling, but it
is not applicable to all possible point additions. Izu and Tagaki [10] showed that
in some settings these special cases of the point addition could be used to reveal
the key. Brier, Déchène, and Joye [11] developed an infinite family of unified
point addition formulæ which are defined for all points. We are most concerned
with the most efficient formula of the family, which has

λ =
(x1 + x2)

2 − x1x2 + a+ (−1)δ(y1 − y2)

y1 + y2 + (−1)δ(x1 − x2)
, y1 + y2 + (−1)

δ(x1 − x2) 6= 0 ,

(7)
where δ = 0 when y1 + y2 + x1 − x2 6= 0 and δ = 1 otherwise (or a randomized
choice of δ when both choices give nonzero values). Unified point addition using
this λ requires 2 field multiplications, 2 field squarings, and 1 field inversion. Al-
though Brier, Déchène, and Joye give an infinite family of unified point addition
formulæ, which would allow a different λ value to be randomly chosen at each
point addition, we assume that the most efficient member, given in (7), is used
for each operation. If any fixed λ is used, then it may be that the attack in Sec. 5
can still be applied.

5



4.2 Projective Coordinates

To mitigate the high cost of field inversion compared to the cost of field multipli-
cation, points can be expressed in projective coordinates so that field inversion
need only be done once per point multiplication rather than at each intermediate
point addition or point doubling.

We now describe an ordinary projective form of the unified point addition
formula given by λ as defined in (7). We begin by noting that since P+Q = Q+P ,
the value for y3 in point addition is symmetric and hence 2y3 = λ(x1 + x2 −
2x3) − (y1 + y2). Letting xi = Xi/Z, yi = Yi/Z and completing the square in
the numerator of λ, we obtain:

X3 = 2FW , Y3 = R(G− 2W )− LFM , Z3 = 2F
3 , (8)

where U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, Z = Z1Z2, T = U1 +
U2,M = S1 + S2, V = (−1)δ(U1 − U2), N = (−1)δ(S1 − S2), E = M + V, F =
ZE,L = FE,G = LT,R = T 2 − U1U2 + Z(aZ + N), and W = R2 − G. Note
that δ = 0 when S1 + S2 + U1 − U2 6= 0 and δ = 1 otherwise (or a randomized
choice of δ when both choices give nonzero values). This formula requires 16 field
multiplications and 3 field squarings.4

5 Extending Walter’s Attack

5.1 Conditional Modular Reduction Attack

Walter’s original attack in Sec. 3.1 assumed that the conditional subtraction
at the end of Montgomery multiplication could be detected. Under the same
assumption that a conditional subtraction (or addition) can be observed, we
note that such an operation at the end of a field addition (or subtraction) can
be detected. For field subtraction as given in Fig. 1, the conditional addition is
step 2.5

We will observe later in this section that there are some modular subtractions
in the unified point addition algorithms where, in the case of a point doubling,
the arguments are equal and hence the result of the subtraction is zero: when
c = d, we compute c−d mod q as c−d = 0. In this case, a conditional addition
in field subtraction is never performed. However, if we observe the occurrence of
a conditional addition for the operation c−d mod q, then it must be that d > c
and hence the operation in question must be a point addition.

4 The multiplication by (−1)δ in the computation of V and N can be implemented
with conditional branching (if statement).

5 In implementation, this is common. For example, the OpenSSL [14] library provides
a function BN mod sub quick which performs exactly the operations in Fig. 1, and
similarly for field addition. When reduction is done using the Extended Euclidean
Algorithm, as in OpenSSL’s BN mod sub function, and the value to be reduced is
strictly between −q and q, the sequence of steps performed is effectively the same
as Fig. 1 and includes a conditional addition.

6



5.2 Effect on affine formulæ of Sec. 4.1

The affine formulæ of Brier, Déchène, and Joye in (7) requires the computation of
y1−y2 and x1−x2. If all of the coordinates are distributed uniformly at random,
then the probability that a conditional addition is necessary in the computation
of y1 − y2 is 1/2, and similarly for x1 − x2. In this case, the probability that a
point addition can be identified is pdist = 1− (1− 1/2)

2 = 3/4.
We first note that even when additions and doublings cannot be distin-

guished, a side channel attack will reveal the number of operations performed in
the point multiplication. If the key length is known, then knowing the number of
operations gives the number of additions (since the number of doublings is fixed
by the key length). To simplify the analysis, we assume that the attack can only
be successful for keys of the most common length. This does not mean that the
attack cannot work for other key lengths, but rather that it is more difficult to
bound the work required to determine the key.

If q is between 3 · 2r−1 and 3 · 2r, then the most common key length is r and
occurs for pl=r ≥ 1/3 of the keys (integers) between 0 and q. This probability is
maximal if q is close to 2r+1, in which case pl=r ≈ 1/2 of the keys have length
r. If there are k additions of which k1 are not identified, then we can consider
the key-space to search as the set of sequences of r − k “zeros” and k “ones”.
These sequences are combined with the identified additions of the double and
add sequence to give a list of possible keys (the substring structure will often
remove a number of sequences). The number of possible keys is then bounded
by

(

r−k+k1

k1

)

, which in turn is bounded by
(

r
k1

)

(this estimate is usually very
pessimistic, but it has the advantage of being independent from the value of k).

If we assume that all keys of length r are possible (which is true if q ≥
2r+1− 1), the probability that a key of length r uses k additions is

(

r
k

)

1
2r . Given

a key with k additions, the probability that k1 of them are not identified is
(

k
k1

)

(pdist)
k−k1(1 − pdist)

k1 . The probability that exactly k1 additions are not
identified in a key of length r is therefore

pk1
=

r
∑

k=k1

(

r

k

)

1

2r

(

k

k1

)

(pdist)
k−k1(1− pdist)

k1

=

r
∑

k=k1

(1− pdist)
k1

2r

(

r

k1

)(

r − k1
k − k1

)

(pdist)
k−k1

=
(1− pdist)

k1

2r

(

r

k1

) r−k1
∑

i=0

(

r − k1
i

)

(pdist)
i

=

(

r

k1

)(

1− pdist
2

)k1
(

1 + pdist
2

)r−k1

. (9)

Although the average number of unidentified addition is (1 − pdist)r/2 = r/8,
some keys will have fewer additions remaining to be identified.

For our 192-bit prime field example curve, we have r = 191 and we get an
average of 23.9 additions remaining to be identified, so the search space is still

7



quite large. This analysis assumes that the additions in a point multiplication
are independent. This is not strictly true as x1 and y1 (the x and y coordinates
of the base point) are the same for all the additions.

In 1/m of point multiplications sP , the x-coordinate of the base point P will
take on a value between 0 and 1

m
q and will have an average value of 1

2m
q. We

take the notation that in the double-and-add point multiplication algorithm the
fixed base point P is the first argument of the unified point addition formula.
In the computation of x1 − x2 in (7), we assume that, over the course of a
point multiplication, x2 will behave as if it is uniformly distributed. Thus it
is expected for 1 − 1

2m
of the point addition operations that x2 > x1 and a

conditional addition occurs. We do not put any condition on the y-coordinate of
P and assume that the size of y1 can be considered independent from the size
of x1. In this case, the probability that a point addition can be distinguished is
the probability that a conditional addition occurs in either the computation of
x1 − x2 or y1 − y2:

pdist = 1−

(

1−

(

1−
1

2m

))(

1−
1

2

)

= 1−
1

4m
(10)

Using pdist in (10) with 1/m = 1/8, the expected number of additions in our
example remaining to be identified decreases to 2.99. We can then conclude
that a significant proportions of keys of length r will be left with at 3 or fewer
unidentified additions (using the distribution in (9), we find that 1 in ≈ 24.6 of
all keys satisfy that condition). The number of possible keys is then bounded
(loosely) by

(

191
3

)

≈ 220.1, for which an exhaustive search is quite feasible.

5.3 Effect on projective formulæ of Sec. 4.2

Just as for affine formulæ, there are two operations in the projective formulæ of
(8) where we can take advantage of the ability to detect a conditional addition
in a field subtraction. Without loss of generality, suppose δ = 0. Consider the
calculations V = U1 − U2 and N = S1 − S2. In the case of a point doubling,
U1 = U2 and S1 = S2, so no conditional addition will occur in the calculation
of either V or N . However, in the case of a point addition, we assume that U1
and U2 will behave as if they are independent and uniformly distributed over
0, . . . , p−1. So, with probability padd =

1
2
, U2 < U1 and a conditional addition is

needed in the computation of V = U1−U2 (similarly for N = S1−S2). Moreover,
we also assume that the occurrence of a conditional addition in the computation
of V is independent of the occurrence for N . If a conditional addition is observed
in at least one of these computations, then the operation is known to be a point
addition, revealing the key bit. The probability of distinguishing a point addition
is again 1− (1− padd)

2 = 3/4. It should be noted that taking advantage of base
points of a special form is not possible here as U1, U2, S1 and S2 all depend on
both of the points of the addition, so for all practical purposes the probabilities
of identifying point additions are independent from each other.

If the field is implemented using Montgomery representation, Walter’s orig-
inal attack [9] on detecting conditional subtractions in Montgomery reductions

8



still applies to this projective formula. The detection of a conditional subtraction
is used to distinguish a point addition from a point doubling in the computa-
tion of U1 compared to U2, and of S1 compared to S2. We can combine the two
sources of information (conditional additions in the field subtractions and dif-
ferences in conditional subtractions in the Montgomery reductions) to increase
the probability of success.

We now have four different conditional events which distinguish a point ad-
dition from a point doubling:

1. conditional subtraction in computation of one of U1, U2 but not the other,
2. conditional subtraction in computation of one of S1, S2 but not the other,
3. conditional addition in computation of V = U1 − U2, and
4. conditional addition in computation of N = S1 − S2.

Under the assumption that these events occur independently, the probability of
detecting a point addition given that the operation was a point addition is

pdist = 1− (1− padd)
2(1− pdiff)

2 . (11)

In practice, the coordinate values observed during a point multiplication do seem
to behave as if they are sufficiently uniformly distributed and, with respect to
the four conditional events above, sufficiently uncorrelated.

If we assume no special knowledge on the base point of the point multipli-
cation, i.e. padd = 1/2 and pdiff ≈ 3/8, we get pdist ≈ 231/256 ≈ 0.902. For the
distribution obtained in (9), we average ≈ 0.049r unidentified additions.

If we look for base points of a special form as in Walter’s attack for the
formulæ of Brier and Joye, the increase in the probability of success is relatively
small. With a point of the form ∼

(

1
16
q, 1

16
q, 15

16
q
)

, we get pdiff ≈ 0.93 and the
expected number of unidentified addition decreases to ≈ 0.035r. This decrease is
small considering that we have to restrict ourselves to 1 in 512 points. In this case,
it is much more practical to consider all base points and take advantage of the
variability. For example, for a field of 192 bits, 15.4% of all point multiplications
have 6 or less unidentified additions, while the special base points (1 in 512)
have 6.7 unidentified additions on average.

Table 1 gives estimates for the attack at various field sizes. At each field
size, we give the average number of additions remaining to be identified. We
give a probabilistic analysis of the best sample we expect to find in the trace of
512 random point multiplications.6 In the probabilistic analysis, we determine
an upper bound on the number of unidentified additions for which the attack
will be considered successful, requiring a probability of success of at least 1 in
512. For each case, we give a (loose) upper bound on the keyspace and a better
estimate using the approach described in Appendix A.

We also evaluate the costs of the attack when we give a bound on the maxi-
mum number of additions remaining to be identified before the key is attacked

6 While the theoretical analysis in Section 5.2 only considers traces in which the key
has the most common length, the “best of 512” analysis takes into account keys of
all lengths (assuming failure of keys of length other than r).

9



(with 3 as an example). In this case, we give the expected number of point
multiplications that must be observed before finding such a key and a (loose)
upper bound on the size of the remaining keyspace. It is interesting to note that
for the 521-bit case, the expected number of keys required to obtain 3 uniden-
tified additions approximately balances the bound on the keyspace giving, in
some sense, an overall minimized complexity of attack. We also compare our
results with those of Walter [9]. We assume that general points are considered,
so pdist ≈ 0.902, that half the keys have size r (that is, q ≈ 2r+1) and that an
attack on a key of size different from r is always considered unsuccessful.

Table 1. Expected number of operations using conditional modular reduction attack,
using pdist as in (11).

Field size in bits (r + 1) 160 192 224 256 384 521

Average missing additions per point mult.: 7.76 9.33 10.89 12.45 18.70 25.43

Sampling best trace from 512 samples:
k required for prob. of success > 1/512: 2 2 3 4 8 13
Upper bound on keyspace for this k: 213.6 214.1 220.8 227.4 253.2 284.5

Estimated keyspace (Appendix A): 29.03 29.67 214.3 218.9 237.2 259.4

To obtain at most 3 unidentified additions:
Expected number of keys required: 22 67 217 746 217.1 225.2

Bound on keyspace: 219.3 220.1 220.8 221.4 223.1 224.4

Walter’s attack [9]:
Average missing additions: 19.2 23.0 26.6 41.5 57.9
Bound on keyspace (no restrictions): 233.2 242.8 252.4 291.4 2134.3

Bound using substring restrictions: 217.6 224.0 230.4 256.0 284.2

Just as in Walter’s analysis it may be possible to decrease the key space
remaining to be searched, for example by using substring restrictions on the
possible sequence of point additions and point doublings. This approach has
only a limited impact in our case, since the operations remaining to be identified
consist in a large number of doublings and a few additions.

5.4 Countermeasures to the Conditional Modular Reduction Attack

The success of the Conditional Modular Reduction attack depends on informa-
tion leaked on the size of intermediate values which is observed based on the field
subtraction having a conditional addition. If the field subtraction were to have
constant runtime, for example by inserting a dummy addition to offset the con-
ditional addition, then the attack would not apply. However, inserting dummy
operations may create additional risks in the setting of differential side-channel
attacks.

A nicer countermeasure would be to program the subtraction of c−d mod q
as (2q + c − d) −mq, where m ∈ {1, 2} depends on the value of 2q + c − d, so

10



the time required for a field subtraction is constant. For the field addition, one
would replace c+d mod q by (q+c+d)−mq where m ∈ {1, 2}, and similarly for
Montgomery reduction (replacing c+d by the value of the Montgomery reduction
at the moment the conditional subtraction is used). These countermeasures still
require a conditional operation to be performed, based on the appropriate value
of m, but may have less of a detectable difference.

A third countermeasure consist in taking the field reductions (both Mont-
gomery reductions and addition/subtraction of a multiple of q) as independent
operations from the multiplications, squarings, additions and subtractions and
rewrite the unified formulæ in consequence. This means we will accept that some
of the values used during the computations may be greater than q. Although this
approach removes any danger of an attack based on variations in the field arith-
metic, it may have a negative impact on the efficiency, in particular when the
field size is close to a multiple of the word size.

At this point we should also note that choosing δ = 0 or δ = 1 requires the
comparison of two field elements, so at least these two must be fully reduced.
Since repeated operations or even a change from addition to subtraction could
potentially lead to an attack, we choose δ to ensure that 1

2
(x1 + x2 + y1 + y2) 6=

x2−δ instead of y1+ y2+ (−1)
δ(x1− x2) 6= 0 (the two conditions are equivalent,

but the computations required for the first test are more uniform).
For simplicity, we will assume the field is in Montgomery representation. We

distinguish Montgomery reductions and q-reduction where multiples of q are
added/subtracted. In an attempt to avoid possible extensions of the attack, we
err on the side of caution and implement the field operations as follows:

– Products (and squares) are not reduced unless stated.
– Sums are not reduced unless stated.
– Subtractions never contain a conditional addition (a fixed multiple of q is
always added to the first operand before doing the subtraction).

– If an integer is to be fully reduced, then it is at least as large as q.
– For the affine formula, inversion accepts any integer between 1 and 6q − 1
and coprime to q and returns an integer between 1 and q − 1.

– Montgomery reductions are allowed to return an output between 0 and 2q−1.
They accept inputs between 0 and 6q2 for affine coordinates (R > 6q) and
between 0 and 16q2 for projective coordinates (R > 16q).

– The multiples of q used in the formulæ are precomputed.

For the projective formula, we let the X, Y and Z coordinates be in the
range [0, 2q − 1]. Note that by construction (x1 + x2)

2 ≥ x1x2.

6 Timing

The timings in this section were performed on a 900MHz UltraSPARC III using
the multi-precision integer and elliptic curve libraries from NSS 3.9 [15] with no
optimized assembly code. To obtain high-resolution timings, we used the Solaris

11



hrtime C library, which has a resolution of 100 ns. We use the 160-bit prime
field curve secp160r2 [16].

On our test system, the average time of a 160-bit prime field modular sub-
traction a− b mod q when a > b is about 320 ns. When a < b, and hence when
a conditional addition is required, the average time is about 550 ns.

Table 2 gives performance timings for point operations using the unified
point addition and doubling formulæ from Section 4 as well as other schemes.
Point multiplications for all fomulæ except Jacobian projective and modified
Jacobian wNAF use the double-and-add technique. The timings in the table are
the average of 105 operations.

Table 3 gives average timings and standard deviations for point additions
and point doublings in the course of a single point multiplication. The results
were obtained by recording the time of each addition or doubling in a single
point multiplication using the double-and-add algorithm.

Table 2. Average point operation timings for secp160r2 curve.

Formula Addition Doubling Multiplication

BDJ affine 126.5µs 126.2µs 29.03ms
Affine 115.7µs 118.4µs 27.89ms
BDJ projective 58.9µs 58.5µs 13.99ms
BJ projective 49.8µs 49.5µs 11.76ms
Jacobian projective 7.95ms
Modified Jacobian wNAF, w = 5 6.22ms

Table 3. Individual point operation timings from a single point multiplication for
secp160r2 curve.

Formulæ Operation Average Standard Deviation

unified addition 126.528µs 4.094µs ≈ 3.2%
BDJ affine unified doubling 126.155µs 3.700µs ≈ 2.9%

difference 0.373µs ≈ 0.3%

unified addition 58.992µs 0.474µs ≈ 0.8%
BDJ projective unified doubling 59.307µs 0.448µs ≈ 0.75%

difference 0.315µs ≈ 0.53%

In the top half of Table 3, timings are given for point addition and doubling
using the affine formulæ of Brier, Déchène, and Joye. A unified doubling takes
slightly less time than a unified addition on average, but difference between the
two operations (0.3%) is one-tenth the size of the standard deviation of either
operation, so the timings of the two operations cannot be reliably distinguished.

12



In the bottom half of Table 3, timings are given for point addition and dou-
bling using the projective formulæ developed in Sec. 4.2. A unified doubling takes
slightly more time (0.53%) than a unified addition. The standard deviation of
either operation, at 0.8% for addition and 0.75% for doubling, is less than twice
difference.

For both the affine and projective formulæ of Brier, Déchène, and Joye in
Table 3, the average difference in timing between a point addition and point
doubling is too small compared to the standard deviation to be of practical use
on its own. However, we do not dismiss the fact that this information could be
helpful when combined with other side-channel information.

7 Future Work

The major drawback with our approach for the analysis is that we concentrate
on keys with a minimal number of unidentified additions, not necessarily on keys
for which the remaining keyspace is minimized. In general, binary keys where the
zeros only appear in small groups in the key are much easier to break than keys
with large groups of consecutive zeros since the first and last doubles coming
from a string of zeros in the binary representation are likely to be identified and
this is almost the same as identifying one of the zeros. For example, the 521-bit
key 10101 · · · 0101 with 16 unidentified additions has a much smaller remaining
keyspace than the 521-bit key consisting of 261 ones followed by 260 zeros for
which only 8 of the additions have not been identified, even though the number
of additions remaining to be located is divided by two in the second key.

A cost analysis that includes this idea would require a study of the distri-
bution of strings of zeros in the binary representation of the key, taking into
account the effect of unidentified additions. This is clearly beyond the scope of
the work presented here.

Acknowledgments The authors wish to acknowledge the assistance of I. Déchène
of the University of Waterloo, N. Gura and S. Chang of Sun Microsystems Labs,
and the anonymous referees.

References

1. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48 (1987)
203–209

2. Miller, V.: Use of elliptic curves in cryptography. In Williams, H.C., ed.: Advances
in Cryptology – Proc. CRYTPO ’85. LNCS, Vol. 218. Springer-Verlag (1986) 417–
428

3. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Koblitz, N., ed.: Advances in Cryptology – Proc. CRYPTO ’96.
LNCS, Vol. 1109. Springer-Verlag (1996) 104–113

4. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In Wiener, M., ed.:
Advances in Cryptology – Proc. CRYPTO ’99. LNCS, Vol. 1666. Springer-Verlag
(1999) 388–397

13



5. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s).
In B.S. Kaliski Jr. and Ç.K. Koç and C. Paar, eds.: Cryptographic Hardware and
Embedded Systems – CHES 2002. LNCS, Vol. 2523. Springer–Verlag (2003), 29–45

6. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Çetin K. Koç, Paar, C., eds.: Cryptographic Hardware and Embed-
ded Systems (CHES) ’99. LNCS, Vol. 1717. Springer-Verlag (1999) 292–302

7. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44 (1985) 519–521

8. Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In Nac-
cache, D., Paillier, P., eds.: Public Key Cryptography – PKC 2002. LNCS, Vol.
2274. Springer-Verlag (2002) 335–345

9. Walter, C.D.: Simple power analysis of unified code for ECC double and add. In
Joye, M., Quisquater, J.J., eds.: Cryptographic Hardware and Embedded Systems
(CHES) 2004. LNCS, Vol. 3156. Springer-Verlag (2004) 191–204

10. Izu, T., Takagi, T.: On the Security of Brier-Joye’s Addition Formula for
Weierstrass-form Elliptic Curves Technical Report, Technische Universität Darm-
stadt, Available online:
http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/

11. Brier, É., Déchène, I., Joye, M.: Unified point addition formulæ for elliptic curve
cryptosystems. In Nedjah, N., de Macedo Mourelle, L., eds.: Embedded Cryp-
tographic Hardware: Methodologies and Architectures. Nova Science Publishers
(2004) 247–256

12. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag (2004)

13. National Institute of Standards and Technology: Recommended elliptic curves for
federal government use (1999) Available online:
http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf.

14. OpenSSL Project: OpenSSL v0.9.8 (2005) Available online:
http://www.openssl.org/.

15. Mozilla Foundation: Netscape Security Services (NSS) v3.9 (2005) Available online:
http://www.mozilla.org/projects/security/pki/nss/.

16. Certicom Research: SEC 2: Recommended elliptic curve domain parameters (2000)
Available online: http://www.secg.org/.

17. Hankerson, D., Hernandez, J.L., Menezes, A.: Software implementation of el-
liptic curve cryptography over binary fields. In Çetin K. Koç, Paar, C., eds.:
Crytpographic Hardware and Embedded Systems (CHES) 2000. LNCS, Vol. 1965.
Springer-Verlag (2000) 1–24

A Cost Estimates

A.1 Zeros in the Binary Expansion

As our attack looks for keys with few unidentified additions, it introduces a bias
in the expected number of zeros of the binary representation of successful keys
(increasing its value). This is because keys with fewer ones need fewer identified
additions to be successful, which makes them more likely to work then keys that
have more ones.

The solutions is to go back to the probabilities of Section 5.3 and to compute
the expected number of zeros under the condition that the attack is successful.

14



Computations for the key sizes considered in Table 1 show the increase to be
less than 5% of r/2 (the average expected value).

Also, the attack is considered successful for keys with fewer than k unidenti-
fied additions, so the expected number of unidentified additions is slightly lower
than k, and once again the expected value can be found by going back to the
probabilities. Both of these numbers (which also give the expected number of
identified additions) are taken into account to produce the estimated keyspace.

A.2 Unidentified Substrings

To estimate the number of unidentified doublings, we introduce an approach
that could also be used to detail the lengths of the unidentified substrings.

We will consider the probabilities that would occur for a key of infinite length
that has the same proportion of zero bits and identified additions as our finite
key. These proportions will give us an estimate on the number of identified (and
unidentified) doublings in the finite key.

We use a state diagram consisting of six states, illustrated in Figure 2.

– The first three are doublings coming from moving from one bit of the key to
the next: D∗ (unidentified), D1 (identified, preceding an identified addition),
and D2 (identified, following but not preceding an identified addition);

– The remaining three correspond to bit operations (that is, depending on the
value of the bit): A (identified addition), A∗ (unidentified addition), and V
(absence of addition, for the bit “zero”).

D∗ D2 A D1

A∗

V

-¾¾¡
¡
¡¡µ
¡

¡
¡¡ª

@
@
@@R@
@

@@I ¡
¡

¡¡ª

@
@

@@I
PPPPPPPPPPPPq

³³
³³
³³

³³
³³

³³1

Fig. 2. State diagram

To estimate the number of identified and unidentified doublings, we must
find which proportion of the doublings (r in total for the finite key) are in states
D1 and D2. Every time we are in state D1, the next state must be A, so the
time spent in D1 is the same as the time spent in A, that is, it corresponds to
the number of identified additions. The only way to enter state D2 is from state
A, and the probability of moving to D2 when leaving A is the probability that
the next bit does not correspond to an identified addition.

If the r-bit key has m identified additions, then we can estimate the number
of identified doubling as

(

1 + r−m
r

)

m (the 1 is for moving from D1 to A and
r−m
r

is the probability of moving to D2 when leaving A). The estimated costs
in Table 1 are then straightforward to obtain.

15


