
FPGA Implementation of Point Multiplication

on Koblitz Curves Using Kleinian Integers

V.S. Dimitrov1?, K.U. Järvinen2, M.J. Jacobson, Jr.3, W.F. Chan3, and
Z. Huang1

1 Department of Electrical and Computer Engineering, University of Calgary, 2500
University Drive NW, Calgary, Alberta, Canada T2N 1N4,

(dimitrov,huangzh)@atips.ca
2 Signal Processing Laboratory, Helsinki University of Technology, Otakaari 5A,

02150, Espoo, Finland, kimmo.jarvinen@tkk.fi
3 Department of Computer Science, University of Calgary, 2500 University Drive
NW, Calgary, Alberta, Canada T2N 1N4, (chanwf,jacobs)@cpsc.ucalgary.ca

Abstract. We describe algorithms for point multiplication on Koblitz
curves using multiple-base expansions of the form k =

∑

±τa(τ − 1)b

and k =
∑

±τa(τ −1)b(τ2− τ −1)c. We prove that the number of terms
in the second type is sublinear in the bit length of k, which leads to the
first provably sublinear point multiplication algorithm on Koblitz curves.
For the first type, we conjecture that the number of terms is sublinear
and provide numerical evidence demonstrating that the number of terms
is significantly less than that of τ -adic non-adjacent form expansions. We
present details of an innovative FPGA implementation of our algorithm
and performance data demonstrating the efficiency of our method.

1 Introduction

In 1985, Koblitz [1] and Miller [2] independently proposed the use of the additive
finite abelian group of points on elliptic curves defined over a finite field for
cryptographic applications. The Koblitz curves [3], or anomalous binary curves,
are

Ea : y2 + xy = x3 + ax2 + 1 (1)

defined over F2, where a ∈ {0, 1}. The number of points on these curves when
considered over F2m can be computed rapidly using a simple recurrence relation,
and there are many prime values of m for which the number of points is twice
a prime (when a = 1) or four times a prime (when a = 0). Five Koblitz curves
are recommended for cryptographic use by NIST [4].

The main advantage of Koblitz curves is that the Frobenius automorphism
of F2 acts on points via τ(x, y) = (x2, y2) and is essentially free to compute.
Because τ satisfies (τ 2 + 2)P = µτ(P ) for all points P ∈ Ea(F2m) where µ =
(−1)1−a, we can consider τ as a complex number satisfying τ 2 − µτ + 2 = 0,
i.e., τ = (µ+

√
−7)/2. Thus, computing kP, where k ∈ Z and P ∈ Ea(F2m), can

? Chan, Dimitrov and Jacobson are supported in part by NSERC of Canada.



be done using a representation of k involving powers of τ instead of the usual
binary representation using powers of 2, yielding a point multiplication algorithm
similar to the binary “double-and-add” method in which the point doublings
are replaced by applications of the Frobenius [3, 5]. Solinas [5] shows how the
non-adjacent form (NAF) and window-NAF methods mentioned earlier can be
extended to τ -adic expansions. The resulting point multiplication algorithms
require on average (log2 k)/3 point additions or (log2 k)/(w+1) point additions
using width-w window methods requiring precomputations based on P. A recent
result of Avanzi et. al. [6] reduces this to (log2 k)/4 at the cost of one additional
point halving, but the practicality of this method has not yet been demonstrated.

Recently, double-base integer representations have been used to devise effi-
cient point multiplication algorithms [7–9]. For example, it can be shown that
the number of terms of the form ±2a3b required to represent k is bounded by
O(log k/ log log k). These representations can be computed efficiently and the
resulting point multiplication algorithms are the only known methods for which
the number of required point additions is sublinear in log k.

In this paper, we extend the double-base idea to τ -adic expansions for point
multiplication on Koblitz curves by representing k as a sum of terms ±τ a(τ−1)b.
Our algorithm requires no precomputations based on the point P, no point dou-
blings, and fewer point additions than τ -adic NAF (τ -NAF) for the five recom-
mended Koblitz curves from [4]. Our algorithm for computing the double-base
representation of k is very efficient; it requires only the unsigned τ -adic expansion
of k plus a few table-lookups. A precomputed table of optimal representations
for a small number of τ -adic integers is required, but these are independent of
the multiplier k and the base point P. We have developed a novel FPGA im-
plementation of both the conversion and point multiplication algorithms that
demonstrates the efficiency of our method.

We conjecture that the average density of our representations is sublinear
in log k, and provide extensive numerical evidence showing that the density is
lower than that of τ -NAF expansions. Although we do not have a proof that the
number of point additions required by our algorithm is sublinear, we provide a
proof that sublinearity is obtained using similar expressions involving three bases
of the form ±τa(τ − 1)b(τ2 − τ − 1)c. This work represents the first rigorously-
proven sublinear point multiplication algorithm using complex bases.

Avanzi and Sica [10] have reported independently on a provably sublinear
point multiplication algorithm using bases τ and 3. However, it is not clear how
their algorithm performs in practice, and their proof has been shown to have a
gap [11].

The remainder of the paper is organized as follows. In Sec. 2 we present
our provably sublinear point multiplication algorithm. We present a similar al-
gorithm using only two complex bases in Sec. 3. Although we cannot prove
sublinearity for this algorithm, we conjecture that the density of the represen-
tations is in fact sublinear, and provide numerical evidence in Subsection 3.2
indicating that the density of our representations is lower than that of τ -NAF
representations. A description of our FPGA implementation and numerical data



demonstrating its efficiency are presented in Sec. 4. Finally, we conclude with
an outlook on possible directions for further research.

2 Multi-dimensional Frobenius Expansions

We start with the following three definitions:

Definition 1. A complex number, ξ of the form e+ fτ, e, f -integers is called a
Kleinian integer [12].

Definition 2. A Kleinian integer ω of the form ω = ±τ x(τ − 1)y, x, y ≥ 0 is
called a {τ, τ − 1}-Kleinian integer.

Definition 3. A Kleinian integer ω of the form ω = ±τ x(τ − 1)y(τ2 − τ −
1)z, x, y, z ≥ 0 is called a {τ, τ − 1, τ 2 − τ − 1}-Kleinian integer.

The main idea of the new point multiplication algorithm over Koblitz curves
is to extend the existing and widely-used τ -NAF expansion of the scalar to a
new form which will speed up the computations. The improvements obtained
in the paper are based on the following representation, which we will call two-
dimensional or three-dimensional Frobenius expansions (or {τ, τ − 1}-expansion
and {τ, τ − 1, τ2 − τ − 1}-expansion, for short):

k =
d
∑

i=1

siτ
ai(τ − 1)bi , si = ±1, ai, bi ∈ Z≥0, (2)

k =

d
∑

i=1

siτ
ai(τ − 1)bi(τ2 − τ − 1)ci , si = ±1, ai, bi, ci ∈ Z≥0 . (3)

Such representations are clearly highly redundant. If we rearrange the summands
in the above formula, then, using two bases, we can represent the scalar k as

k =

max(bi)
∑

l=1

(τ − 1)l





max(ai,l)
∑

i=1

si,lτ
ai,l



 (4)

where max(ai,l) is the maximal power of τ that is multiplied by (τ − 1)l in (2).
Using three bases, we can represent k as

k =

max(ci)
∑

l2

(τ2 − τ − 1)l2
max(bi)
∑

l1=1

(τ − 1)l1





max(ai,l1,l2
)

∑

i=1

si,l1,l2τ
ai,l1,l2



 (5)

where max(ai,l1,l2) is the maximal power of τ that is multiplied by (τ−1)l1(τ2−
τ − 1)l2 in (3).

Alg. 1 computes kP given a {τ, τ − 1}-expansion of k. The corresponding
algorithm for {τ, τ −1, τ 2− τ −1}-expansions will be described later, along with



Algorithm 1 Point multiplication using {τ, τ − 1}-expansions.
Input: k, P
Output: Q = kP

P0 ← P
Q← O
for i = 0 to j do

S ← ri(k)Pi {One dimensional τ -NAF corresponding to (τ − 1)l in (4)}
Pi+1 ← τPi − Pi
Q← Q+ S

a proof that the number of point additions is sublinear in log k. Essentially, kP
is computed via a succession of one-dimensional τ -adic expansions.

The representation of k given in (4) is the cornerstone of our algorithm, so
some comments on it are in order.

1. The multiplications by τ−1 cost one Frobenius mapping (free in our compu-
tational model) and one point subtraction. The multiplications by τ 2−τ −1
cost two Frobenius mappings and two point subtractions. Therefore, the
total number of point additions/subtractions, AS(k), is given by

AS(k) = d+max(bi)− 1

in the case of {τ, τ − 1}-expansions and
AS(k) = d+max(bi)max(ci)− 1

in the case of {τ, τ − 1, τ 2 − τ − 1}-expansions. The smallest possible value
of max(bi) and max(ci), 0, corresponds to the classical (one-dimensional)
τ -NAF expansion, for which it is known that the expected number of point
additions/subtractions is (log2 k)/3. It is clear that by allowing larger values
for max(bi) and max(ci) one would decrease the corresponding number of
summands, d. Therefore, it is vital to find out the optimal values for max(bi)
as a function of the size of the scalar.

2. Finding an algorithm that can return a fairly short decomposition of k as
the sum of {τ, τ − 1}-Kleinian integers is absolutely essential. The most
straightforward idea seems to be the greedy algorithm described in Alg. 2. A
greedy algorithm for computing {τ, τ − 1, τ 2 − τ − 1}-expansions is an easy
generalization of this algorithm.

The complexity of the greedy algorithm depends crucially on the time spent
to find the closest {τ, τ − 1}-Kleinian integer to the current Kleinian integer.
Unfortunately we were not able to find a significantly more efficient method to
do this than precomputing all Kleinian integers ±τx(τ − 1)y for x, y less than
certain bounds and finding the closest one using exhaustive search. In the next
subsection, we present an efficient algorithm for computing {τ, τ−1}-expansions
with slightly more weight than those produced by the greedy algorithm and an
algorithm for computing {τ, τ − 1, τ 2 − τ − 1}-expansions with weight provably
sublinear in log k.



Algorithm 2 Greedy algorithm for computing {τ, τ − 1}-expansions.
Input: A Kleinian integer ξ = e+ fτ
Output: {ω1, . . . , ωd}, a {τ, τ − 1}-expansion of ξ

i← 1
while ξ 6= 0 do

Find ωi = ±τ
ai(τ − 1)bi , ai, bi ≥ 0, the closest {τ, τ − 1}-Kleinian integer to ξ.

ξ ← ξ − ωi
i← i+ 1

2.1 Comparison to Double-base Number Systems

The similarities between (2) and the double-base number system (DBNS), in
which one represents integers as the sum or difference of numbers of the form
2a3b, a, b non-negative integers (called {2, 3}-integers), are apparent. In the case
of DBNS, one can prove the following result:

Theorem 1. Every positive integer, n, can be written as the sum of at most
O(log n/ log log n) {2, 3}-integers and (one) such representation can be found by
using the greedy algorithm.

The key point in proving this theorem is the following result of Tijdeman [13].

Theorem 2. Let x and y be two {2, 3}-integers, x > y. Then there exist effec-
tively computable constants, c1 and c2, such that

x

(log x)c1
< x− y <

x

(log x)c2
.

The proof of Theorem 1 uses only the first inequality.
Theorem 2 provides a very accurate description of the difference between

two consecutive {2, 3}-integers. More to the point, it can be generalized easily to
any set of {p1, p2, · · · , ps}-integers if ps is fixed. The proof depends on the main
result of [14] from the theory of linear form in logarithms.

Theorem 3. Let a1, a2, · · · , ak be nonzero algebraic integers and b1, b2, · · · , bk
rational integers. Assume ab11 ab22 · · · abk

k 6= 1 and B = max(b1, b2, · · · , bk). Then
the following inequality holds:

∣

∣

∣
ab11 ab22 · · · abk

k − 1
∣

∣

∣
≥ exp(−C(k) log a1 log a2 · · · log ak)

where C(k) = exp(4k + 10k3k+5).

The constant C(k) is huge, even in the case of linear forms in two logarithms,
approximately exp(6·109). By using some results aimed specifically at the case of
two logarithms [15], one can reduce C(k) to exp(107), but this is still enormous.
However, practical simulations suggest that this constant is likely to be much
smaller, perhaps less than 100.

There are two very essential points that are often overlooked in the formula-
tions of the above theorems [16]:



1. the estimates are correct if the algebraic numbers used are real,
2. if the algebraic numbers are complex, then the estimates provided remain

unchanged if one of them, say a1, has an absolute value strictly greater than
absolute values of the other algebraic numbers.

The latter point is what prevents us from applying Tijdeman’s Theorem 2 to
the case of a1 = τ, a2 = τ − 1. Thus, we are not in position to trivially extend
the proof of Theorem 1 to the case of {τ, τ − 1}-expansions of Kleinian inte-
gers. Nevertheless, extensive numerical simulations (by using several attempted
optimizations of Alg. 2) has led us to the following conjecture:

Conjecture 1. Every Kleinian integer, ξ = a+ bτ, can be represented as the sum
of at most O (logN(ξ)/ log logN(ξ)) {τ, τ − 1}-Kleinian integers, where N(ξ) is
the norm of ξ.

A very recent paper by Avanzi and Sica [10] contains a proof that Con-
jecture 1 is true if one uses {τ, 3}-Kleinian integers under the unproven but
reasonable assumption that the irrationality measure of log2 3 and arg(τ)/π is
2. Unfortunately, the proof, even with the assumption on irrationality measures,
has a gap [11]. The use of two complex bases, used in this paper, increases
the theoretical difficulties in proving the conjecture, but provides much more
practical algorithms.

However, in the case of three bases we can prove without any assumptions
the following:

Theorem 4. Every Kleinian integer ζ = a + bτ can be represented as the sum
of at most O(logN(ζ)/(log logN(ζ))) {τ, τ − 1, τ 2 − τ − 1}-Kleinian integers,
such that the largest power of both τ − 1 and τ 2 − τ − 1 is O(logαN(ζ)) for any
real constant α where 0 < α < 1/2.

Proof. We assume that b = 0; otherwise, one applies the same proof for the real
and imaginary part of ζ, which leads to doubling the implicit constant hidden
in the big-O notation.

Let α be a real constant where 0 < α < 1/2. We determine the τ -adic repre-
sentation of a, the real part of ζ, using digits 0 and 1. The length of this expansion
is O(logN(ζ)). We break this representation into dlog1−αN(ζ)e blocks, where
each block contains O(logαN(ζ)) digits. Each of these blocks corresponds to a
Kleinian integer ci + diτ, i = 0, 1, . . . , dlog1−αN(ζ)e, where the size of both ci
and di is O(logαN(ζ)). Now, we represent each integer ci and di in double-base
representation using bases 2 and 3. According to Theorem 1, these numbers will
require at most

O (logαN(ζ)/(log logαN(ζ))) = O (logαN(ζ)/(log logN(ζ)))

summands of the form 2x3y where x, y ≥ 0 and x, y ∈ O(logαN(ζ)). Using the
fact that 2 = τ(1 − τ) and 3 = 1 − τ − τ 2, we substitute the 2’s and 3’s in
the 2, 3-expansions of ci and di to obtain {τ, τ − 1, τ 2 − τ − 1}-Kleinian integer
expansions of each ci+ diτ, i = 0, 1, . . . , dlog1−αN(ζ)e. To obtain the expansion



of ζ = a + bτ, we multiply each term of the form ±τx(τ − 1)y(τ2 − τ − 1)z

by τ i where i is the index of the corresponding block. Note that x, y, z ∈
O(logαN(ζ)). Since the number of blocks is dlog1−αN(ζ)e and each block re-
quires O(logαN(ζ)/(log logN(ζ)) {τ, τ − 1, τ 2 − τ − 1}-Kleinian integers, we
conclude that the overall number of Kleinian integers used to represent ζ is

O

(

logαN(ζ)

log logN(ζ)
log1−αN(ζ)

)

= O

(

logN(ζ)

log logN(ζ)

)

.

The exponents of τ − 1 and τ 2 − τ − 1 are bounded by O(logαN(ζ)). ut

Theorem 4 is in fact constructive and leads to the following sublinear point
multiplication algorithm (Algorithm 3).

Algorithm 3 Point multiplication algorithm using {τ, τ − 1, τ 2 − τ − 1}-
expansions.

Input: An Kleinian integer ζ, a point P on a Koblitz curve, a real constant α with
0 < α < 1/2

Output: Q = ζP
Compute in succession for i = 0, 1, . . . , dlogαN(ζ)e the points P

(1)
i = (τ − 1)P

(1)
i−1

and P
(2)
i = (τ2 − τ − 1)P

(2)
i−1 where P

(1)
0 = P

(2)
0 = P.

Compute the points Qi1,i2 = P
(1)
i1

+ P
(2)
i2

for ii, i2 = 0, 1, . . . , dlogαN(ζ)e.

Compute a {τ, τ − 1, τ 2 − τ − 1}-expansion of the form (5) using Theorem 4.
Apply in succession τ -NAF based point multiplications based on (5) to compute Q.

The analysis of Alg. 3 is simple. Step 1 requires O(logαN(ζ)) point addi-
tions and Step 2 requires O(log2αN(ζ)) point additions. Because α < 1/2, the
total number of point additions for Steps 1 and 2 is o(logN(ζ)). According to
Theorem 4, Step 3 requires O(logN(ζ)/(log logN(ζ))) point additions. The to-
tal number of point additions for Alg. 3 is therefore O(logN(ζ)/(log logN(ζ))).
Thus, one can compute kP in O(log k/(log log k)) point additions by computing
ζ ≡ k (mod (τm − 1)/(τ − 1)) and applying Alg. 3 to compute ζP.

Note that the first two steps of Alg. 3 are independent of k. If a fixed base
point P is to be used, the points Qi1,i2 may be precomputed.

The parameter α can be chosen in a variety of ways. The total number of
point additions required by all three steps is roughly logαN(ζ) + log2αN(ζ) +
2 logN(ζ)/(α log logN(ζ)); for 163 < N(ζ) < 571, taking α such that 0.365 <
α < 0.368 minimizes this quantity. Smaller values of α reduce the number of
points Qi1,i2 that must be precomputed and stored at the cost of increasing the
number of point additions that must be performed in Step 3. On the other hand,
larger values of α decrease the number of point additions in Step 3 at the cost
of having to precompute and store more points.



3 A Practical Blocking Algorithm

Although, as proved in Theorem 4, using {τ, τ − 1, τ 2 − τ − 1}-expansions does
lead to a sublinear point multiplication algorithm, the resulting algorithm is
likely not suitable for practical purposes. Nevertheless, assuming the truth of
Conjecture 1, we can devise an efficient algorithm that computes {τ, τ − 1}-
expansions with sublinear density of Kleinian integers. This algorithm is based
on the following theorem.

Theorem 5. Assuming Conjecture 1, every Kleinian integer, ξ = a+bτ, can be
represented as the sum of at most O (logN(ξ)/ log logN(ξ)) {τ, τ − 1}-Kleinian
integers such that the largest power of τ − 1 is O (logN(ξ)/ log logN(ξ)) .

The proof, omitted for brevity, is quite similar to that of Theorem 4. The τ -adic
expansions of a and b are broken into log logN(ξ) blocks and the conjecture is
applied to each block. In fact, this observation gives us an efficient method to
compute {τ, τ − 1}-expansions with sublinear density under Conjecture 1. The
idea, described in Alg. 4, is to apply the blocking strategy described in the proof
and compute optimal {τ, τ − 1}-expansions for each block.

Algorithm 4 Blocking algorithm for computing {τ, τ − 1}-expansions.
Input: A Kleinian integer ξ = e+ fτ, block size w, precomputed table of the minimal
{τ, τ − 1}-expansion of every Kleinian integer

∑w−1
i=0 diτ

i, di ∈ {0, 1}
Output: List L of {τ, τ − 1}-Kleinian integers representing {τ, τ − 1}-expansion of ξ

L = ∅
Compute the τ -adic expansion of ξ =

∑l

i=0 diτ
i, di ∈ {0, 1}

for j = 0 to dl/we do

{Process blocks of length w}
Find minimal {τ, τ − 1}-expansion of

∑w−1
i=0 di+jwτ

i from the precomputed table
Multiply each term of the expansion by τ jw and add to L

There are four important points regarding the implementation Alg. 4:

1. All powers of τ can be reduced modulom, as (τm)P = P for all P ∈ Ea(F2m).

2. The bit-string dw−1 . . . d1d0 corresponding to any block can be used as an
index into the table of minimal {τ, τ − 1}-expansions.

3. One can choose the size of the blocks based on available memory. The larger
the block size, the lower the density of the {τ, τ − 1}-expansions produced.

4. If the block size is not too big, one can precompute the minimal {τ, τ − 1}-
expansion of every Kleinian integer of the form

∑w−1
i=0 diτ

i, di ∈ {0, 1},
thereby ensuring as low a density as possible. This precomputation can be
done using exhaustive search and need only be done once per elliptic curve,
as it does not depend on k nor the base point P.



τ -adic expansion: 1 1 1 0 1 0 0 0 1 0 0 1 0 0
⇓ ⇓

Segment size = 7 : 1 1 1 0 1 0 0 0 1 0 0 1 0 0
⇓ ⇓

Table look-up: τ(τ − 1) + τ(τ − 1)6 τ2(τ − 1)2

⇓ ⇓
{τ, τ − 1}-expansion: τ 7[τ(τ − 1) + τ(τ − 1)6] + τ2(τ − 1)2

Fig. 1. Expansion of −104 + 50τ using Alg. 4.

3.1 Example

Consider the representation of 6465 into a {τ, τ − 1}-expansion by using the
two different algorithm we have described. Assume that we intend to compute
(6465)P for some point P ∈ E1(F2163), so τ = (1 +

√
−7)/2. As in the case of

computing the τ -NAF expansion, we first do a partial reduction of 6465 modulo
(τ163 − 1)/(τ − 1) as in [5], yielding ξ = −104 + 50τ. The greedy algorithm,
Alg. 2, returns

ξ = τ8(τ − 1) + τ2(τ − 1)2 + τ8(τ − 1)6 .

The blocking algorithm, Alg. 4, using a block size w = 7 returns the same
representation.

Fig. 1 illustrates the idea behind the blocking algorithm. The τ -adic expan-
sion of ξ is τ2+τ5+τ9+τ11+τ12+τ13. This 14-bit expansion of ξ is broken into
two 7-bit blocks. The right block corresponds to τ 2 + τ5, and τ2(τ − 1)2 is its
optimal {τ, τ−1}-expansion. The left block corresponds to τ 2+τ4+τ5+τ6, and
τ(τ − 1)+ τ(τ − 1)6 is its optimal expansion. Finally, multiplying the expression
for the left block by τ 7 yields the {τ, τ − 1}-expansion of ξ.

To see the usefulness of this idea, notice that the {τ, τ−1}-expansion obtained
is very sparse. Of the 63 possible terms that could occur, assuming τ 8 is the
maximum power of τ and (τ − 1)6 is the maximum power of τ − 1, only three
actually occur in the expansion. Furthermore, note that when computing kP
using this representation, each power of τ − 1 corresponds to a one-dimensional
τ -adic expansion, and that each of these is very sparse.

3.2 Numerical Evidence

In this section, we present results from software implementations of Alg. 2 and
Alg. 4. The objective is to compare the density of the {τ, τ − 1}-expansions
computed by our algorithms with τ -NAF expansions. Our algorithms and the
algorithm for computing the τ -NAF [5] of k were implemented in C, using the
GMP library for multi-precision integer arithmetic. Tests were run on an Intel
Xeon 2.8 GHz CPU running Linux.

Theorem 5 states that our conversion algorithm outputs expansions of k with
sublinear density even if the maximum power of τ − 1 is bounded by some con-
stant max(bi) as long as any sublinear expansion exists. For practical purposes,



we need to know what value of max(bi) gives us minimal weight expansions on
average. We computed the average number of point additions required to com-
pute kP using a {τ, τ − 1}-expansion of k, i.e., the number of non-zero terms
in the expansion plus max(bi)− 1. For each size of k between 160 and 600 bits,
the optimal value of max(bi) starts at 4 and increases to 12 as the bit length of
k increases. As shown in Sec. 4.4, max(bi) = 3 turns out to be optimal for our
FPGA implementation of point multiplication on E1(F2163).

In Table 1 we list the average number of point additions required to compute
kP on the five NIST-recommended Koblitz curves [4] when using τ -NAF, our
greedy {τ, τ − 1}-expansion algorithm (Alg. 2), and our blocking-based Alg. 4
using block lengths of w = 5, 10, 16 and max(bi) = 6. In all cases the data are
taken as the average over 500000 random values of k. Our algorithm requires
significantly fewer point additions than τ -NAF in all cases.

Table 1. The average number of point additions required to compute kP for the five
Koblitz curves in [4].

Alg. 2 Alg. 4 (blocking)
log2 k τ -NAF (greedy) w = 5 w = 10 w = 16

163 54.25 36.37 47.86 40.00 37.22
233 77.59 49.31 66.23 54.96 50.76
283 94.25 58.64 79.37 65.66 60.49
409 137.12 81.84 113.64 93.63 85.68
571 190.25 111.90 154.98 127.21 117.04

4 FPGA Implementation

An FPGA implementation was designed in order to investigate the performance
of the new algorithm in practice. The design implements kP on the NIST curve
K-163 defined by (1), where a = 1, over F2163 [4].

As the number of zero coefficients in a {τ, τ −1}-expansion is large, a normal
basis F2m was selected. In a normal basis, an element A ∈ F2m is represented as
A =

∑m−1
i=0 aiα

2i

where ai ∈ {0, 1} and α2i 6= α2j

for all i 6= j and α2m

= α.
Thus, it is obvious that the squaring operation A2 is a cyclic right shift of the
bit vector (a0, a1, . . . , am−1) which is fast if implemented in hardware.

Affine coordinates, A, and López-Dahab coordinates, LD [17], are used for
representing points on Ea(F2m). In A, a point P is represented with two coor-
dinates as P = (x, y), and, in LD, with three coordinates as P = (X,Y, Z).
The LD triple represents the point (X/Z, Y/Z2) in A [17]. Three elements
x, y, ȳ = x+y ∈ F2m are required to represent P and −P in A. A point addition
in A is performed as presented, e.g., in [18], and its cost is I+2M+S+8A where
I, M, S, and A denote inversion, multiplication, squaring, and addition in F2m ,
respectively. A point addition in LD is performed as presented in [19], and it



requires 13M+4S+9A. A point addition Q+P, where Q is in LD and P in A, is
called the mixed coordinate point addition, and it requires only 9M+5S+9A [20].
If the curve is fixed and both P and −P are available, one multiplication and
one addition can be omitted resulting 8M+5S+8A. The A 7→ LD mapping does
not require any operations in F2m while LD 7→ A requires I+2M+S. The cost of
a Frobenius mapping is 3S in LD and 2S in A. An inversion in F2m is computed
as suggested by Itoh and Tsujii in [21]. The Itoh-Tsujii inversion requires m− 1
squarings and blog2(m− 1)c+Hw(m− 1)− 1 multiplications, where Hw(m− 1)
is the Hamming weight of m− 1 [21]. Hence, I = 9M + 162S if m = 163.

Different coordinates are used in Alg. 1 as follows: the point addition in A
is used in computing Pi so that the point addition in mixed coordinates can be
used in S ← S±Pi computations. Because the results of row multiplications are
in LD, the point addition in LD must be used for Q← Q+ S computations.

The implementation was designed especially for Xilinx Virtex-II family FP-
GAs. The implementation includes a field arithmetic processor (FAP) for arith-
metic in F2m , control logic for controlling the FAP, and a converter for converting
k to a {τ, τ − 1}-expansion. The FAP is considered in Sec. 4.1, the control logic
in Sec. 4.2, and the conversion unit in Sec. 4.3.

4.1 Field Arithmetic Processor (FAP)

The FAP includes a multiplier, a squarer, an adder, a storage element and control
logic. A storage element for m-bit elements of F2m is required in order to store
points and temporary variables during computation of kP. As Xilinx devices offer
embedded memory blocks which can be used without consuming logic resources,
the storage element is implemented in BlockRAMs. One dual-port BlockRAM
can be configured into a 512 × 36-bit mode. All m bits of an element must be
accessed in parallel in the FAP architecture. Hence,

⌈

m
36

⌉

= 5 BlockRAMs are
required. Write and read operations require both one clock cycle, i.e. W = R = 1.

The squarer is a shifter which is capable of performing operations A2d

, where

A ∈ F2m and 0 ≤ d ≤ dmax = 26 − 1,. Thus, A2d

operations can be performed
with a cost of S. Addition in F2m is simply a bitwise exclusive-or (xor). Both
squaring and addition are performed in one clock cycle, i.e. S = A = 1.

Field multiplication is critical for the overall performance. The multiplier is
a digit-serial implementation of the Massey-Omura multiplier [22]. In a bit-serial
Massey-Omura multiplier, one bit of the output is calculated in one clock cycle
and, hence, m cycles are required in total. One bit ci of the result C = A×B is
computed from A and B by using an F -function. The F -function is field specific,
and the same F is used for all output bits ci as follows: ci = F (A≪i, B≪i), where
≪ i denotes cyclical left shift by i bits. [4, 22]

In a digit-serial implementation, D bits are computed in parallel. Hence,
⌈

m
D

⌉

cycles are required in one multiplication. In this FAP, D = 24. The F -function
is pipelined in order to increase clock frequency by adding one register stage.
As loading the operands into the shift registers requires one clock cycle and
pipelining increases latency by one clock cycle, the latency is M =

⌈

163
24

⌉

+2 = 9.



4.2 Control Logic

Logic controlling the FAP consists of a storage for k, a control finite state ma-
chine (FSM) and a ROM for control sequences.

The implementation handles k in a coded form. The coding is performed
using κ : {s, d} symbols, where s ∈ {0, 0̄, 1, 1̄} and 0 ≤ d ≤ dmax. 0̄ is a symbol
reserved for a row change not −0. Coding is started from the first non-zero
signed bit of the first row and it proceeds as follows: s is the signed bit starting
a symbol and d is the number of Frobenius mappings following s, i.e. the number
of consecutive zeros plus one (the Frobenius map associated with the start bit of
the next symbol). If the run of consecutive Frobenius maps is longer than dmax,
the run must be divided into two symbols and, for the latter one, s = 0. Each κ,
with the exception of the row change symbol, transforms into an operation S ←
τd(S + sP ) on Ea(F2m). Let Z(k) denote the maximum number of consecutive
Frobenius mappings required by k. Then, the number of κ-symbols, e, required to
represent k, is given by e ≥ Hw(k)+ j, with equality if and only if dmax ≥ Z(k).

Control FSM takes κ-symbols as input and, according to s and d of κ, it sets
addresses of the control sequence ROM. The control sequences controlling the
FAP consist of successive FAP instructions directly controlling the FAP. There
are separate control sequences for Pi+1 ← τPi−Pi computation (Frobenius map
and point addition in A), point addition and subtraction (point addition in the
mixed coordinates), Frobenius map, row change (point addition in LD), and
LD 7→ A mapping. They are all stored in a ROM implemented in a BlockRAM.

If implemented so that, for each operation, the operands would be first read
from the memory, then the operation calculated and finally the result saved to
the memory, the latency of an operation would be the latency of the operation
(M,S or A) plus two clock cycles (R + W). However, different operations can
be performed with the same operands without reading the operands more than
once, and the operands of the next operation can be read while the previous
operation is performed if the result is not required in the next operation. When
the control sequences were carefully hand-optimized, different operations have
the following latencies: point addition in the mixed coordinates LM = 98, the
Frobenius map LF = 6, row change (point addition in LD) LLD = 153, the
computation of Pi LPi

= 182, and the LD 7→ A mapping LLD7→A = 160. The
first point addition of each row is simply S ← ±Pi and the first row change
operation is given by Q← S. Both of these operations have a latency of LC = 6.
In the beginning, an initialization including, e.g., the transferring of P into the
FAP, needs to be performed. The latency of the initialization is LI = 10. Thus,
it follows that the latency of the computation of kP becomes

LkP = (Hw(k)−(j+1))LM+(j+2)LC+(e−j)LF+j(LLD+LPi
)+LI+LLD7→A (6)

and, by assuming that dmax ≥ Z(k), i.e. e = Hw(k) + j, (6) simplifies to

LkP = 104Hw(k) + 243 j + 84. (7)



4.3 Conversion Unit

The conversion unit, which converts an integer k into a {τ, τ − 1}-expansion, is
a straightforward implementation of Alg. 4, our blocking-based method.

The main part of this unit is an ALU, which has two integer multipliers, each
of which makes use of one 18-bit by 18-bit embedded multiplier to create 102-bit
by 102-bit products. The ALU also includes adders, shifters and the rounding
function required by the partial reduction algorithm [5]. The conversion unit
uses the ALU and two intermediate registers for reducing every integer k to an
equivalent r0 + r1τ, then gets the τ -adic expansion by a shift-and-add circuit,
which produces one bit per cycle, from the least significant bit to the most
significant bit.

For our implementation, we selected a block size of 10, so every 10 bits of
the τ -adic expansion are used as an index into a look-up table. This table has
one entry for each possible index (b9b8 . . . b0), bi ∈ {0, 1}, where each entry is

the optimal {τ, τ − 1}-expansion of
∑9

i=0 biτ
i allowing a maximum exponent

of 6 for τ − 1. At most 3 terms of the form ±τa(τ − 1)b are required for each
representation, so each entry in the table consists of three tuples of the form
(dn, in, jn) representing dnτ

in(τ − 1)jn . Hence, each entry requires 27 bits and
the whole look-up table requires 27 KB RAM. Note that, according to the data
in Sec. 3.2, using a block size of 5 would still give us a significant improvement
over τ -NAF and in this case the table would require less than 1 KB.

Because integer operations are slower than the F2m operations in the FAP,
the conversion unit will be the bottleneck if the two units use the same clock.
So a dual-port RAM is used in order to separate these units into different clock
domains. The look-up results are written into the dual-port RAM using one port,
and the ECC processor will read them out from the another port later.

4.4 Results

The FPGA design was written in VHDL and implemented on a Xilinx Virtex-
II XC2V2000-6. The design was synthesized with Synplify Pro 8.0 and Xilinx
ISE 6.2 was used for the place & route. The design (excluding the converter)
requires 6,494 slices and 6 BlockRAMs on the XC2V2000-6, and it operates at
a maximum clock frequency of fmax = 128 MHz. The converter requires 2251
slices, 2 BlockRAMs and 2 multipliers. The maximum clock frequency is 88 MHz.
It takes 335 clock cycles, or 3.81 µs to convert one 163-bit integer.

Average timings of the design are presented in Table 2. The latency LkP is
given by (7), and timings are calculated using fmax. The time consumed in the
conversion is neglected. Table 2 shows that the best performance is achieved
when j = 3 which is smaller than estimated in Sec. 3.2, because the latencies of
point additions differ. In Sec. 3.2, all point additions were assumed equal.

Numerous publications considering implementation of elliptic curve cryptog-
raphy on FPGAs have been published, e.g., in [23–26]. To the best of the authors’
knowledge, the only FPGA-based implementation using τ -NAF expansions was
presented by Lutz and Hasan [26] where a kP operation on E1(F2163) was re-
ported to require 75µs on a Xilinx Virtex-E XCV2000E.



Table 2. Performance calculations of the FPGA implementation on a Xilinx Virtex-II
XC2V2000-6 with different values of j. Hw(k) for j > 0 are based on empirical data.
The numbers of point additions in the mixed coordinates, in A and in LD are denoted
asM, A and LD, respectively.

j Hw(k) M A LD LkP Time (µs)

0 54.33 53.33 0 0 5735 44.80
2 39.47 36.47 2 2 4675 36.52
3 36.18 32.18 3 3 4576 35.75

4 34.74 29.74 4 4 4669 36.48
5 33.42 27.42 5 5 4775 37.30
6 32.22 25.22 6 6 4893 38.23

5 Further Work

Our results demonstrate that {τ, τ − 1}-expansions lead to a competitive point
multiplication algorithm for Koblitz curves when the base point P is not fixed.
Nevertheless, there are a number of aspects we are continuing to explore.

The latency of a point multiplication using our FPGA implementation could
be significantly reduced at the expense of larger area requirements by computing
each row in parallel. This possibility will be studied in the future. In addition,
alternative choices of the bases, or even using three bases, may lead to further
improvements.

Our point multiplication algorithm does not require any precomputations
involving the base point P nor storage of additional points, and hence is well-
suited to applications where P is random. We are investigating the possibility of
generalizing window methods, using two-dimensional windows, to our algorithm
in order to obtain further improvements when precomputations involving P are
permitted.

Although our numerical data suggests that the density of the {τ, τ − 1}-
expansions obtained by our conversion algorithm is sublinear in the bit length of
k, we do not yet have a proof of this fact. In addition, our conversion algorithm
requires a modest amount of storage. These precomputed quantities are inde-
pendent of both the base point P and multiplier k and can be viewed as part
of the domain parameters. Nevertheless, we continue to search for an efficient
memory-free conversion algorithm.

References

1. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48 (1987) 203–209
2. Miller, V.: Use of elliptic curves in cryptography. In: CRYPTO ’85. Volume 218

of Lecture Notes in Computer Science (LNCS). (1986) 417–426
3. Koblitz, N.: CM-curves with good cryptographic properties. In: CRYPTO ’91.

Volume 576 of LNCS. (1992) 279–287
4. National Institute of Standards and Technology (NIST): Digital signature standard

(DSS). Federal Information Processing Standard, FIPS PUB 186-2 (2000)



5. Solinas, J.: Efficient arithmetic on Koblitz curves. Designs, Codes, and Cryptog-
raphy 19 (2000) 195–249

6. Avanzi, R., Heuberger, C., Prodinger, H.: Minimality of the Hamming weight of
the τ -NAF for Koblitz curves and improved combination with point halving. In:
SAC 2005. Volume 3897 of LNCS. (2005) 332–344

7. Dimitrov, V., Jullien, G., Miller, W.: An algorithm for modular exponentiation.
Inform. Process. Lett. 66 (1998) 155–159

8. Ciet, M., Sica, F.: An analysis of double base number systems and a sublinear
scalar multiplication algorithm. In: Mycrypt 2005. Volume 3715 of LNCS. (2005)
171–182

9. Dimitrov, V., Imbert, L., Mishra, P.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: ASIACRYPT 2005. Volume 3788 of
LNCS. (2005) 59–78

10. Avanzi, R., Sica, F.: Scalar multiplication on Koblitz curves using double bases.
Technical Report Number 2006/067, Cryptology ePrint Archive (2006)

11. Sica, F.: Personal communication. (2006)
12. Conway, J., Smith, D.: On quaternions and octonions. AK Peters (2003)
13. Tijdeman, R.: On integers with many small prime factors. Compos. Math. 26

(1973) 319–330
14. Baker, A.: Linear forms in the logarithms of algebraic numbers IV. Mathematica

15 (1968) 204–216
15. Mignotte, M., Waldshmidt, M.: Linear forms in two logarithms and Schneider’s

method III. In: Annales Fas. Sci. Toulouse. (1990) 43–75
16. Tijdeman, R.: Personal communication. (2006)
17. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF (2n).

In: SAC ’98. Volume 1556 of LNCS. (1998) 201–212
18. Doche, C., Lange, T.: Arithmetic of elliptic curves. In Cohen, H., Frey, G.,

eds.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman &
Hall/CRC (2006) 267–302

19. Higuchi, A., Takagi, N.: A fast addition algorithm for elliptic curve arithmetic in
GF (2n) using projective coordinates. Inform. Process. Lett. 76 (2000) 101–103

20. Al-Daoud, E., Mahmod, R., Rushdan, M., Kilicman, A.: A new addition formula
for elliptic curves over GF (2n). IEEE Trans. Comput. 51 (2002) 972–975

21. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF (2m) using normal bases. Inform. Comput. 78 (1988) 171–177

22. Wang, C., Troung, T., Shao, H., Deutsch, L., Omura, J., Reed, I.: VLSI architec-
tures for computing multiplications and inverses in GF (2m). IEEE Trans. Comput.
34 (1985) 709–717

23. Bednara, M., Daldrup, M., von zur Gathen, J., Shokrollahi, J., Teich, J.: Reconfig-
urable implementation of elliptic curve crypto algorithms. In: IPDPS 2002. (2002)
157–164

24. Leong, P., Leung, K.: A microcoded elliptic curve processor using FPGA technol-
ogy. IEEE Trans. VLSI Syst. 10 (2002) 550–559

25. Eberle, H., Gura, N., Shantz, S., Gupta, V.: A cryptographic processor for ar-
bitrary elliptic curves over GF (2m). Technical Report SMLI TR-2003-123, Sun
Microsystems, Inc. (2003)

26. Lutz, J., Hasan, A.: High performance FPGA based elliptic curve cryptographic
co-processor. In: Proc. of the Int’l Conf. on Information Technology: Coding and
Computing. Volume 2. (2004) 486–492


