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Abstract. A5/2 is a synchronous stream cipher that is used for protect-
ing GSM communication. Recently, some powerful attacks [2,10] on A5/2
have been proposed. In this contribution we enhance the ciphertext-only
attack [2] by Barkan, Biham, and Keller by designing special-purpose
hardware for generating and solving the required systems of linear equa-
tions. For realizing the LSE solver component, we use an approach re-
cently introduced in [5,6] describing a parallelized hardware implemen-
tation of the Gauss-Jordan algorithm. Our hardware-only attacker im-
mediately recovers the initial secret state of A5/2 - which is sufficient
for decrypting all frames of a session - using a few ciphertext frames
without any precomputations and memory. More precisely, in contrast
to [2] our hardware architecture directly attacks the GSM speech chan-
nel (TCH/FS and TCH/EFS). It requires 16 ciphertext frames and com-
pletes the attack in about 1 second. With minor changes also input from
other GSM channels (e.g., SDCCH/8) can be used to mount the attack.

Key words: A5/2, GSM, SMITH, special-purpose hardware, cryptanal-
ysis, linear systems of equations, Gaussian elimination.

1 Introduction

The Global System for Mobile communications (GSM) was initially developed in
Europe in the 1980s. Today it is the most widely deployed digital cellular com-
munication system all over the world. The GSM standard specifies algorithms
for data encryption and authentication. The originally specified encryption algo-
rithm in this standard was the stream cipher A5/1. However, due to the export
restrictions, for deploying GSM out of Europe a new intentionally weaker version
of A5/1 was developed, the stream cipher A5/2. Though the internals of both
ciphers were kept secret, their designs were disclosed in 1999 by means of reverse
engineering [7].

The security of A5/1 has been extensively analyzed, e.g., in [1,3,4,9,11,14].
In this paper we focus however on the security of the (weaker) A5/2 algorithm.
But note that although the use of this algorithm has been officially discouraged
in the meantime, its security still has great importance on the security of GSM
communication. This is not least due to flaws in the GSM protocols that allow



to take advantage of attacks on A5/2 even if a stronger encryption algorithm
(e.g., A5/1 or the new A5/3) is used [2]. These flaws can be exploited whenever
the mobile phone supports a weak cipher.

A known-plaintext attack on A5/2 was presented in [10]. The actual attack
requires only two plaintext frames, but these frames have to be exactly 1326
frames apart to fulfill a certain property. In [15] a weaker attack on A5/2 was
proposed which requires 4 arbitrary plaintext frames and allows to decrypt most
of the remaining communication. However, this attack does not recover the in-
ternal state of A5/2.

Recently, Barkan et al. [2] proposed a guess-and-determine attack that needs
four plaintext frames to find an A5/2 session key. The general idea of this attack
is to guess 16 bits of the internal state of the cipher and then express the output
as a degree-2 function of the remaining unknown 61 initial state bits. Each known
plaintext frame yields 114 quadratic equations in this way. Given 4 plaintext
frames, one obtains an LSE of dimension 456× 655 by linearizing the equations.
Though the system is underdetermined, experiments show that this number of
equations suffices to resolve the 61 original linear variables. In the same paper
the attack is transformed into a ciphertext-only attack. Here, due to the fact
that GSM employs error correction before encryption, the attacker knows the
values of certain linear combinations of the stream bits. The attack consists
of a precomputation phase in which the equation systems for all guesses are
computed in advance and an online phase in which this data is used to quickly
solve the equations for the specific input frames. It is important to note that these
guesses also concern the initialization vectors (aka COUNT values) that are used
to setup A5/2 and which are derived from the frame numbers. Thus, as usual
for time-memory tradeoffs, depending on the precomputation time, memory and
disk space one is willing to spend not all frames may be used in the online phase
of the attack. The authors provide estimates for a full-optimized attack against
the GSM control channel SDDCH/8. In this case the precomputation can be
done in about 11 hours on a PC requiring 1GB of RAM and producing 4GB
of data. In the online phase eight consecutive ciphertext frames are needed to
recover the session key in about 1 second.

All of the above attacks against A5/2 share the feature that they have been
designed for software implementation and so their efficiency has also been as-
sessed for software. To the best of our knowledge the alternative of an efficient
hardware implementation of an attack against A5/2 has not been analyzed thor-
oughly yet. For the case of A5/1, Pornin and Stern [16] discussed the possibility
of accelerating attacks using software-hardware trade-offs. It is suggested that
software should be used for the exhaustive search over clocking sequences and
the generation of affine subspaces containing key candidates. Special-purpose
hardware is proposed for the subsequent filtering of these affine subspaces. The
hardware remains relatively simple, the software part being responsible for all
complex operations including Gaussian elimination. In this paper we show that
a hardware-only attack against A5/2 leads to significant improvements in terms



of time, memory and flexibility compared to current software attacks, although
existing attacks are already quite efficient.

Our general approach is similar to the ciphertext-only attack described in
[2]. However, no precomputation is required and the ciphertext frames that can
be used to mount the attack do not need to satisfy any special properties (e.g.,
appropriate differences of COUNT values). In contrast to the software imple-
mentation in [2], we designed our architecture to directly attack the speech
channel. That means, it uses ciphertext frames from the GSM speech traffic
channel (TCH/FS and TCH/EFS) instead of a specific control channel (e.g.,
SDCCH/8 in [2]) to mount the attack. The advantage is that eavesdropping can
start immediately at any time during a call (not only at the set-up of the call)
without waiting until appropriate data is transmitted over the specific control
channel. However, since the proposed architecture is quite generic using minor
changes also other GSM channels (e.g., SDCCH/8) can be attacked. Based on
our architecture, even a hardware device is conceivable where the target channel
can be chosen at runtime.

The basic architecture for attacking the speech channel requires 16 (consec-
utive) ciphertext frames as input and outputs the recovered secret initial state
of A5/2. This initial state is sufficient to decrypt all frames of a session and to
recover the key. The core blocks of the architecture are 3 equation generators
and the solver for linear systems of equations. As a realization of the latter build-
ing block, we have chosen the SMITH-LSE-Solver recently proposed in [5,6]. In
every iteration, each equation generator produces one linear equation with the
secret state bits as variables. After 185 iterations (when 555 equations have been
produced and loaded), the LSE solver performs parallelized Gauss-Jordan elim-
ination. The output of the LSE solver suggests the secret state candidate that
needs to be checked. The right candidate is found in this way after about 228

clock cycles on average.

To have a proof of concept and a basis for evaluating the requirements on
chip size and average power consumption of an ASIC implementation, we im-
plemented all critical parts of our design in VHDL and synthesized it. Based
on these results we estimate about 9.3 million gate equivalents for the whole
architecture. Assuming a moderate operating speed of 256 MHz for the main
chip component and 512 MHz for the rest, the architecture consumes roughly
12.8 Watts of energy and completes an attack in about 1 second on average. In
comparison with a recent desktop PC CPU, the Core 2 Duo “Conroe” processor,
our design requires less than 15% of the area and consumes less than one third
of the power. Note that these estimates are based on our rather unoptimized

design and we believe that there is still room for significant improvements in
speed and chip area. For instance, the experiments in [2] suggest that there are
only 450 equations needed (as opposed to 555) to determine a candidate. Having
less equations reduces both required clock cycles and occupied chip area. More-
over, for both reasons also replacing SMITH by a systolic-array LSE solver as
described in [12] seems to be a promising approach.



Fig. 1. Design of A5/2 (the Figure is due to [2])

2 The A5/2 Stream Cipher

A5/2 is a synchronous stream cipher accepting a 64-bit key K = (k0, . . . , k63) ∈
GF(2)64 and a 22-bit initial vector IV = (v0, . . . , v21) ∈ GF(2)22 derived from
the 22-bit frame number which is publicly known. It uses four linear feedback
shift registers (LFSRs) R1, R2, R3 and R4 of lengths 19, 22, 23 and 17 bits,
respectively, as its main building blocks (see Figure 1). The taps of the LF-
SRs correspond to primitive polynomials and, therefore, the registers produce
sequences of maximal periods. R1, R2 and R3 are clocked irregularly based on
the current state of R4.

The A5/2 keystream generator works as follows. First, an initialization phase

is run (see Figure 2). At the beginning of this phase all registers are set to 0.
Then the key setup and the IV setup are performed. Here the key resp. IV bits
are cyclically added to the registers modulo 2. At the end of the initialization
phase one bit in each register is set to 1.

Then the warm-up phase is performed where R4 is clocked 99 times and and
the output is discarded. Note that already during this phase and also during
the stream generation phase which starts afterwards, the registers R1, R2 and
R3 are clocked irregularly. More precisely, the stop/go clocking is determined by
the bits R4[3], R4[7] and R4[10] in each clock cycle as follows: the majority of
the three bits is computed, where the majority of three bits a, b, c is defined by
maj(a, b, c) = ab⊕ ac⊕ bc. R1 is clocked iff R4[10] agrees with the majority. R2
is clocked iff R4[3] agrees with the majority. R3 is clocked iff R4[7] agrees with
the majority. In each cycle at least two of the three registers are clocked. After
these clockings, R4 is (regularly) clocked, and an output bit is generated from



R1 ← 0, R2← 0, R3← 0, R4← 0;
for i = 0...63 do

-Clock R1, R2, R3, R4;
-R1[0]← R1[0] ⊕ ki, R2[0]← R2[0]⊕ ki, R3[0]← R3[0]⊕ ki, R4[0]← R4[0]⊕ ki;

for i = 0...21 do
-Clock R1, R2, R3, R4;
-R1[0]← R1[0] ⊕ vi, R2[0]← R2[0]⊕ vi, R3[0]← R3[0]⊕ vi, R4[0]← R4[0]⊕ vi;

R1[15]← 1, R2[16]← 1, R3[18]← 1, R4[10]← 1;

Fig. 2. Initialization phase of A5/2

the values of R1, R2, and R3 by adding their rightmost bits to three majority
values, one for each register (see Figure 1). After warm-up A5/2 produces 228
output bits, one per clock cycle. 114 of them are used to encrypt uplink traffic,
while the remaining bits are used to decrypt downlink traffic. In the remainder of
this paper we always consider only a fixed half of this keystream used to encrypt
the traffic in one direction.

3 Description of the Attack

Our general approach is similar to the ciphertext-only attack described in [2].
However, no precomputation is required and the ciphertext frames that can be
used to mount the attack do not need to satisfy special properties like having
appropriate frame numbers. The attack requires the ciphertext of any l frames
encrypted using the same session key K. The parameter l depends on the channel
that should be attacked. For instance, we need about l = 16 frames for attacking
the speech channel as shown in this paper and about l = 8 frames to attack the
SDCCH/8 channel of a GSM communication as shown in [2].

The general idea is to guess the internal state of the register R4 right after
initialization (we have 216 possible states) and write every bit of the generated
key stream, that has been used to encrypt the l known ciphertext frames, in
terms of the initial states of the registers R1, R2 and R3. We then use certain
information about the key stream bits – which are provided by the error cor-
rection coding of the GSM channel – to construct an overdetermined quadratic
system of equations. This system is linearized and then solved using Gaussian
elimination. Above procedure is repeated for different guesses of R4 until the cor-
rect solution is found. Using this solution, we can easily construct the internal
state of A5/2 after initialization for an arbitrary frame that has been encrypted
using K. This is already sufficient to decrypt all frames of a session, since we can
construct the respective states and load them into the A5/2 machine. However,
by reversing the initialization phase, we can also recover the session key.

In the following we consider the details of the attack. To this end we first
introduce the basic notation. We denote the l known ciphertext frames by
C0, . . . , Cl−1 and the corresponding (unknown) plaintext frames by P0, . . . , Pl−1.
For each frame Ch (or Ph) we denote the respective initialization vector by



IVh = (vh,0, . . . , vh,21) and the key stream by Sh = (sh,0, . . . , sh,113). Further-
more, let R1(h), R2(h), R3(h) and R4(h) be the internal states of the registers of
A5/2 during a certain cycle when generating Sh.

3.1 Expressing Stream Bits as Register States

Let us consider the stream generation for a frame Ch. At the beginning of the
initialization phase the registers R1(h), R2(h), R3(h) and R4(h) are all set to zero.
Then the key setup is performed for 64 clock cycles, where in each cycle the first
bit of each LFSR is set to the sum of the respective feedback value and one of the
key bits (see Section 2). After that, due to the linearity of the feedback functions
the bits of the three registers can be written as certain linear combinations of
K, e.g., R1(h)[0] = k0 ⊕k19 ⊕k38⊕k47. In the subsequent initialization step, the
IV setup, the initialization vector IVh is added to the content of the registers
in an analogous manner. Thus, the resulting register bits are (known) linear
combinations of the key bits and the IV bits. Finally, certain bits of the registers
are set to 1. More precisely, after initialization the registers R1(h) to R4(h) can
be written as

R1(h) = (α0 ⊕ σh,0, . . . , α14 ⊕ σh,14, 1, α15 ⊕ σh,15, . . . , α17 ⊕ σh,17),

R2(h) = (α18 ⊕ σh,18, . . . , α33 ⊕ σh,33, 1, α34 ⊕ σh,34, . . . , α38 ⊕ σh,38),
R3(h) = (α39 ⊕ σh,39, . . . , α56 ⊕ σh,56, 1, α57 ⊕ σh,57, . . . , α60 ⊕ σh,60),

R4(h) = (α61 ⊕ σh,61, . . . , α70 ⊕ σh,70, 1, α71 ⊕ σh,71, . . . , α76 ⊕ σh,76),

(1)

where αi ∈ span(k0, . . . , k63) and σh,i ∈ span(vh,0, . . . , vh,21).
This is the starting point of our attack. First observe that since IVh is known,

the values σh,0 to σh,76 can be considered as known constants. So only the αi

values are unknowns. Note that we have the same αi’s for all frames Ch. In the
following, we guess the values of α61, . . . , α76, determine the initial secret state
α = (α0, α1, . . . , α60) ∈ GF(2)61 and verify this solution.1 We have to repeat
this procedure at most 216 times until α61, . . . , α76 take on the correct values.

In order to determine α, we have to write the bits of the key stream Sh for
each frame Ch in terms of α and use certain information about these bits to
construct a linear system of equations which is then solved by Gaussian elimina-
tion. Let us now see how this can be done. Remember that after initialization,
irregular clocking is performed in each cycle as described in Section 2. Before
the first stream bit for Ch is generated the warm-up phase is executed running
for 99 cycles. After warm-up, a stream bit is generated from the current internal
states of R1(h), R2(h) and R3(h) every cycle. In an arbitrary cycle of A5/2 (after
initialization), these states can be written as

R1(h) = (βh,0 ⊕ δh,0, . . . , βh,18 ⊕ δh,18),
R2(h) = (βh,19 ⊕ δh,19, . . . , βh,40 ⊕ δh,40),

R3(h) = (βh,41 ⊕ δh,41, . . . , βh,63 ⊕ δh,63),

(2)

1 Since the registers R1(h), R2(h) and R3(h) are clocked irregularly after initialization
based on certain bits of R4(h) by guessing α61 to α76 the clocking of these registers
are fully determined.



where βh,0, . . . , βh,18 ∈ span(α0, . . . , α17), βh,19, . . . , βh,40 ∈ span(α18, . . . , α38),
βh,41, . . . , βh,63 ∈ span(α39, . . . , α60), and δh,i ∈ span(vh,0, . . . , vh,21, 1). Note that
the linear combinations βh,i depend on the specific frame Ch, since the clocking
of the registers now depends on IVh. (Certainly, βh,i and δh,i also depend on
the specific clock cycle.) However, it is important to observe that we know the
specific linear combination of αj ’s each βh,i is composed of as well as the concrete
value of each δh,i, since we know IVh and fix some values for α61, . . . , α76.

A stream bit sh,k (k ∈ {0, . . . , 113}) is generated by summing up the output of
the three majority functions and the rightmost bits of the registers R1(h), R2(h)

and R3(h) (see Fig. 1). More precisely, in terms of the current state (k clock
cycles after warm-up) of these registers the output bit can be written as

sh,k = maj (βh,12 ⊕ δh,12, βh,14 ⊕ δh,14 ⊕ 1, βh,15 ⊕ δh,15)
⊕ maj (βh,28 ⊕ δh,28, βh,32 ⊕ δh,32, βh,35 ⊕ δh,35 ⊕ 1)
⊕ maj (βh,54 ⊕ δh,54 ⊕ 1, βh,57 ⊕ δh,57, βh,59 ⊕ δh,59)
⊕ βh,18 ⊕ δh,18 ⊕ βh,40 ⊕ δh,40 ⊕ βh,63 ⊕ δh,63 .

(3)

It is important to note that due to the majority function, each output bit is a
quadratic function in α0, . . . , α60. More precisely, it has the general form

sh,k =
∑

0≤i<j≤17

bi,jαiαj ⊕
∑

18≤i<j≤38

bi,jαiαj

⊕
∑

39≤i<j≤60

bi,jαiαj ⊕
∑

0≤i≤60

aiαi ⊕ c,
(4)

for some bi,j , ai, c ∈ {0, 1}.
To linearize above relations we simply replace each quadratic term αiαj by a

new variable γi,j . In this way we obtain 18·17
2 + 21·20

2 + 22·21
2 = 594 new variables.

Thus, each stream bit can be described by at most 655 variables (and a constant).

3.2 Setting Up an LSE Using Speech Channel Data

Now, we describe how a ciphertext-only attack using data from the speech traffic
channel can be mounted. In the case of a ciphertext-only attack the direct output
stream of A5/2 is not (partly) known. However, we have access to certain linear
combinations of the output bits. This is due to the fact that A5/2 is encrypting
linearly in the plaintext (as any synchronous stream cipher) and to the linear
error-correction coding procedure that is performed before encryption. The ap-
plied error-correction procedure is however specific to the GSM channel (see [13]
for details on GSM channel coding). How this procedure can be exploited in the
case of the GSM control channel SDCCH/8 is sketched in [2]. We analyze how
this can be done in the case of the full-rate speech traffic channel (TCH/FS and
TCH/EFS) where a different interleaving procedure is used. We like to point out
that our description is more constructive and detailed compared to the one in
[2], making it especially useful with regard to an actual implementation.

To protect a 260-bit block of speech data produced by the speech coder
against transmission errors a multi-stage error-correction procedure is performed.
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This procedure increases the data size by adding redundant data in each stage
and also reorders bits. We are interested in the last two stages of this procedure
which are depicted in Figure 3. Here the 267-bit blocks IDi containing some
intermediate data are input to a so-called non-recursive binary convolutional
encoder (of rate 1/2 with memory length 4 and constant length 5). The out-
puts of the convolutional coder are the 456-bit blocks CDi. The function CC

computed by the convolution encoder can be described as follows:

CC : IDi = (idi,0, . . . , idi,266) 7→ (cdi,0, . . . , cdi,455) = CDi , where

cdi,j =











idi,k ⊕ idi,k−3 ⊕ idi,k−4, 0 ≤ j ≤ 377 and j = 2k

idi,k ⊕ idi,k−1 ⊕ idi,k−3 ⊕ idi,k−4, 0 ≤ j ≤ 377 and j = 2k + 1

idi,182+(j−378), 378 ≤ j ≤ 455

(5)

Note that the last 78 bits of IDi are actually not protected by a convolutional
code. Rather these bits are just copied unchanged to the tail of CDi. The im-
portant property of the convolutional code bits of an arbitrary block CDi (bits
0-377) - that is exploited later on - are the following linear dependencies that
hold for 1 ≤ j ≤ 184:

cdi,2j ⊕ cdi,2j+1 ⊕ cdi,2j+2 ⊕ cdi,2j+3 ⊕ cdi,2j+6 ⊕ cdi,2j+8 ⊕ cdi,2j+9 = 0 (6)

As we can see in Figure 3, the blocks CDi are not directly encrypted. Prior to
encryption, they are first reordered and interleaved “block diagonal”. The result
of the interleaving is a distribution of the reordered 456 bits of a given data block
CDi over the eight 114-bit blocks P4i+0, . . . , P4i+7 using the even numbered bits
of the first 4 blocks and odd numbered bits of the last 4 blocks. The reordered
bits of the next data block CDi+1, use the even numbered bits of the blocks



P4i+4, . . . , P4i+7 and the odd numbered bits of the blocks P4i+8, . . . , P4i+11. The
interleaving of CDi+2 and subsequent blocks is done analogously. So new data
starts every 4th block and is distributed over 8 blocks. Considering the example
in Figure 3, this means that each of the blocks P0, . . . , P3 contains 57 bits of data
from CD0, P4, . . . , P7 each contains 57 bits from CD0 and 57 bits from CD1,
P8, . . . , P11 each contains 57 bits from CD1 and 57 bits from CD2 and finally
each of the blocks P12, . . . , P15 contains 57 bits of CD2.

More precisely, the following function can be used to describe the reordering
and interleaving of data blocks:

f : N × {0, . . . , 455} → N × {0, . . . , 113}
(i, j) 7→ (4i + (j mod 8), 2(49j mod 57) + (j mod 8) div 4)

(7)

Then we have the following relation between the bits CDi and the output blocks
P(4i+0), . . . , P(4i+7):

cdi,j = pf(i,j), (8)

where the right-hand side denotes the bit with index f(i, j) belonging to block
P(4i+(j mod 8)).

A 114-bit block Pi produced by the interleaver is then encrypted by comput-
ing the bitwise XOR with the output stream Si resulting in the ciphertext frame
Ci. The linear dependencies of the convolutional code bits seen in Equation 6
also propagate to the ciphertext because the encryption is linear in the plaintext
and the keystream. So taking the interleaving and reordering into account, we
can exploit this property to obtain equations of the form

cf(i,2j) ⊕ cf(i,2j+1) ⊕ cf(i,2j+2) ⊕ cf(i,2j+3) ⊕ cf(i,2j+6) ⊕ cf(i,2j+8) ⊕ cf(i,2j+9)

⊕ sf(i,2j) ⊕ sf(i,2j+1) ⊕ sf(i,2j+2) ⊕ sf(i,2j+3) ⊕ sf(i,2j+6) ⊕ sf(i,2j+8) ⊕ sf(i,2j+9)

= pf(i,2j) ⊕ pf(i,2j+1) ⊕ pf(i,2j+2) ⊕ pf(i,2j+3) ⊕ pf(i,2j+6) ⊕ pf(i,2j+8) ⊕ pf(i,2j+9)

= cdi,2j ⊕ cdi,2j+1 ⊕ cdi,2j+2 ⊕ cdi,2j+3 ⊕ cdi,2j+6 ⊕ cdi,2j+8 ⊕ cdi,2j+9 = 0
(9)

for 0 ≤ j ≤ 184. It is important to note that the ciphertext and stream bits in
above equation do not belong to a single ciphertext block respectively stream.
Rather, for fixed i eight consecutive ciphertext blocks and corresponding streams
are involved in the 185 equations. A single equation involves bits from 5 different
blocks and streams. These effects are due to the interleaving and reordering (and
make an efficient hardware implementation somewhat tricky).

Hence, given 16 consecutive ciphertext blocks we can setup LSEs with 555
equations and 655 unknowns using the results from the previous section2. Though
the LSEs are underdetermined, we found out by experiments (similar to [2])
that this number of equations is always sufficient to determine the 61 original
linear variables α using Gaussian elimination. Having determined the values of
these variables, merely the consistency with the quadratic equations needs to be
checked to identify the correct secret initial state.

2 Assuming that the first 8 blocks contain the encrypted data of a whole convolutional
code block.
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4 A Hardware Architecture for Attacking A5/2

4.1 Overview

Our architecture is sketched in Figure 4. It accepts 16 ciphertext frames and
the 16 corresponding IVs as input. The hardware calculates and outputs the
recovered 77-bit state α0, . . . , α76.

The given ciphertext frames and IVs are stored in the Ciphertext Module
(CM). Each of the three Equation Generators (EGs) generates 185 linear equa-
tions with the secret state bits αi (0 ≤ i ≤ 60) as variables (cf. Eq. (9)). The
EGs receive the required IVs and ciphertext bits from the CM. A generated
equation is passed to the buffer of the LSE Solver. This buffer is needed because
the LSE Solver accepts only one equation per clock cycle, but the three EGs
produce their equations simultaneously. After the LSE Solver is filled with 555
equations, it proceeds to the solving step and produces a candidate for the se-
cret state. The secret state candidate is sent from the LSE Solver to the Key
Tester (KT) that verifies whether the correct state has been found. This verifi-
cation process is done in parallel to the determination of a new candidate. More
precisely, while equations for the j-th candidate are generated by the EGs the
(j − 1)-th candidate is tested by the KT. All processes are controlled by the
Control Logic Unit (CLU) that performs synchronization and clocking for the
CM, EGs, the LSE Solver, and the KT. Its main task is to ensure that the right
stream and ciphertext bits are combined (within the EGs and also the KT) to
form the desired equations as described in Section 3.2 in Eq. (9).
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4.2 Equation Generators (EGs)

Three EGs are used to generate the system of linear equations for the LSE Solver.
Each EG is associated with one of the 3 convolutional code blocks CD0, . . . , CD2

whose data is spread - due to interleaving - over 8 of the 16 given ciphertext
blocks Ch (cf. Section 3.2). By means of the CM an EG has access to the required
8 ciphertext blocks and the corresponding IVs and generates 185 equations from
this data.

As shown in Figure 5, an EG consists of eight Stream Generators (SGs) and
one Stream Combiner (SC) which are all controlled by the CLU. Each of the
eight SG is associated with one of the eight ciphertext frames Ch related to its
EG. More precisely, Stream Generator SGj (0 ≤ j ≤ 7) belonging to Equation
Generator EGi (0 ≤ i ≤ 2) is associated with frame C(4i+j). The SG for a frame
Ch consists of an expanded A5/2 engine and can produce linearized terms for
the 114 stream bits sh,k (cf. Eq. (4)). For instance, SG0 in EG1 is associated with
C4 and is able to generate linear terms for the stream bits s4,0, . . . s4,113. Each
EG also contains another type of component, the Stream Combiner, that takes
care of adding the right stream bit terms and the right ciphertext bits together
in order to get the final equations that are then passed to the LSE Solver.
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Fig. 6. Detailed view of R1 represented within a SG after initialization.

Stream Generator (SG). The SG unit consists of an A5/2 engine where the
states of the LFSRs R1, R2 and R3 are represented by vectors of αi’s instead
of single bits. We implemented the Ri’s as vector LFSRs instead of standard
scalar LFSRs to obtain linear expressions in the variables αi (every LFSR binary
addition and shift operation is applied to a linear combination of αi’s). Figure 6
shows an example of this representation for R1 right after the initialization phase.
Each column vector gives the dependence of the corresponding bit of the simple
LFSR on the αi’s and a constant (Eq. (1) describes exactly the same state of
the vector LFSR). Hence the rows of the matrix indicate the dependence on the
corresponding αi while the columns indicate the position in the LFSR. The row
at the bottom corresponds to the constants σh,i. Right after the initialization
phase, each column (ignoring the bottom row) only contains a single 1, because
before warm-up each position of each Ri depends only on a single αi (cf. Eq. (1)).
The only exception are the three positions in R1 through R3 that are set to one.
Here the respective positions do not depend on any αi but the respective constant
part is 1. Note that no clock cycles need to be wasted to actually perform the
initialization phase for vector LFSRs, since we can precalculate the IV’s influence
on each LFSR position

Each SG performs the warm-up phase where its vector LFSRs are clocked 99
times. Every time a vector LFSR is clocked (forward), all columns are shifted one
position to the right, the last column is dropped and the first column is calculated
as an XOR of the columns according to the feedback term. After warm-up, the
CLU can query one of its 114 outputs. To produce this output, the SG is clocked
as many times as necessary to reach the desired linear expression for sh,k. An SG
can be clocked forward as well as backward3, resulting in an average of 36 clock
cycles required for generating one output equation. The output is generated by
XORing the result of the majority function as described in Eq. (4).

3 Figure 6 depicts only the control logic for forward clocking. For simplicity reasons
we also omitted certain other control and data signals in the figure.



The majority function performs a pairwise “multiplication” of all three input
vectors and binary adds the intermediate results and the vector that directly
enters the equation (e.g, R1[18] in Figure 6). The multiplication of two column
vectors is done by binary multiplying each element of one vector with each
element of the other vector. The resulting term for one key bit sh,k is linearized
by assigning each quadratic variable to a new variable (represented by a “new”
signal line). We implemented the multiplication of Eq. (4) to be performed in one
clock cycle. Instead of rotating a number of registers several times, we directly tap
and combine all input bits of these registers that are required for the computation
of a specific output bit.

Since the domain of each instance of the majority function is restricted to
one register, its action is local and one obtains three smaller quadratic equations
with disjunct variables (except for the constant term) before the final XOR.
That is, the results of the different vector LFSRs do not have to be XORed
and can be directly output (the first 655 data lines). The only operation one
has to perform to compute this XOR is to add the three constant bits (the
last single-bit output of each SG). Note that one does to have to linearize the
local quadratic equations, since we already use the linearized form to represent
quadratic equations in hardware (each linear or quadratic term is represented
by one bit).

Each of the 8 SGs accepts 3 control signals from the CLU indicating the
clocking direction (forward or backward), the stop-go command (as the vector
LFSRs belonging to different SGs need to be clocked a different number of times),
and the initialization command (increment R4 and perform warm-up).

Stream Combiner (SC). The SC combines the results of the SGs with the
right ciphertext bits from the CM to produce the equations for the LSE Solver.
More precisely, it works as follows: the output of an SG are 656 signals repre-
senting a certain stream bit sh,k. The signal representing the constant value c of
sh,k (cf. Eq. (4)) is then XORed with the respective ciphertext bit ch,k provided
by the CM. By having a closer look at Eq. (9) and the involved function f , we
can see that this 656-bit result is sometimes needed for the generation of two
consecutive equations. Moreover, note that sometimes also the current and the
previous result of an SG are required at the same time to build an equation. To
this end the result of an SG is buffered in the SC (see Figure 6). A signal of the
CLU is used to decide which of the 8 previous and 8 current results are XORed
together. The resulting equation is now passed as new equation to the buffer of
the LSE Solver.

4.3 Ciphertext Module (CM)

The CM stores the 16 ciphertext blocks and IVs and provides them to the
SCs and the KT in the required order. It consists of 24 memory blocks for
storing ciphertexts and 16 memory blocks for storing the IVs. The content of
the ciphertext memory blocks can be cyclicly shifted in both directions. The



ciphertexts C0, . . . , C15 are initially stored in the bit order as they are recorded
from air. C0, . . . , C7 is put in the first 8 memory blocks, C4, . . . , C11 is put in
the next 8 memory blocks and C8, . . . , C15 is put in the last 8 blocks.

Each EG and the KT has parallel access to the 8 required IVs. Each of the
SCs needs only access to 8 of the 24 ciphertext memory blocks. More precisely,
the SC belonging to EGi is provided with the first bit of memory block 4i+0 to
4i + 7 respectively (i.e, the positions where the bits c4i+j,0 are initially stored).
The content of these memory blocks needs to be rotated in the same way as the
vector LFSRs within the 8 SGs of EGi. To this end the CM receives the same
control signals from the CLU as the SGs. Finally, the KT accesses the first bit
of the ciphertext memory blocks 0 to 7 respectively, i.e., the same bits as EG0.

4.4 LSE Solver

The LSE Solver is controlled by the CLU. Each time an equation in an Equation
Generator is ready, the LSE Solver obtains a signal for loading the equation. As
all orders have been processed and all equations loaded into the LSE Solver,
it receives a command from the CLU to start Gaussian elimination. When the
LSE Solver is ready, it writes the 61-bit result into a buffer. After this it signals
that a solution is ready. The CLU informs the Key Tester that the secret state
candidate is in the buffer. It is then read out by the Key Tester. We decided to
use the SMITH architecture presented in [5,6] to realize the LSE Solver module.

SMITH. The SMITH architecture implements a hardware-optimized variant
of the Gauss-Jordan4 algorithm over GF(2). The architecture is described in [5]
for LSEs of dimension m×n where m ≥ n. Its average running time for systems
of dimension n × n with uniformly distributed coefficients is about 2n (clock
cycles) as opposed to about 1

4n3 in software.
Though SMITH was not originally designed for performing Gauss-Jordan on

underdetermined LSEs (m < n), using minor modifications it can also handle
this type of LSEs which is required for our purposes. Due to page limitations,
we omit describing these straightforward adaptions. In the remainder of this
section, we sketch a simple enhancement of the architecture that significantly
reduces the total number of clock cycles (in our case) for doing Gauss-Jordan
elimination.

The required number of clock cycles is determined by two operations which
are applied min(m, n) = m times: pivoting and elimination. Pivoting roughly
means the search for a non-zero element in a certain column of the respective
coefficient matrix which is then used during the elimination operation to zero-out
all other “1” entries in this column. While the elimination operations consume
a fixed amount of m clock cycles in total, a variable number of clock cycles for
pivoting is required. This number highly depends on the characteristics of the

4 In this version of Gaussian elimination the backward substitution steps are combined
with the elimination steps. In this way one immediately obtains the solution vector
without doing any post-processing.



coefficient matrix. Roughly speaking, if the matrix columns contain many zero
entries pivoting requires many clock cycles and may dominate the total costs.
In our case, we initially have dense matrices that however contain many linearly
dependent row vectors resulting in many zero columns while the algorithm pro-
ceeds. More precisely, our experiments show that each of our matrices contains
about 160 to 190 linearly dependent equations. It is important to note that if the
column, the pivoting operation is applied to, is a zero column, no pivoting and
no subsequent elimination is actually required. Thus, by performing zero column
detection (in an efficient manner), we can save these clock cycles and proceed
immediately with the next column. Since, in the case of the SMITH architecture
the logic for pivoting is physically located in a single column (the 1st column),
we could efficiently realize this detection by computing the OR over all entries
of this single column. Using this simple adaption, the pivoting operations for
the whole matrix consume about 4000-4500 cycles (instead of more than 60000).
Thus, a solution is computed after about 5000 cycles.

4.5 Key Tester (KT)

The KT receives the output of the LSE Solver, i.e., the secret state candidate and
checks its correctness. The KT is built-up as a modified EG. The determined
candidate is written into the SG-engines of the KT, which are normal A5/2
engines that can be clocked in both directions. Hence the size of this modified
SGs is much smaller and they produce single bits as output. For the verification
of a candidate, the output bits sh,k generated by the SGs are combined with the
ciphertext bits according to Eq. (9) like it is done within a regular EG. If all
resulting XOR-sums are equal to 0, the correct secret state has been found and
is written out.

4.6 Control Logic Unit (CLU)

The CLU controls all other components and manages the data flow. It ensures
that the right stream bit expressions are generated, combined with the ciphertext
bits and passed to the LSE Solver. Once the LSE Solver is filled with 555 equa-
tions, it stops the EGs and starts the LSE Solver. When the LSE is solved, the
candidate is passed to the KT. The KT is operated in parallel to the generation
of the new LSE.

The CLU generates the same sequence of 24-bit control signals for each of
the three EGs and the KT (cf. Figure 5). Remember that each SG belonging
to an EG receives 3 of these signals. They determine the direction in which
the engine is clocked, whether the engine is clocked at all and whether the
R4 register need to be increased (to generate equations for a new candidate).
The generation of these signals can be immediately derived from Eq. (9). More
precisely, the CLU internally generates an order for each of the 185 equations
an EG should produce. From such an order the required signals can be easily
derived. The orders for the first 21 equations are shown in Table 1. Each order
thereby consists of 7 pairs (fri, cli) (0 ≤ i ≤ 6). The number fri equals the index



Table 1. Orders required for the first 21 equations ((j, 0) means that the current
output of Stream Generator j is needed).

Equation Orders

0 (0, 0), (0, 100), (1, 98), (1, -14), (2, 82), (3, 66), (6, 19)
1 (0, 0), (2, 0), (2, -14), (3, 0), (3, -14), (4, 51), (5, 35)
2 (2, 0), (4, 0), (4, -14), (5, 0), (5, -14), (6, 0), (7, 3)
3 (0, 0), (1, 0), (4, 0), (6, 0), (6, -14), (7, 0), (7, 100)
4 (0, 0), (0, -14), (1, 0), (1, -14), (2, 0), (3, 0), (6, 0)
5 (0, 0), (2, 0), (2, -14), (3, 0), (3, -14), (4, 0), (5, 0)
6 (2, 0), (4, 0), (4, -14), (5, 0), (5, -14), (6, 0), (7, 0)
7 (0, 0), (1, 0), (4, 0), (6, 0), (6, 100), (7, 0), (7, -14)
8 (0, 0), (0, -14), (1, 0), (1, -14), (2, 0), (3, 0), (6, 0)
9 (0, 0), (2, 0), (2, -14), (3, 0), (3, -14), (4, 0), (5, 0)
10 (2, 0), (4, 0), (4, -14), (5, 0), (5, 100), (6, 0), (7, 0)
11 (0, 0), (1, 0), (4, 0), (6, 0), (6, -14), (7, 0), (7, -14)
12 (0, 0), (0, -14), (1, 0), (1, -14), (2, 0), (3, 0), (6, 0)
13 (0, 0), (2, 0), (2, -14), (3, 0), (3, -14), (4, 0), (5, 0)
14 (2, 0), (4, 0), (4, 100), (5, 0), (5, -14), (6, 0), (7, 0)
15 (0, 0), (1, 0), (4, 0), (6, 0), (6, -14), (7, 0), (7, -14)
16 (0, 0), (0, -14), (1, 0), (1, -14), (2, 0), (3, 0), (6, 0)
17 (0, 0), (2, 0), (2, -14), (3, 0), (3, 100), (4, 0), (5, 0)
18 (2, 0), (4, 0), (4, -14), (5, 0), (5, -14), (6, 0), (7, 0)
19 (0, 0), (1, 0), (4, 0), (6, 0), (6, -14), (7, 0), (7, -14)
20 (0, 0), (0, -14), (1, 0), (1, -14), (2, 0), (3, 0), (6, 0)

of a ciphertext/key-stream block modulo 8 (cf. Eq. (9)) required in an equation.
So this number addresses one of the 8 SGs belonging to an EG. The number
cli (which can be negative) is the relative position of the required bit within
the fri-th ciphertext/key-stream block. “Relative” means that this position is
given relatively to the position of the bit of this block that was required just
before. This number can be used to signal how often and in which direction an
SG should be clocked. Considering the columns of Table 1, we see that these
pairs occur (almost) periodically. So orders can be generated easily in hardware.

Besides the three control signals for each SG, the CLU has to produce a 16-bit
mask to control which outputs of the SGs are XORed within an SC (cf. Figure 5).
As can be derived from Table 1, only 7 bits of the mask are simultaneously set
to 1. Finally, the CLU also “orders” the needed ciphertext bits from the CM
which is done in the same way as stream bits are “ordered” from the SGs.

Operating Procedure. During the setup of our attack engine, all components
are being initialized and 16 ciphertext frames and 16 corresponding IVs are read
into the CM. The R4 registers of the GEs are set to the initialization value 0.

After the initialization the equations are generated, solved, and tested for all
different possible states of R4, until the right state is found. Hence the following
steps are performed 215 times on average:

1. The registers R4 are incremented and the warm-up is executed in the SGs
and in the KT. The SGs are now ready to generate the linearized terms for
the stream bits sh,k when queried.

2. The LSE Solver gets filled with 555 equations. The CLU queries each of the
three EGs 185 times to receive these equations. The CLU plays an important



role in this, because it controls each SG to provide the right sh,k terms, which
are then combined by the SCs and passed to the buffer of the LSE Solver.
The SGs inside the EGs need to be clocked 36 times on average to produce
the necessary terms.

3. Once all equations are generated, the LSE Solver is started. It takes roughly
5000 cycles until the result is calculated.

4. The determined candidate is fed into the KT and the warm-up is executed.
5. The CLU queries the KT 185 times to generate the output bits. If all parity

checks in the KT succeed, the recovered 77-bit state is passed to the output.

Since the KT and the EGs have the same components the warm-up and
equation generation of both can be performed in parallel. Hence, steps 1 and 4
as well as 2 and 5 are performed in parallel. Furthermore, setup and warm-up
(steps 1 & 4) for the new state candidate can be performed while the LSE Solver
is determining the previous candidate (step 3).

5 Implementation Results and ASIC Estimates

Due to the size of the architecture, an ASIC realization seems most realistic. We
decided to keep the operating speed at 256 MHz for the LSE Solver to main-
tain a decent power consumption at still reasonable performance time. Since the
remaining components are smaller than the LSE Solver and there are periods
where those components are idle, they are clocked at twice the speed (512MHz).
This way the LSE Solver still accounts for two thirds of the overall power con-
sumption and heat development. At these clock rates one key is recovered on
average in about 1 second.

To evaluate the requirements on chip size and average power consumption,
we implemented our design in VHDL and synthesized it using the Virtual Sil-
icon (VST) standard cell library based on the UMC L180 0.18µ 1P6M Logic
process. We used Synopsys Design Compiler version Y-2006.06 for synthesis and
estimation of power consumption. Mentor Graphics Modelsim SE was used for
simulation. Due to the huge size of the whole system, simulation and synthe-
sis were done component-wise. A synthesis of the whole design should further
decrease the needed area.

All critical components were implemented and synthesized. Table 2 shows the
synthesis results. For each component the area it needs is given as well as the
consumed average power. The area is given in gate equivalents (GE). One GE is
equal to the area needed by one NAND-gate in the appropriate process. Power
is given in µW. The first column shows at which clock frequency a component
is operated. For few uncritical components like the Stream Combiner and the
Ciphertext Module module, area and power consumption were estimated rather
than synthesized. Conservative assumptions on the needed number of flip-flops
and area for control-logic were transformed into area and power estimations.
Estimated components are indicated by *.

The last value of Table 2 shows the estimated sum for both area and power
consumption of a realization of the whole design. Obviously the LSE Solver



Table 2. Simulation results sorted by components used (* indicates estimated values)

Component Name Clock Speed Area Power Consumption

[MHz] [kGE] [mW]
Stream Generator (SG) 512 28.9 129.9
Key Tester (KT) 512 0.7 2.9
LSE Solver 256 8,205.3 8,360.8
Stream Combiner∗ (SC) 512 95.5 431.8
Ciphertext Module∗ (CM) 512 16.6 27.3
Control Logic∗ (CLU) 512 4.6 20.1

Full Design∗ 256/512 9,316.8 12,833.7

accounts for the biggest part of the area needed, almost 90% of the total area of
the design. Yet the sum of the other components account for roughly one third
of the total power consumption of 12.8 W. This is due to the higher operating
frequency of these components. Note that many components appear multiple
times in the design. I.e. the EG appears 3 times, resulting in 24 SGs.

The full design needs roughly 9.3 million GEs and consumes roughly 12.8
Watts of energy. For comparison, a recent desktop PC CPU, the Core 2 Duo
“Conroe” processor, accumulates roughly 2.9 × 108 transistors (0.065 microns)
and draws up to 65 Watts [8]. So we used less than 15% of the area and less
than one third of the power.
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