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Abstract. Let E/Fp be an elliptic curve, and G ∈ E/Fp. Define the
Diffie–Hellman function as DHE,G(aG, bG) = abG. We show that if there
is an efficient algorithm for predicting the LSB of the x or y coordinate of
abG given 〈E, G, aG, bG〉 for a certain family of elliptic curves, then there
is an algorithm for computing the Diffie–Hellman function on all curves
in this family. This seems stronger than the best analogous results for
the Diffie–Hellman function in F∗p. Boneh and Venkatesan showed that in

F∗p computing approximately (log p)1/2 of the bits of the Diffie–Hellman
secret is as hard as computing the entire secret. Our results show that
just predicting one bit of the Elliptic Curve Diffie–Hellman secret in a
family of curves is as hard as computing the entire secret.

1 Introduction

We recall how the Diffie–Hellman key exchange scheme works in an arbitrary
finite cyclic group G of order T . Let g be a generator g of G. Then to establish
a common key, two communicating parties, Alice and Bob execute the following
protocol, see [15, 25]: Alice chooses a random integer x ∈ [1, T − 1], computes
and sends X = gx to Bob. Bob chooses a random integer y ∈ [1, T −1], computes
and sends Y = gy to Alice. Now both Alice and Bob can compute the common
Diffie–Hellman secret

K = Y x = Xy = gxy.

The Computational Diffie–Hellman assumption (CDH) in the group G states that
no efficient algorithm can compute gxy given g, gx, gy. However, this does not
mean that one cannot compute a few bits of gxy or perhaps predict some bits of
gxy. In fact, to use the Diffie–Hellman protocol in an efficient system one usually
relies on the stronger Decision Diffie–Hellman assumption (DDH) [3]. Ideally,
one would like to show than an algorithm for DDH in the group G implies an
algorithm for CDH in G. As a first step we show that, in the group of points
of an elliptic curve over a finite field, predicting the least significant bit (LSB)

? Supported by NSF and the Packard Foundation.
?? Supported in part by ARC



        

of the Diffie–Hellman secret, for many curves in a family of curves, is as hard
as computing the entire secret. Such results were previously known for the RSA
function [1, 7] but not for Diffie-Hellman.

Let p be prime and let bscp denote the remainder of an integer s on division
by p. We also use log z to denote the binary logarithm of z > 0. In the classical
settings G is selected as the multiplicative group F∗p of a finite field of p elements
(and thus g is a primitive root of Fp). In this case, Boneh and Venkatesan [5]

showed that about log1/2 p most significant bits of bgxycp are as hard to find
as bgxycp itself. The result is based on lattice reduction techniques. A similar
result holds for the least significant bits as well. González Vasco and Shparlin-
ski [10] used exponential sums to extend this result to subgroups G of F∗p. It
has turned out that the lattice reduction technique used in [5] coupled with the
exponential sum technique lead to a series of new results about the bits security
of some cryptographic constructions [11, 14, 22, 23] as well as to attacks on some
of them [6, 13, 17, 18].

However the case where G is the point group of an elliptic curve has turned
out to be much harder for applications of the lattice reduction based technique
of [5] because of the inherited nonlinearity of the problem. Although some results
have recently been obtained in [4] they are much weaker that those known for
subgroups of F∗p. Here, using a very different technique, we show that working
with a certain family of isomorphic curves (rather than with one fixed curve)
allows to obtain results that are stronger than those known for subgroups of
F∗p. By using certain twists of the given curve we show that predicting the least
significant bit of the elliptic curve Diffie–Hellman secret in a family of curves is
as hard as computing the entire secret. Since our techniques work with many
curves at once they do not extend to the case of subgroups of F∗p.

2 Elliptic Curve Diffie–Hellman Scheme

Throughout the paper we let p be a prime and let Fp be the finite field of size
p. Let E be an elliptic curve over Fp, given by an affine Weierstrass equation of
the form

Y 2 = X3 +AX +B, 4A3 + 27B2 6= 0 (1)

It is known [24] that the set E(Fp) of Fp-rational points of E form an Abelian
group under an appropriate composition rule and with the point at infinity O
as the neutral element. We also recall that

|N − p− 1| ≤ 2p1/2,

where N = |E(Fp)| is the number of Fp-rational points, including the point at
infinity O.

Let G ∈ E be a point of order q, that is, q is the size of the cyclic group
generated by G. Then the common key established at the end of the Diffie–
Hellman protocol with respect to the curve E and the point G is abG = (x, y) ∈ E
for some integers a, b ∈ [1, q − 1].



             

Throughout the paper we use the fact that the representation of E contains
the field of definition of E. With this convention, an algorithm given the rep-
resentation of E/Fp as input does not need to also be given p. The algorithm
obtains p from the representation of E.

Diffie-Hellman Function: Let E be an elliptic curve over Fp and let G ∈ E be a
point of prime order q. We define the Diffie-Hellman function as:

DHE,G(aG, bG) = abG

where a, b are integers in [1, q−1]. The Diffie-Hellman problem on E is to compute
DHE,G(P,Q) given E, G, P,Q. Clearly we mostly focus on curves in which the
Diffie-Hellman problem is believed to be hard. Throughout we say that a random-
ized algorithm A computes the Diffie-Hellman function if A(E, G, aG, bG) = abG
holds with probability at least 1− 1/p. The probability is over the random bits
used by A.

Twists on elliptic curves: Let E be an elliptic curve over Fp given by the Weier-
strass equation y2 = x3 +Ax+B. Our proofs rely on using certain twists of the
elliptic curve. For λ ∈ F∗p define φλ(E) to be the (twisted) elliptic curve:

Y 2 = X3 +Aλ4X +Bλ6. (2)

We remark that 4(Aλ4)3 + 27(Bλ6)2 = (4A3 + 27B2)λ12 6= 0 for λ ∈ F∗p. Hence,
φλ(E) is an elliptic curve for any λ ∈ F∗p. Throughout the paper we are working
with the family of curves {φλ(E0)}λ∈F∗p associated with a given curve E0.

It is easy to verify that for any point P = (x, y) ∈ E and any λ ∈ F∗p the
point Pλ = (xλ2, yλ3) ∈ φλ(E). Moreover, from the explicit formulas for the
group law on E and φλ(E), see [2, 24], we derive that for any points P,Q,R ∈ E
with P + Q = R we also have Pλ + Qλ = Rλ. In particular, for any G ∈ E we
have:

xGλ = (xG)λ, yGλ = (yG)λ, xyGλ = (xyG)λ.

Hence, the map φλ : E → φλ(E) mapping P ∈ E to Pλ ∈ φλ(E) is a homomor-
phism. In fact, it is easy to verify that φλ is an isomorphism of groups. This
means that

DHφλ(E),Gλ(Pλ, Qλ) = φλ[DHE,G(P,Q)].

Hence, if the Diffie-Hellman function is hard to compute in E then it is also hard
to compute for all curves in {φλ(E)}λ∈F∗p .

3 Main Results

We denote by LSB(z) the least significant bit of an integer z ≥ 0. When z ∈ Fp we
let LSB(z) be LSB(x) for the unique integer x ∈ [0, p−1] such that x ≡ z mod p.



               

Let p be a prime, and let E be an elliptic curve over Fp. Let G ∈ E be a point
of order q, for some prime q. We say that an algorithm A has advantage ε in
predicting the LSB of the x-coordinate of the Diffie-Hellman function on E if:

AdvXE,G(A) =

∣∣∣∣Pr
a,b

[A(E, G, aG, bG) = LSB(x)]− 1

2

∣∣∣∣ > ε

where abG = (x, y) ∈ E and a, b are chosen uniformly at random in [1, q − 1].
We write AdvXE,G(A) > ε. Similarly, we say that algorithm A has advantage ε in
predicting the LSB of the y-coordinate of the Diffie-Hellman function if:

AdvYE,G(A) =

∣∣∣∣Pr
a,b

[A(E, G, aG, bG) = LSB(y)]− 1

2

∣∣∣∣ > ε

where abG = (x, y) ∈ E. We write AdvYE,G(A) > ε.

The following result shows that no algorithm can have a non-negligible ad-
vantage in predicting the LSB of the x or y coordinates of the Diffie-Hellman
secret for many curves in {φλ(E0)}λ∈F∗p , unless the Diffie–Hellman problem is
easy on E0.

Theorem 1. Let ε, δ ∈ (0, 1). Let p be a prime, and let E0 be an elliptic curve
over Fp. Let G ∈ E0 be a point of prime order. Suppose there is a t-time algorithm
A such that either:

1. AdvXφλ(E0),φλ(G)(A) > ε for at least a δ-fraction of the λ ∈ F∗p, or

2. AdvYφλ(E0),φλ(G)(A) > ε for at least a δ-fraction of the λ ∈ F∗p.

Then the Diffie–Hellman function DHE0,G(P,Q) can be computed in expected
time t · T (log p, 1

εδ ) where T is some fixed polynomial independent of p and E0.

Theorems 1 shows that, if the Diffie-Hellman problem is hard in E0, then
no efficient algorithm can predict the least significant bit of the X or Y coordi-
nates of the Diffie–Hellman function for a non-negligible fraction of the curves in
{φλ(E0)}λ∈F∗p . The proof of Theorem 1 is given in Section 6. Note the theorem
does not give a curve in {φλ(E0)}λ∈F∗p for which the LSB of the X coordinate is
a hard-core bit — it can still be the case that for every curve E ∈ {φλ(E0)}λ∈F∗p
there is an efficient algorithm that predicts the LSB of DHE,G for that curve only.
However, there cannot be a single efficient algorithm that predicts this LSB for
a non-negligible fraction of the curves in {φλ(E0)}λ∈F∗p .

An immediate corollary of Theorem 1 gives a hard core predicate for a simple
extension of the Diffie-Hellman function. Let DHE,G be the function:

DHE,G(P,Q, λ) = DHφλ(E),Gλ(Pλ, Qλ)

where Gλ = φλ(G) and similarly Pλ, Qλ. Note that this function basically uses
λ as an index indicating in which group to execute the Diffie-Hellman protocol.
Then the LSB of the X or Y coordinates is a hard-core bit of this function
assuming the Diffie-Hellman problem is hard in E.



                

Corollary 1. Let E be an elliptic curve over Fp and let G ∈ E be of prime order
q. Suppose there is a t-time algorithm A such that

Pr
a,b,λ

[A(E, G, aG, bG, λ) = LSB(x)] >
1

2
+ ε

where DHE,G(aG, bG, λ) = (x, y) ∈ φλ(E). Here a, b are uniformly chosen in
[1, q−1] and λ ∈ F∗p. Then the Diffie–Hellman function DHE0,G can be computed

in expected time t · T (log p, 1
ε ) where T is some fixed polynomial independent of

p and E0.

We note that there are other ways of extending the Diffie-Hellman function
to obtain a hard-core bit [8, 12].

4 Review of the ACGS algorithm

The proof of Theorem 1 uses an algorithm due to Alexi, Chor, Goldreich, and
Schnorr [1]. We refer to this algorithm as the ACGS algorithm. For completeness,
we briefly review the algorithm here. First, we define the following variant of the
Hidden Number Problem (HNP) presented in [5].

HNP-CM: Fix an ε > 0. Let p be a prime. For an α ∈ Fp let L : F∗p → {0, 1} be
a function satisfying

Pr
t∈F∗p

[
L(t) = LSB

(
bα · tcp

)]
≥ 1

2
+ ε. (3)

The HNP-CM problem is: given an oracle for L(t), find α in polynomial time
(in log p and 1/ε). Clearly we wish to show an algorithm for this problem that
works for the smallest possible ε. For small ε there might be multiple α satisfying
condition (3) (polynomially many in ε−1). In this case the list-HNP-CM problem
is to find the list of all such α ∈ Fp. Note that it is easy to verify that a given
α belongs to the list of solutions by picking polynomially many random samples
x ∈ Fp (say, O(1/ε2) samples suffice) and testing that L(x) = LSB(bαxcp) holds
sufficiently often.

We refer to the above problem as HNP-CM to denote the fact that we are
free to evaluate L(t) at any multiplier t of our choice (the CM stands for Chosen
Multiplier). In the original HNP studied in [5] one is only given samples (t, L(t))
for random t. The following theorem shows how to solve the HNP-CM for any
ε > 0. The proof of the theorem (using different terminology) can be found in [1]
and [7].

Theorem 2 (ACGS). Let p be an n-bit prime and let ε > 0. Then, given ε, the
list-HNP-CM problem can be solved in expected polynomial time in n and 1/ε.

Proof Sketch For α ∈ F∗p let fα(t) : Fp → {0, 1} be a function such that

fα(t) = LSB
(
bαtcp

)
for all t ∈ Fp. It is well known that given an oracle for



          

fα(t) it is possible to recover α using polynomially many queries (polynomial in
log p). See [1, 7] or Theorem 7 of [5]. In fact, using the method of [1], it suffices
to make queries only at t for which btαcp < p · ε/2 (as a result the run time is
polynomial in log p and 1/ε). Hence, the main challenge is in building an oracle
for fα(t) from an oracle for L(t). The ACGS algorithm constructs an oracle for
fα(t) for every α ∈ F∗p that satisfies the condition (3). This construction is at
the heart of the ACSG algorithm.

Let m = n· 1
ε2 . We show how to evaluate fα(t) given an oracle for the function

L(t). We first pick random u, v ∈ Fp. We use the same u, v to answer all queries
to fα(t). We assume that we know the 2 logm most significant bits and the least
significant bit of buαcp, bvαcp. This assumption is valid since we intend to run
the ACGS algorithm with all possible values for these 2+d4 logme bits. In one of
these iterations we obtain the correct values for the 2+d4 logme most significant
bits and least significant bit of buαcp, bvαcp. Note that different guesses for these
bits will lead to oracles for fα(t) for different values of α.

For i = 1, . . . ,m let ri = biu+ vcp. Then r1, . . . , rm are pair wise indepen-
dent values in Fp (over the choice of u, v). One can easily show (as in [1, 7])
that using the knowledge of the most significant bits of uα, vα mod p and the
least significant bit, it is easy to determine bi = LSB(briαcp) for i = 1, . . . ,m.
Therefore, to evaluate fα(t) do the following:

1. Evaluate ai = L(t + ri). Set fi = ai ⊕ bi, for i = 1, . . . ,m, where ⊕ denotes
addition modulo 2.

2. Respond with fα(t) = Majority(f1, . . . , fm).

For a given i ∈ [1,m] we say that ai is correct if ai = LSB(bα(t+ ri)cp).
Recall that we only make fα(t) queries at t satisfying btαcp < p · ε/2. Therefore,
bα(t+ ri)cp = bαtcp + bαricp, as integers, with probability at least 1 − ε/2.
Then LSB(bα(t+ ri)cp) = LSB(bαtcp) ⊕ LSB(bαricp). It follows that if ai is
correct then fi = LSB(btαcp) with probability at least 1− ε/2.

Since each ri is uniformly distributed in Fp (over the choice of u, v) it follows
that each ai is correct with probability at least 1

2 + ε. Since the ri’s are pair
wise independent it follows that the fi’s are pair wise independent. Therefore,
by Chebychev’s inequality we obtain the correct value of fα(t) with probabil-
ity 1 − 1/n. The exact analysis is given in [1]. Since we are able to construct
an almost perfect subroutine for fα(t) for all α satisfying the condition (3) the
ACGS algorithm will produce a polynomial (in log p) length list of candidates
containing all required α. Note that it is easy to verify that a given α in the
resulting list satisfies the condition (3) by picking polynomially many random
samples x ∈ Fp and testing that L(x) = LSB(bαxcp) holds sufficiently often. ¤

We note that Fischlin and Schnorr [7] presented a more efficient algorithm for
the HNP-CM. They rely on sub-sampling in Step 2 above to reduce the number
of queries to the oracle for L.



               

5 Quadratic and Cubic Hidden Number Problems

To prove the main results of Section 3 we actually need an algorithm for the
following variant of the HNP-CM problem.

HNP-CMd: Fix an integer d > 0 and an ε > 0. Let p be a prime. For an α ∈ F∗p
let L(d) : F∗p → {0, 1} be a function satisfying

Pr
t∈F∗p

[
L(d)(t) = LSB

(⌊
αtd
⌋
p

)]
≥ 1

2
+ ε. (4)

The HNP-CMd problem is: given an oracle for L(d)(t), find α in polynomial time.
For small ε there might be multiple α satisfying condition (4) (polynomially
many in ε−1). In this case the list-HNP-CMd problem is to find all such α ∈ F∗p.
We prove the following simple result regarding the list-HNP-CMd problem. We
use this theorem for d = 2 and d = 3.

Theorem 3. Fix an integer d > 1. Let p be a n-bit prime and let ε > 0. Then,
given ε, the HNP-CMd problem can be solved in expected polynomial time in log p
and d/ε.

Proof. Let L(d) be a function satisfying the condition (4). Let R : Fp → {0, 1}
be a random function chosen uniformly from the set of all functions from Fp to
{0, 1}. Let S : Fdp → Fp be a function satisfying S(x)d ≡ x mod p for all x ∈ Fdp
and chosen at random from the set of such functions. Here Fdp is the set of d’th

powers in Fp. The function S is simply a function mapping a d’th power x ∈ Fdp
to a randomly chosen d’th root of x. Next, define the following function L(t):

L(t) =

{
L(d)(S(t)) if t ∈ Fdp,
R(t) otherwise.

We claim that for any α ∈ F∗p satisfying the condition (4) we have that L(t)
satisfies

Pr
t,R,S

[
L(t) = LSB

(
bα · tcp

)]
≥ 1

2
+ ε/d.

To see this, fix an α ∈ Fp satisfying the condition (4). Let Bt be the event

that L(t) = LSB
(
bα · tcp

)
. Let Bdt be the event that L(d)(t) = LSB

(⌊
α · td

⌋
p

)
.

Observe that if t is uniform in Fdp \ {0} then S(t) is uniform in F∗p. Let e =
gcd(p− 1, d).

If e = 1 then Fp = Fdp and therefore:

Pr
t,R,S

[Bt] = Pr
t,R,S

[
BdS(t)

]
= Pr
x∈F∗p

[
Bdx
]
≥ 1

2
+ ε.



               

Hence, in this case the claim is correct. When e > 1 then the size of Fdp \ {0} =

Fep \ {0} is p−1
e . Therefore:

Pr
t,R,S

[Bt] =
1

e
Pr
t,R,S

[
Bt | t ∈ Fdp

]
+

(
1− 1

e

)
Pr
t,R,S

[
Bt | t 6∈ Fdp

]

=
1

e
Pr
t,R,S

[
BdS(t) | t ∈ Fep

]
+

(
1− 1

e

)
· 1

2

≥ 1

e

(
1

2
+ ε

)
+

(
1− 1

e

)
· 1

2
=

1

2
+
ε

e
≥ 1

2
+
ε

d

and hence the claim holds in this case as well.
We see that an oracle for L(d) with advantage ε immediately gives rise to an

oracle for L with advantage ε/d. Hence, we can use the ACGS algorithm to find
the list of solutions to the given HNP-CMd problem. When the ACGS algorithm
runs we build the functions R and S as they are needed to respond to ACGS’s
queries to L. The ACGS algorithm will produce a super set of the solution set
to the list-HNP-CMd within the required time bound. Note that we may need to
prune some of the solutions produced by the ACGS algorithm: we only output
the α’s for which the condition (4) holds. ¤

6 Proof of Main Results

We are now ready to prove Theorem 1. The proof reduces the problem of com-
puting the Diffie–Hellman function to the Hidden Number Problem described in
Section 5. We also use the following two simple lemmas. For a curve E/Fp and
G ∈ E of order q define:

FE,G,λ(B) = Pr
a,b

[B(φλ(E), φλ(G), φλ(aG), φλ(bG)) = LSB(xλ)]

where φλ(abG) = (xλ, yλ) ∈ φλ(E) and a, b are uniform in [1, q − 1]. Note that
the probability space includes the random bits used by B.

Lemma 1. Let p be a prime, and let E be an elliptic curve over Fp. Let G ∈ E.

Suppose there is a t-time algorithm A such that AdvXφλ(E),φλ(G)(A) > ε for at
least a δ-fraction of the λ ∈ F∗p.
Then, given ε, δ, there is a t′-time algorithm B such that:

(1) for at least a δ-fraction of the λ ∈ F∗p we have that: FE,G,λ(B) > 1
2 + ε/2,

and

(2) for the remaining λ ∈ F∗p we have that: FE,G,λ(B) > 1
2 − εδ

4
Furthermore, t′ = t · T (1/εδ) for some fixed polynomial T independent of p,E.

Proof. On input 〈E, G, P,Q〉 algorithm B works as follows:
1. Pick u = (4/εδ)3 random a, b ∈ [1, q − 1] pairs and run A on all tuples
〈E, G, aG, bG〉.



               

2. let v be the number of runs in which A correctly outputs LSB((abG)x).

3. if v > u/2 then B outputs A(E, G, P,Q), otherwise B output the comple-
ment of A(E, G, P,Q).
Let τ ≥ εδ/4. For all λ ∈ F∗p for which AdvXφλ(E),φλ(G)(A) > τ we have that B

satisfies: FE,G,λ(B) > 1
2 +τ/2. This follows directly from Chebychev’s inequality.

For all other λ’s, by definition of Adv(A) we have FE,G,λ(B) > 1
2 − εδ/4. Hence,

both conditions 1 and 2 are satisfied. ¤

Lemma 2. Let B be an algorithm satisfying the two conditions of Lemma 1.
Then

Pr
λ∈F∗p

[B(φλ(E), φλ(G), φλ(aG), φλ(bG)) = LSB(xλ)] ≥ 1

2
+
εδ

4

holds with probability at least εδ
8 over the choice of a, b ∈ [1, q − 1], where

φλ(abG) = (xλ, yλ).

Proof. The proof uses a standard counting argument. Algorithm B induces a
matrix M whose entries are real numbers in [0, 1]. There is a column in M for
every λ ∈ F∗p and a row for every (a, b) ∈ [1, q−1]2. The entry at the λ’th column
and (a, b)’th row is simply

Pr [B(φλ(E), φλ(G), φλ(aG), φλ(bG)) = LSB(xλ)] .

The probability is over the random bits used by B. Suppose the matrix M has
n columns and m rows. Since B satisfies the two condition of Lemma 1 we know
that the sum of all the entries in M , which we call the weight of M denote by
weight(M) is at least

weight(M) > nm

[
δ

(
1

2
+
ε

2

)
+ (1− δ)

(
1

2
− εδ

4

)]
> nm

(
1

2
+
δε

4

)
.

Let R be the number of the rows in M must have weight at least n[ 1
2 + εδ

8 ] (the
weight of a row is the sum of the entries in that row). We have

Rn+ (m−R)n

[
1

2
+
εδ

8

]
≥ weight(M) > nm

(
1

2
+
δε

4

)
.

Therefore

R

[
1

2
− εδ

8

]
>
εδ

8
m.

The result now follows. ¤

We also need to review a theorem due to Shoup (Theorem 7 of [21]). The
theorem shows that an algorithm that outputs a list of candidates for the Diffie-
Hellman function can be easily converted into an algorithm that computes the
Diffie-Hellman function. For concreteness we state the theorem as it applies to
elliptic curves over Fp.



            

Theorem 4 (Shoup). Let E be an elliptic curve over Fp and let G ∈ E be
an element of prime order q. Suppose there is a t-time algorithm A that given
aG, bG ∈ E outputs a set of size m satisfying DHE,G(aG, bG) ∈ A(E, G, aG, bG)
with probability at least 7/8. Then there is an algorithm B that computes the
Diffie-Hellman function in E in time t′ = t(log p) + T (m, log p). Here T is a
fixed polynomial independent of p and E.

Proof of Theorem 1: Let E be a curve over Fp and G ∈ E of prime order q.

Suppose there is an expected t-time algorithm A such that AdvXφλ(E),φλ(G)(A) >
ε for at least a δ-fraction of the λ ∈ F∗p. We show how to compute the Diffie–
Hellman function DHE,G.

We are given A = aG and B = bG in E. We wish to compute the point
C = abG ∈ E. We first randomize the problem by computing A′ = a0A and
B′ = b0B for random a0, b0 ∈ [1, q − 1]. If C ′ = DHE,G(A′, B′) then C = c0C

′

where c0 ≡ (a0b0)−1 mod q. Hence, it suffices to find C ′. Write C ′ = (x0, y0).
Since φλ : E→ φλ(E) is an isomorphism it follows that

DHφλ(E),φλ(G)(φλ(A′), φλ(B′)) = φλ(C ′) = (λ2x0, λ
3y0).

Since A′, B′ are uniformly distributed in the group generated by G (excluding O)
we can apply both Lemma 1 and Lemma 2 to obtain an algorithm B satisfying:

Pr
λ

[B(φλ(E), φλ(G), φλ(A′), φλ(B′)) = LSB(λ2x0)] >
1

2
+
εδ

8
(5)

is true with probability at least εδ/8 over the choice of a0, b0 in [1, q − 1].
For now we assume that (5) holds. We obtain an HNP-CM2 problem where

x0 is the hidden number. To see this, define:

L(2)(λ) = A(φλ(E), φλ(G), φλ(A′), φλ(B′)).

Then the condition 5 implies that Prλ[L(2)(λ) = LSB(λ2x0)] > 1
2 + εδ

8 . We can
therefore use the algorithm of Theorem 3 to find a list of candidates x1, . . . , xn ∈
Fp containing the desired x0.

To ensure that condition (5) holds, we repeat this process d8/εδe times and
build a list of candidates of size O(n/δε). Then condition (5) holds with con-
stant probability during one of these iterations. Therefore, the list of candidates
contains the correct x0 with constant probability. By solving for y we obtain a
list of candidates for C ′. That is, we obtain a set S′ such that C ′ ∈ S′ ⊆ E.
This list S′ can be easily converted to a list of candidates S for C by setting
S = {c0P | P ∈ S′}.

Therefore, we just constructed a polynomial time algorithm (in log p and
1
εδ ) that for any aG, bG ∈ E outputs a polynomial size list containing C with
constant probability. Using Theorem 4 this algorithm gives an algorithm for
computing the Diffie-Hellman function in E in the required time bound.

To complete the proof of the theorem we also need to consider an algorithm
predicting the LSB of the y-coordinates. That is, suppose there is an expected



                 

t-time algorithm A such that AdvYφλ(E),φλ(G)(A) > ε for a δ-fraction of λ ∈ F∗p.
We show how to compute the Diffie–Hellman function DHE,G. The proof in this
case is very similar to the proof for the x-coordinate. The only difference is that
since we are using the Y coordinate we obtain an HNP-CM3 problem. We use
Lemma 1 and Lemma 2 to obtain an HNP-CM3 oracle with advantage εδ/8 in
predicting LSB(λ3y0). The theorem now follows from the algorithm for HNP-CM3

given in Theorem 3.
¤

7 Conclusions

We have showed that no algorithm can predict the LSB of the X and Y coor-
dinates of the elliptic curve Diffie–Hellman secret for a non-negligible fraction
of the curves in {φλ(E0)}λ∈F∗p , assuming the Diffie–Hellman problem is hard
on some curve E0 ∈ {φλ(E0)}λ∈F∗p . Our proofs use reductions between many
curves by randomly twisting the curve E0. We hope these techniques will even-
tually lead to a proof that if CDH is hard on a certain curve E then the LSB of
Diffie-Hellman is a hard core predicate on that curve.
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