
An Identity Escrow Scheme with Appointed

Verifiers

Jan Camenisch

IBM Research
Zurich Research Laboratory

CH–8803 Rüschlikon
jca@zurich.ibm.com

Anna Lysyanskaya

MIT LCS
545 Technology Square

Cambridge, MA 02139 USA
anna@theory.lcs.mit.edu

Abstract. An identity escrow scheme allows a member of a group to
prove membership in this group without revealing any extra information.
At the same time, in case of abuse, his identity can still be discovered.
Such a scheme allows anonymous access control. In this paper, we put
forward the notion of an identity escrow scheme with appointed verifiers.
Such a scheme allows the user to only convince an appointed verifier (or
several appointed verifiers) of his membership; but no unauthorized veri-
fier can verify a user’s group membership even if the user fully cooperates,
unless the user is completely under his control. We provide a formal defi-
nition of this new notion and give an efficient construction of an identity
escrow scheme with appointed verifiers provably secure under common
number-theoretic assumptions in the public-key model.

Keywords. Identity escrow, group signatures, privacy protection, formal
model for group signatures.

1 Introduction

As digital communication becomes the preferred means of information exchange,
it becomes ever easier for those of questionable motivation to mine the accumu-
lated data. Under these circumstances, both the importance and the challenge
of protecting the privacy of individuals grow considerably. A number of crypto-
graphic protocols that limit the information dispersed from accumulated data
have been proposed. These are, for instance, anonymous voting protocols [5, 30],
anonymous payment schemes [6, 18], and credential systems [9, 16]. All these sys-
tems follow the principle of data minimization, i.e., a participant in the system
can only learn as much information about the other participants as is necessary
for the system to function properly.

In this context, group signatures [2, 12, 19] are an important building block.
They allow a member of some group to sign anonymously on the group’s behalf.
Thus, a party receiving a signature can be sure that its originator is a member
of the group, but receives no other information. However, in exceptional cases
such as when the anonymity is misused and a legal dispute arises, a designated
revocation manager has the power to reveal the unambiguous identity of the
originator of the signature. At the same time, no one can misattribute a valid
group signature. A concept dual to group signature schemes is that of identity

escrow [32] schemes. They can be seen as group-member identification schemes
with revocable anonymity. In fact, any group signature scheme can be turned
into an identity escrow scheme and vice versa.

Group signatures can, for instance, be used by the purchasing department of
a company to hide the internal structure of this department. All members of the
department form a group, and sign all purchasing orders using group signatures.
In case one day a sports car gets delivered instead of pencils, the department
manager will be able to identify the culprit. Recently, group signature schemes
were used to realize an anonymous credential system [9]. Here, being a member
of some particular group meant possessing a particular credential. Hence, own-
ership of a credential can be proved anonymously. Other applications include
bidding [20], electronic cash [33], and anonymous fingerprinting [7].

Group signature/identity escrow schemes with appointed verifiers, as pro-
posed in this paper, go a step further: here a group member can prove his mem-
bership only to an appointed verifier but not to anyone else. There can be several
different appointed verifiers for each member. This property of not being able to
convince non-appointed parties is similar to receipt-freeness in electronic voting
schemes, where a voter must not be able to prove to anyone how she voted, which
is required to hinder vote-buying. We stress that this is different from the situ-
ation with so-called confirmer signatures [17] or designated-verifier proofs [31],
where although signatures (resp., proofs) can only be verified by a designated
party, the signer (resp., prover) would have the power to issue a signature (resp.,
proof) that is universally verifiable.

Appointed verifiers are useful for many applications of group signature and
identity escrow schemes. As an example, consider a bank that issues a credential
stating that the customer is eligible for a small business loan. The bank might
want to have a guarantee that the customer cannot use this credential in order
to obtain a better loan from a competing bank; or to use the loan money for
something other than the business for which it was granted. Or, consider the
purchasing department scenario outlined above. Naturally, different members of
the department are authorized to conduct different kinds of transactions. Using a
group signature scheme with appointed verifiers allows the department manager
to ensure that employees can only order from the companies they are authorized.
Finally, consider their use in a credential scheme. It is natural that for some types
of credentials the user should not be able to show them to anyone except the
intended verifier. This can be useful in preventing abuse of credentials as well as
in controlling who can get to know to whom the credentials were issued.

Let us loosely outline how our identity escrow (group signature) scheme with
appointed verifiers is constructed. To this end we first explain how efficient and
provably secure group signature schemes [2, 12] are realized. The public key of
the group can be viewed as a public key of a suitable signature scheme. The
group manager holds the secret key corresponding to this public key. To become
a group member, a user chooses, as membership secret key, an element of a
certain (algebraic) group. The user’s identifier is computed as a one-way function
of this key, for example through exponentiation in a group where computing the

discrete logarithm is conjectured to be hard. The group manager signs (certifies)
this identifier and sends back the signature to the new group member. This
signature is the user’s group membership certificate. To convince a verifier of her
group membership, a user proves in zero-knowledge that she knows a membership
certificate and the corresponding membership secret key. In case of a group
signature scheme, this proof is turned into a signature scheme using the so-
called Fiat-Shamir heuristic [26]. An identity escrow scheme constructed in this
way is provably secure as long as the underlying signature scheme is secure. The
corresponding group signature scheme is provably secure in the random oracle
model. The challenge in designing an efficient identity escrow or group signature
scheme is finding a signature scheme for the group manager and a format for
membership secret keys and corresponding identifiers such that the proof of
membership is efficient.

To extend such a scheme to an identity escrow system with appointed ver-
ifiers, we will have the group manager split the group membership certificate
into two pieces. The first piece will be handed over to the user. The second piece
will be encrypted under the appointed verifier’s public key. It will be easy to
fake a tuple that looks like the first piece of the membership certificate and the
encryption of the second piece. Only the appointed verifier, under whose public
key the encryption is carried out, will be able to verify that a given ciphertext
corresponds to the second piece of a user’s certificate. Together, the two pieces
constitute an unforgeable group membership certificate. To prove group mem-
bership to the appointed verifier, the user could prove possession of his piece of
the membership certificate as before, and then give the verifier a blinded version
of the encrypted piece.

An adversary in this system can try to induce some verifier to accept an
invalid user; or he can try to make it look as though some honest user participated
in a shady transaction; or he can conduct a shady transaction and then try to
avoid anonymity revocation; or he can try to convince another adversary, who is
not an authorized verifier, that some user is a group member. We provide a formal
definition of security against such attacks. For the first time, a formal model for
identity escrow schemes along the lines of an ideal world specification, is given.
These new identity escrow/group signature specifications are more rigorous than
the ones that exist to date. As they are similar to the definitions from the
multi-party computation literature [13, 14, 37], they integrate with this literature
better than previous specifications did, and so such properties as composability
of protocols can be better understood in this framework (but we do not address
them here). Finally, we formally define the appointed-verifier property, i.e., the
property that no proof system (A,B) exists in which A is a group member, B is
not the appointed verifier, and yet A acts as a prover and B as a verifier for the
statement that A is a group member, and the gap between the completeness and
soundness of the system is non-negligible. Cryptographic problems of this flavor
have not been sufficiently explored. While receipt-free voting is a relatively well-
studied example [5, 30], no formal definition of receipt-freeness has been given,
and it is not well understood what gap between completeness and soundness for

the adversary-verifier in receipt-free voting is satisfactory. Thus, we are the first
to explore this in a formal way and to obtain a scheme that satisfies our strong
and relatively natural definition.

We prove that, under the strong RSA assumption, the decisional compos-
ite residuosity assumption, and the decisional Diffie-Hellman assumptions, our
scheme is secure and has the appointed verifier property.

2 The Model

In this section, we define an ideal identity escrow scheme with appointed ver-
ifiers. Here, an ideal trusted third party takes care of the proper functionality
of the system. Our model captures all the properties of previous ones (without
appointed verifiers) in a natural way. We then define what it means for a real
system to match this specification. We define the system with one group and one
revocation manager; extending it to multiple ones is straightforward. Extending
the model to group signatures can be done as well.

The Ideal System. The ideal system, the functionality of which is ensured by
an ideal trusted party T , is as follows:
Ideal parties: The trusted party T , the group manager M , a set of users U , a set
of verifiers V, and the anonymity revocation manager R.
Ideal communication: All communication is routed through T . If the sender of
a message wishes to be anonymous, he requests that T not reveal his identity
to the recipient. Finally, a sender of a message may request that a session, i.e.,
a block of messages, be established between him and the recipient. This session
then gets a session id sid.
Ideal operations for a general identity escrow scheme:

Join.This operation is a session between a user U and the group manager M .
M tells T that it wants user U to become a member of the group. The user
confirms that he wants to be a member. Upon receiving this messages from
M and U , T sends a key KU to U for further transactions related to his group
membership; he also notifies M of the success of the transaction.

Authenticate.This operation is a session between a user and a verifier V . The
user must send a tuple (K,sid,V ,con) to T , whereK denotes a key, sid denotes
a session id, V is the name of the verifier, and con is the condition under which
the identity of the participating user can be established. T verifies that K
is a key that corresponds to some group member (not necessarily the user
from whom the request originates). If so, T tells the verifier V that the user
with whom the verifier has session sid running is a member of the group. V
then either accepts or rejects, and forwards his reply to T . (If T receives no
reply that is equivalent to rejecting.) T then notifies the user of the verifier’s
output.

Identify.This operation is a session between the revocation manager R and the
verifier V . V submits a tuple (sid, con) to T and to R. R asks T to confirm

that sid was an Authenticate operation with revocation condition con. Then
R may ask T to reveal to R the identity of the user who participated in session
sid. Finally, R may ask T to reveal the user’s identity to V .

Ideal operations for an appointed-verifier identity escrow scheme:

Join with appointed verifier.This operation is a session between a user U and
the group manager M . As a result, M tells T that user U ’s membership can
be confirmed to verifier V . The user receives a key KU from T for further
transactions related to authenticating his group membership to V .

Authenticate to appointed verifier.This is the same as in the general scheme,
except that T will only carry this out with the appointed verifier V .

Convert.This operation is between a user and the appointed verifier V . V tells
T that the user is now authorized to demonstrate group membership to other
verifiers. T notifies the user of that fact.

Authenticate.This is the same as in the general scheme, except that T will only
carry this out if the user is authorized to demonstrate group membership to
all verifiers.

Identify.This is the same as in the general scheme.

Inputs and outputs of the ideal players: The ideal players are interactive prob-
abilistic Turing machines. Prior to initiating a transaction, a player receives an
input that tells it to do so. These inputs are produced externally. At the end of
the lifetime of the system, each player outputs a list of interactions in which this
player has participated and their outcome (success/failure).

The Real System. We make the following assumptions on the communication
in the real-system: We are in the public-key model, i.e., each user has carried
out a proof of knowledge of his secret key at the beginning of the lifetime of the
system. It is possible to establish a session between an anonymous user and a
verifier (in practice, this can be achieved by a so-called mix-network [15] or by
onion-routing protocols [29]. The information transmitted over a channel cannot
later be retrieved by some physical means (i.e., it does not stick around in routers
and caches). This is necessary to make sure that one cannot demonstrate that
one sent or received a given message. This can also be achieved in conjunction
with the methods to get anonymous communication, e.g., by requiring the hosts
to delete all processed data. The real system is implemented by cryptographic
protocols.

Security vs. Appointed-Verifier Property. The usual way of defining se-
curity of a real system is to restrict the power of the real-world adversary to the
power of an adversary that controls the same set of players in the ideal system.
Security in this sense is exhibited by providing a simulator that translates the
real-world adversary into one in the ideal world. Here, in addition to providing
security in this sense, we have to also allow for the case where there are two
adversaries, such that one is trying to convince the other of his relationship with
other players. Therefore, two security properties must be satisfied.

Protecting the Honest Players. First, we have to guarantee simulator-based
security for the honest parties.

The ideal-world (resp., real-world) adversary is a probabilistic polynomial-
time Turing machine that can control some subset of ideal (resp., real) parties
and participate in transactions on their behalf. In addition, the adversary con-
trols the environment, i.e., he either explicitly gives input to other players as to
the transactions to be carried out, or he specifies the probability distribution on
these inputs.

At the end of the lifetime of the system, each player outputs the entire list
of interactions in which this player has participated and their outcome (suc-
cess/failure).

Let the ideal system be called IS, and its cryptographic implementation be
called CS. Let p = poly(k) be the number of players in the system with security
parameter k. Let Zi denote the output of the i-th player. In the real world, a
public-key infrastructure has been securely set up (i.e., each party has produced
a public key and proved knowledge of the corresponding secret key). Let P
denote its public information; let a denote the collection of dishonest players’
secret keys. (In case we are working in the absence of the public-key model,
these are empty strings.) An identity escrow scheme is secure if the adversary A
cannot distinguish whether he is interacting with the real-world honest players,
or if in fact the system is implemented in the ideal world (so all the honest
players are shielded because T protects them) and he is just interacting with a

simulator. More formally, with “D1(1
k)

c
≈ D2(1

k)” denoting the computational
indistinguishability of the distributions D1 and D2:

Definition 1 (Secure identity escrow scheme). CS is secure if there exists
a simulator S (ideal-world adversary) such that for all interactive probabilistic
polynomial-time real-world adversaries A, for all sufficiently large k, we have:

– In the IS, S controls the same set of players as A does in CS.
– The inputs given by S to the ideal-world players are identical to those given
by A to the real-world players.

– For all P ,

({ZCS
i (1k, P, si)}

p
i=1,A(1

k, P, a))
c
≈ ({ZIS

i (1
k, P, si)}

p
i=1,S

A(1k, P, a)) ,

where S is given black-box access to A.

Comparison with previous models. It is easy to see that this ideal model
captures the requirements correctness, anonymity, unlinkability, traceability, ex-
culpability/framing, and coalition-resistance of previous models (e.g., [2]), i.e.,
that the trusted party T ensures them.

No Benefits for Dishonest Players that Mistrust Each Other. Infor-
mally, an identity escrow scheme is appointed-verifier if only the appointed ver-
ifier can be persuaded that a user is a member of the group. A formal definition

is more complex. Formally, we have two adversaries, A and B, and A tries to
convince B that some player A it controls is a group member, even though B
does not control the appointed verifier V . The appointed verifier property of the
scheme makes it impossible for any proof system (A,B), where A acts as prover
and B as verifier, to have a non-negligible gap between the completeness and the
soundness of the system. However, in defining this property, we have to take into
account that (1) B can apply to V to tell him whether a given user is a group
member; and (2) B can become convinced of the truth of the statement by means
that are independent on the system’s implementation: for example, if A is the
only user in the system, and V flashes a green light every time it recognizes a
group member. Thus, a formalization of the appointed verifier property is bound
to be technically involved.

The approach we will take to defining it is as follows: we will require that
for any A, there exists an efficient D such that whenever A can convince B
that A has group membership with appointed verifier V , D can convince B of
the same statement without access to group manager’s M ’s messages pertaining
to the corresponding Join operation. We will call D the deceiver, because it
can deceive any verifier B. However, D is not responsible if B has other ways,
implementation-independent, of getting convinced. That is why, in the definition,
we need an additional efficient machine, F , called the filter, which sets up the
relevant group membership on behalf of A, but shields D from this information.
F guarantees that group managerM and verifier V have the same view whether
A has a valid membership certificate or one faked by D. Intuitively, if B cannot
distinguish whether he is talking to A, or to the deceiver D, but can still tell
whether or not A is a group member with appointed verifier V , then B’s way
of telling is implementation-independent, and arises from the way other parties,
such as M and V , behave. We now proceed to formalize this idea.

Let A and B be the two adversaries, modeled by probabilistic polynomial-
time interactive Turing machines. Let ES denote an event sequence in the cryp-
tographic identity escrow scheme. We write CES for a machine C to denote the
fact that these events may be scheduled one-by-one, maybe even by an adversary.
Let P denote the public information of the public-key infrastructure. Let a de-
note the set of secret keys of the players controlled by A. Let a′ be an additional
input to A. By A ∈ A we denote that A is a player controlled by adversary A.
Let L ⊆ {(A, V) : A ∈ A, V /∈ A, V /∈ B} be a list of user-verifier pairs that is
given as a challenge to B. We say that such a list L is good for ES, A and B, if
in the sequence of events specified by ES, for all (A, V) ∈ L, V never performs
the Convert and Identify operations for A and B and V have not engaged in the
Authenticate with appointed verifier protocol in which V accepted such that a
subsequent Identify operation, if carried out, will point to A.

Let FES(1k, P, L, a,mode), DA,F (1k, P, L, a,mode) be interactive Turing ma-
chines. The mode part of their input specifies their behavior as follows: There
are two modes of operation, the real mode and the fake mode. In the real mode,
F passes the messages received from ES on to D, which in turn passes them on
to A. If A sends any messages to B, D faithfully passes them.

In the fake mode F behaves as follows: If a session sid is a Join with appointed
verifier of user A ∈ A for verifier V , where (A, V) ∈ L, then F does not pass
A’s messages for sid to M , and does not forward M ’s replies to A for this
sid. Instead, F carries out the Join operation himself, on behalf of A, possibly
guided by additional input from D. It then notifies D whether this Join was
successful. If a session sid is an Authenticate to appointed verifier between A
and V such that (A, V) ∈ L and the corresponding Join has taken place, then F
does not pass A’s messages for sid to V , and does not forward V ’s replies to D
for this sid. Instead, F carries out the Authenticate operation himself, on behalf
of A, possibly guided by additional input from D. It then notifies D whether this
Authenticate was successful. For all other sessions, F just passes all the messages
to and from D.

In the fake mode, D behaves as follows: For a session sid of Join with ap-
pointed verifier for user A and verifier V where (A, V) ∈ L, D will create fake
messages and send them to A in place of the group manager’s messages. For
a session sid of Authenticate to appointed verifier D will decide whether this
session is between user A and verifier V , (A, V) ∈ L. In case it is, D notifies F ,
and possibly sends it additional information. D will then create messages to A
in place of V ’s responses. For all other sessions, D passes all the messages to and
from A.

We stress that D does not have the ability to reset B.

Definition 2 (Appointed verifier property). An identity escrow scheme has
the appointed-verifier property if there exist polynomial-time algorithms D, F
as described above, such that for all probabilistic polynomial-time (in their first
input) adversaries A,B, for all P , a′, b, for all sequences of events in the system
ES, and for all good lists L,

DA(1k,P,a,a′),FES,BES(1k,b)(1k,P,L,a,real)(1k, P, L, a, real)
c
≈

DA(1k,P,a,a′),FES,BES(1k,b)(1k,P,L,a,fake)(1k, P, L, a, fake)

3 High-Level Presentation of our Construction

First, a public-key infrastructure is set up in which each user has a secret key
x and, based on this secret, an identifier h̃x, where h̃ is a generator of some
group G. Other players in the system have their public keys set up as follows:
The group manager’s public key is a modulus n = pq such that p = 2p′ + 1 and
q = 2q′+1, and p,q, p′ and q′ are all prime numbers, and five quadratic residues
modulo n, denoted (a0, a1, a2, a3, a4). (The length of n depends on the size of
the group G.) Each verifier has a public key for the Paillier cryptosystem. A
revocation manager R for this scheme will have a Cramer-Shoup public key in
G. The specifics of how these keys are set up are described in Section 5.1.

For a user with secret key x, a group membership certificate for an appointed
verifier V , will be a quin-tuple (s, Z, c, u, e) such that each of these values lies in
the correct integer interval, u2e = (a0a

s
1a
x
2Za

c
4)

2 holds, and c is the encryption

of the value loga3
Z mod n under V ’s public key. We show that such a certifi-

cate is hard to forge under the strong RSA assumption [3, 11, 23, 27, 28] and the
assumption that computing discrete logarithms modulo a modulus of this form
is hard. On the other hand, if c is not an encryption of loga3

Z mod n, then this
certificate is easy to forge (Lemma 3). As V is the only entity that can check this,
under the assumption that the Paillier cryptosystem is semantically secure, this
is the first key step towards obtaining the appointed verifier property (the other
key step is discussed at the end of this section). The fact that c is included in the
certificate implies security for the verifier against adaptive attacks even though
the Paillier encryption scheme as such is not secure against these attacks1. This
membership certificate is issued via a protocol (between the user and the group
manager), that does not allow the group manager to learn x and s, but only h̃x

and as1a
x
2 mod n. This protocol is described in detail in Section 5.2.

To prove group membership to V , the user blinds c to obtain c′, and blinds
Z to obtain Z ′ in such a way that, if c is the encryption of loga3

Z, then c′ is
the encryption of loga3

Z ′. This is why we use the Paillier cryptosystem: the
additive homomorphism property of the Paillier scheme is crucial for this step.
c′ and Z ′ are given to the verifier. Further, the user proves knowledge of a tuple
(x, s, c, Z, u, e, r) such that (s, Z, c, u, e) is a group membership tuple for key x,
and r is the randomizer used to blind (c, Z) to obtain (c′, Z ′). In addition, to
enable anonymity revocation, the user provides an encryption E of his identifier
h̃x under the anonymity revocation manager’s public key and proves that E is
a valid encryption of an identifier that is based on the same x as the group
membership certificate. These proofs are done using efficient statistical zero-
knowledge discrete-logarithm-based proofs of knowledge. The fact that these
proofs are zero-knowledge and that the user blinds c and Z give us anonymity
for the user. These proofs are described in detail in Section 5.3. Finally, the
verifier checks that (1) c′ is an encryption of loga3

Z ′, and (2) the user carried
out the proofs correctly. If so, the verifier accepts.

To convert an appointed-verifier membership certificate into a universally
verifiable membership certificate, the appointed verifier reveals loga3 Z ′ to the
user. Under the strong RSA assumption and the hardness of discrete logarithms
modulo n, the resulting tuple, (x, s, z, c, u, e) is hard to forge (cf. full version of
this paper [10]).

Let us finally discuss the second key element to achieve the appointed verifier
property: requiring a user to verifiably encrypt, under her own public key, some
of the secrets she uses in the Authenticate to appointed verifier protocol. This is
necessary as, in essence, the definition for this property requires that no matter
how adversary A behaves, and no matter how often and when A and B exchange
messages, there is nothing A can convince B of that D (in fake mode) would
not be able to convince him of either. Running in fake mode requires D to

1 This step resolves the following paradox: On the one hand, we want the encryption
scheme to be malleable, so that the user can successfully blind the ciphertext c. On
the other hand, we want it to be secure against adaptive attacks by malicious users.
Thus c is created by the group manager.

know a great deal about the internal information of A. Traditionally, this would
be realized by allowing D black-box access to A and the ability to rewind it.
However, as we allow message exchanges between A and B at arbitrary times,
arbitrarily interleaved with other executions, this is not possible as it would
require D to have black-box access to other players as well (in particular those
controlled by B). Thus, D must somehow contain a knowledge extractor that
does not rewind A. D will instead extract what it needs to know from the
verifiably encrypted secrets. Thus, we need the public-key model: in this model,
A and, as a consequence, D, will receive as input the secret keys of all the players
controlled by A.

4 Preliminaries

4.1 Proof Protocols and Corresponding Notation

We use notation introduced by Camenisch and Stadler [12] for the various proofs
of knowledge of discrete logarithms and proofs of the validity of statements about
discrete logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that
y = gαhβ and ỹ = g̃αh̃γ holds, where v < α < u,” where y, g, h, ỹ, g̃, and h̃ are
elements of some groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. By convention, the
Greek letters denote quantities the knowledge of which is being proved, while all
other parameters are known to the verifier. Using this notation, a proof-protocol
can be described by just pointing out its aim while hiding all details.

It is important that we use protocols that are concurrent zero-knowledge.
They are characterized by remaining zero-knowledge even if several instances of
the same protocol are run arbitrarily interleaved [24, 25]. Damg̊ard [24] shows
that so-called Σ-protocols (this includes all the PK ’s discussed above) can easily
be made concurrent zero-knowledge in many practical scenarios, including the
public-key model. We assume throughout that the latter technique is used with
all PK ’s.

4.2 Proving that a Commitment Contains a Paillier Encryption

Our scheme requires a proof that some value e is a Paillier encryption [34, 35] of
a value x that the prover knows, under a given Paillier public key (g, n), and a
similar proof where the ciphertext e is not given as input to the verifier; instead
only a Pedersen commitment [36] to ciphertext e is given. Protocols for carrying
out the former proof have been realized [21]. The latter proof is, to the best of
our knowledge, not found in the literature and is constructed as follows:

Let (g, n) be the public key of Paillier’s encryption scheme. Assume that we

are given a group Ĝ = 〈ĝ〉 = 〈ĥ〉 of order n2. Let E be the commitment to a

ciphertext, i.e., E = ĝeĥz where e = gxrn mod n2. Using the protocol denoted

PK{(α, β, γ) : E = ĝg
αβn ĥγ} the prover can convince the verifier that E is a

commitment to a Paillier encryption of some value she knows. The protocol is
as follows.

1. The prover chooses r1 ∈R Zn and r2, r3 ∈R Zn2 , computes t = ĝg
r1rn2 ĥr3 and

sends t to the verifier.
2. The verifier chooses a c ∈R {0, 1} and sends c to the prover.
3. The prover computes s = r1 − cx mod n, u = r2/r

c mod n2, and v =
r3 − czg

sun mod n2 and sends s and u to the verifier.
4. The verifier checks whether t = ĝg

sun ĥv if c = 0 and whether t = Eg
sun ĥv

otherwise.

It is easy to see that the proof is correct and honest-verifier zero-knowledge proof
of knowledge.

4.3 Verifiable Encryption

Verifiable encryption [1, 8], is a protocol between a prover and a verifier such that
as a result of the protocol, on input public key E, and value v, the verifier obtains
an encryption e of some value s under E such that (w, y) ∈ R. For instance, R
could be the relation (w, gw) ⊂ Zq ×G. Generalizing the protocol of Asokan et
al. [1], Camenisch and Damg̊ard [8] provide a verifiable encryption scheme for
a class of relations that, in particular, includes all discrete-logarithm relations
that are of relevance in this paper. We denote verifiable encryption similarly
as the PK ’s, e.g., e := VE(ElGamal, (u, v)){ξ : y = gξ} denotes the verifiable
encryption protocol for the ElGamal scheme, whereby logg y is encrypted in e
under public key (u, v). Note that e is not a single encryption, but the verifier’s
entire transcript of the protocol and contains several encryptions, commitments
and responses of the underlying PK.

5 An Identity Escrow Scheme with Appointed Verifiers

5.1 Key and System Setup

Our protocols are realized in the public-key model, thus the initial setup is the
public-key infrastructure in which each user has a public key and has proved
knowledge of the secret key to some entity, say the CA. Specifically, some group
G̃ = 〈g̃〉 = 〈h̃〉 of prime order q̃, such that logg̃ h̃ is unknown. Also, each user

has a secret key an x ∈R Zq, and a corresponding public key S̃U = h̃x. The user

has submitted this S̃U to the CA of this public-key infrastructure and and has
executed PK{(α) : S̃U = h̃α} with the CA. The CA sends the user a signature
on S̃U and publishes S̃U and the user’s name.

In addition, to get security in case the protocols are executed concurrently,
we assume that all zero-knowledge proofs (PK) are carried out using the con-
struction due to Damg̊ard [24]. This requires to initially set up public keys for a
trapdoor commitment scheme.

Other security-related system parameters are as follows: the length `n of the
RSA modulus of the group manager, integer intervals Γ =] − 2`Γ , 2`Γ [, ∆ =
]− 2`∆ , 2`∆ [, Λ =]2`Λ , 2`Λ+`Σ [such that q̃ < 2`Γ , `∆ = ε(4`n+3) and `Γ = 2`n,
where ε > 1 is a security parameter, and `Λ > `Σ+`∆+4 . Furthermore, let `v be
the length of the RSA modulus of the verifier for Paillier’s encryption scheme [35].
We require that 2`v < `Γ holds. There further are `z and `r with `z > ε`r + 1
and `z + ε`r + 1 < `v. Define the integer intervals Ω =]2`z − 2`r , 2`z + 2`r ,
Φ =]− 2ε`r , 2ε`r [, and Ω′ =]2`z − 2ε`r+1, 2`z + 2ε`r+1[(`r must be large enough
to make computing an `r-bit discrete logarithm modulo an `n-bit RSA modulus
hard, where the modulus is the product of two safe primes.)

The public key of the group manager consists of an `n-bit RSA modulus
n = pq = (2p′ + 1)(2q′ + 1) that is the product of two safe primes, and random
elements a4, a3, a2, a1, a0, g, h ∈R QRn of maximal order. The factorization of n
is the group manager’s secret key. The revocation manager sets up his public
and secret key for the Cramer-Shoup encryption scheme [22] over G̃ (i.e., the
group that comes from the public-key infrastructure), i.e., x1, . . . , x5 ∈R Zq̃ are

the secret keys and (y1 := g̃x1 h̃x2 , y2 := g̃x3 h̃x4 , y3 := g̃x5) constitutes the public
key. The revocation manager also publishes a collision-resistant hash function
H.

Each user also publishes an `n-bit RSA modulus nU that is the product of
two safe primes and two generators gU and hU of QRn.

Each appointed verifier chooses a public key (nv, gv) of the Paillier encryption
scheme, where nv is an `v bit RSA modulus and gv = 1 + nv (mod n

2
v). The

verifier also publishes Ĝ = 〈ĝ〉 = 〈ĥ〉 of order n2
v.

5.2 Joining with Appointed Verifier

In this protocol, aside from the public information, the user’s input will be a
secret key x ∈ Γ and her identifier S̃U and her output will be a membership
certificate tuple (s, Z, c, e, u) w.r.t. an appointed verifier V such that s ∈R ∆,
c is the encryption of z = loga3

Z mod n under V ’s Paillier public key, z ∈ Ω,
e ∈ Λ a prime, and ue = ac4Za

x
2a
s
1a0 mod n. The group manager’s input will be

his secret key and all the public information in the system. His output is the
user’s identifier S̃U = h̃x and also the values S = as1a

x
2 , z, c, e, u.

A secure two-party protocol that has this functionality is as follows:

1. User chooses a value s1 ∈R ∆. The integer s1 will be the user’s contribution
to s. rx, rs ∈R {0, 1}

2`n are also chosen. User sets C1 := gs1hrs mod n and
C2 := gxhrx mod n, sends C1, C2, S̃U , and the CA’s signature on S̃U to the
GM, and serves as the prover to verifier GM in

PK{(α, β, γ, δ) : C2
1 ≡ (g

2)α(h2)β ∧ C2
2 ≡ (g

2)γ(h2)δ ∧

S̃U = h̃γ ∧ α ∈ ∆ ∧ γ ∈ Γ} .

2. GM checks the CA’s signature on S̃U , chooses a random s2 ∈R ∆ and sends
s2 to U .

3. The user computes s = (s1 + s2 mod (2
`∆+1 − 1)) − 2`∆ + 1, (s is the sum

of s1 and s2, adjusted appropriately so as to fall in the interval ∆) and
s̃ =

⌊

s1+s2
2`∆+1−1

⌋

(s̃ is the value of the carry resulting from the computation of

s above). The user then sets S := as1a
x
2 and sends S to GM.

4. Now, the user must show that S was formed correctly. To that end, she
chooses rs̃ ∈R {0, 1}

`n , sets C3 := gs̃hrs̃ , sends C3 to GM, and executes

PK{(α, β, γ, δ, ε, ζ, ϑ, ξ) : C2
1 = (g

2)α(h2)β ∧ C2
3 = (g

2)ε(h2)ζ ∧

S2 = (a2
1)
ϑ(a2

2)
γ ∧ (C2

1 (g
2)(r−2`∆+1))/(C2

3)
(2`∆+1+1) = (g2)ϑ(h2)ξ ∧

S̃U = h̃γ ∧ γ ∈ Γ ∧ ϑ ∈ ∆}

as prover with the GM.
5. GM chooses z ∈R Ω, a prime e ∈R Λ, computes Z := az3 and u :=
(ac4a

z
3Sa0)

1/e (mod n), encrypts z under the public key of the appointed ver-
ifier, i.e., chooses a random r ∈R Znv and computes c := gzvr

nv (mod n2
v).

GM sends Z, u, e, and c to U .
6. User checks whether ue ≡ ac4Za

x
2a
s
1a0 (mod n), e ∈ Λ, and c ∈ Zn2

v
.

7. GM proves to the user that c indeed encrypts loga3
Z and that this value lies

in Ω. To this end GM chooses r̂ ∈R {0, 1}
`n , computes Ẑ := gzUh

r̂
U , sends Ẑ

to U and carries out the protocol

PK{(α, β, γ, δ) : S̃U = h̃γ ∨
(

c ≡ gαv β
n (modn2

v) ∧

Z2 ≡ (a2
3)
α (modn) ∧ Ẑ2 ≡ (g2

U)
α(h2

U)
δ (modnU) ∧ α ∈ Ω

)

}

as the prover with the user.
8. GM stores S, S̃U , u, e, c, z and the user’s name in its database.
9. GM and the user go home, listen to music, and have coffee, tea, and cake.

Remark: In step 7 the GM proves that it knows either the user’s secret x =
logh̃ S̃U or that c is an encryption of loga3

Z so as to leave no evidence to the
user that the protocol took place.

5.3 Authenticate to an Appointed Verifier

This is a protocol between a user and an appointed verifier. The user’s input
is the public information, the membership certificate issued as described above,
and a revocation condition con which specifies under which conditions the user’s
identity may be discovered. The verifier’s input, aside from the public informa-
tion, is his Paillier secret key. The verifier’s output is con, and an encryption
of the user’s identifier under the revocation manager’s public key with condi-
tion con. The verifier accepts if the user succeeds in proving knowledge of a
valid membership certificate, and in proving that this membership certificate
was issued to the user whose encrypted identifier is provided. The protocol is as
follows:

1. The user and the verifier agree on a revocation condition con.

2. The user first blinds the ciphertext c, i.e., chooses random r̃1 ∈R Φ and

r̃2 ∈R Znv and computes c̃ := cgr̃1v r̃
n2
v

2 (mod nv) and Z̃ := Zar̃13 (mod n),
then sends c̃ and Z̃ to the verifier.

3. The user computes a blinded public key for use with verifiable encryption,
i.e., she chooses a random w ∈R Zq̃, computes ũ := h̃w and ṽ := S̃wU (hence
ṽ = ũx), and sends ũ, ṽ to the verifier.

4. The user chooses r1, r2, r3 ∈R Zn2 and r̂ ∈R Zn2
v
and computes T1 = uhr1

mod n, T2 = gr1hr2 mod n, T3 = gr̃1hr3 mod n, and T̂ = ĝg
r̃1
v r̃nv2 ĥr̂. (T1

serves as a blinded u, and T2 is an additional commitment which will be used
to prove that T1 was formed correctly. T̂ and T3 are needed to show that
the ciphertext c was blinded in the same way as Z.) Then the user computes
the encryption E of his identifier under condition con, as follows: he chooses
r4 ∈R Zq and sets E := (E1, E2, E3, E4), where E1 := g̃r4 , E2 := h̃r4 ,

E3 := h̃xyr43 , E4 := yr41 y
r4H(E1‖E2‖E3‖con)
2 . The user sends (T1, T2, T3, T̂ , E)

to the verifier.
5. The user serves as prover to the verifier in

VE(ElGamal, (ũ, ṽ))
{

(%, ϑ, ς) : T̂ = ĝgv
ϑ%n ĥµ ∧ T 2

3 = (g
2)ϑ(h2)ς ∧ ϑ ∈ Φ

}

and in

PK
{

(α, β, γ, δ, ζ, ε, ϕ, ξ, ν, µ, ψ, ϑ, ς) : 1 = (T 2
2)
α
(1

g2

)ε(1

h2

)ψ
∧

a2
0Z̃

2 = (T 2
1)
α
(1

a2
1

)β(1

a2
2

)ν
(a2

3)
ϑ
(1

a2
4

)ϕ(1

h2

)ε
∧ T 2

2 = (g
2)δ(h2)ζ ∧

T 2
3 = (g

2)ϑ(h2)ς ∧ ĝc̃ = T̂ϕĥκ ∧ ṽ = ũν ∧ ũ = h̃γ ∧

E1 = g̃ξ ∧ E2 = h̃ξ ∧ E3 = h̃νyξ3 ∧ E4 = (y1y
H(E1‖E2‖E3‖con)
2)ξ ∧

α ∈ Λ ∧ β ∈ ∆ ∧ ν ∈ Γ ∧ ϑ ∈ Φ ∧ ϕ ∈ [1, n2
v − 1]

}

.

6. The verifier decrypts c̃ to get z̃ and checks whether Z̃ = az̃3 (mod n) and
whether z̃ ∈ Ω′.

Let us consider the efficiency of the above verifiable encryption protocol. Re-
call that verifiable encryption works by repeating the underlying PK sufficiently
many times, e.g., k = 80 times. Assuming that exponentiation with a 2`n-bit
modulus corresponds to about 8 exponentiations with an `n-bit modulus, the
total computational load of both the prover and the verifier for the verifiable
encryption protocol amounts to 17k exponentiations with an `n-bit modulus
and about 42 exponentiations with an `n-bit modulus for the PK. On the ver-
ifier’s side, this load can be considerably reduced by applying so-called batch
verification [4].

5.4 Convert and Authenticate

This paragraph briefly discusses how an appointed verifier can convert an ap-
pointed-verifier membership certificate into an ordinary membership certificate
and how a group member can then convince anyone of her group membership.

To convert a certificate, the user and the verifier first carry out the authenti-
cate with appointed verifier operation. If this operation is successful, the verifier
can provide the user with the decryption of c̃. This will allow the user to com-
pute the value z encrypted as c. Thus she holds values (x, s, z, c, u, e) such that
u2e = (ac4a

z
3a
x
2a
s
1a0)

2 mod n, i.e., a valid group membership certificate. Proving
possession of this certificate, i.e., authenticating as a group member to any ver-
ifier, can now be done similarly to the way it is done for an appointed verifier
above. The only difference is that there is no encryption c̃ and no commitments
T3 and T̂ , and hence the corresponding parts in the proof-protocol are dropped:
First, steps 2 and 5 are no longer needed; second, in step 4 the verifiable en-
cryption protocol is not needed and in the PK the first term of the expression

proved is replaced by a2
0 = (T

2
1)
α
(1

a2
1

)β(1

a2
2

)ν(1

a2
3

)ϑ(1

a2
4

)ϕ(1

h2

)ε
while the terms

T 2
3 = (g2)ϑ(h2)ς , ĝc̃ = T̂ϕĥκ, ṽ = ũν , and ũ = h̃γ are dropped. The fact that
the verifiable encryption protocol is no longer needed makes the whole protocol
much more efficient as it was the bulk of the computational load.

5.5 Anonymity Revocation

Upon a request E = (E1, E2, E3, E4) and con, the revocation manager checks

whether E4 = E
x1+x3H(E1‖E2‖E3‖con)
1 E

x2+x4H(E1‖E2‖E3‖con)
2 and whether the

revocation condition con is fulfilled. If these checks succeed, he returns Ŝ :=
E3/E

x5
1 . If E was produced in an Authenticate to an Appointed Verifier or an

Authenticate protocol, Ŝ will match the identifier S̃U of the user who took part
in the protocol.

5.6 Proof of Security and Appointed Verifier Property

We outline how security is proven and state the important theorems and lemmas.
For details and all the proofs we refer to the full version of this paper [10].

Protecting the Honest Players. Security for the honest players is proven by
providing a simulator that satisfies Definition 1. The simulator will create cryp-
tographic instantiations for the honest parties. For every transaction between
the adversary and an honest party, the simulator will execute its cryptographic
part on behalf of these honest parties. If the cryptographic implementation of
a protocol prescribes that a real-world honest player should behave in a way
that is different from the underlying ideal-world player, then the simulator re-
jects. (This can happen if an adversary succeeds in proving group membership
in such a way that the simulator is unable to extract a secret key to which a
membership certificate was issued in a previous transaction. As a result, an ideal
trusted party would tell the ideal verifier to reject the adversary’s user, while the
cryptographic implementation would dictate the real-world verifier to accept.)

This simulator is constructed [10] in the usual way, with the following sub-
tle difference: in the Authenticate protocol, when an honest user interacts with

a dishonest verifier, the simulator does not get to know which user it is and
hence does not know which user to simulate towards the the verifier. There are
two cases to consider here, one where the revocation manager is honest and one
where he is not. For brevity we will address only the former case here: The sim-
ulator forms a ciphertext E that is an encryption of 0 the revocation manager’s
public key. He then creates a random public key P = (ũ, ṽ) for the verifiable
encryption and chooses r̃1 ∈R Φ, r̃2 ∈R Znv , and T1,T2 and T̂ at random from
their corresponding domains. Then, the simulator sends (Z ′, c′, T1, T2, T̂ , E, P)
to the adversary and carries out the verifiable encryption protocol:

VE(ElGamal, (ũ, ṽ))
{

(%, ϑ, ς) : T̂ = ĝgv
ϑ%n ĥµ ∧ T 2

3 = (g
2)ϑ(h2)ς ∧ ϑ ∈ Φ

}

with the adversary and finally runs the simulator for the view of the verifier in
the group membership proof protocol described in Section 5.3.

The following lemma follows from the semantic security of the verifiable
encryption scheme, as well as from adaptive chosen-ciphertext security of the
encryption scheme under which the users’ identifiers are encrypted [10].

Lemma 1. Either the simulator produces a computationally indistinguishable
view, or it rejects. The computational indistinguishability is under the decisional
Diffie-Hellman assumption for the group over which the Cramer-Shoup encryp-
tion of the identifiers is done.

The only thing left to prove security is to show that the simulator almost
never rejects. We observe that the only case when the simulator rejects is when
the adversary demonstrates group membership for an unauthorized user-verifier
pair. We show [10] that if this simulator rejects non-negligibly often, then ei-
ther there exists a polynomial-time algorithm for forging membership certifi-
cates (thus violating the strong RSA assumption or the discrete logarithm as-
sumption), or there exists a polynomial-time algorithm for cracking the Paillier
cryptosystem, or there exists a way to circumvent the knowledge extractor for
one of the proofs of knowledge:

Lemma 2. Under the strong RSA assumption, the hardness of discrete loga-
rithms modulo a safe prime product, and the security of Paillier cryptosystem,
the simulator rejects with only negligible probability.

Putting everything together, we get:

Theorem 1. Under standard number-theoretic assumptions, the construction
presented in Section 5 is an identity escrow scheme with security guarantee for
honest users, as required by Definition 1.

Appointed Verifier Property. Given the public key (n, a0, a1, a2, a3, a4, g, h)
of the group manager, and public key (ñ, g̃) of the appointed verifier V , for any
given S, it is easy to create a tuple (Z, c, u, e) such that no one except V can
distinguish it from a valid membership certificate. Create such a tuple as follows

(call this procedure the forger): choose any r ∈R Zñ2 , set c := rñ mod ñ2 (c is
simply the encryption of 0 under the verifier’s public key), u ∈R QRn, e ∈R Λ,
and set Z := ue/ac4Sa0.

Lemma 3. Under the assumption that the Paillier cryptosystem is semantically
secure, for all x ∈ Γ , the tuple (s, Z, c, e, u) such that s ∈R ∆, and (Z, c, e, u) are
created by the forger above on input S = as1a

x
2 , is indistinguishable from a valid

membership certificate created by querying oracle O that, on input S, carries out
step 5 of the Join with appointed verifier protocol.

Proof. Let D1 be the distribution of fake certificates as above, and D2 be the
distribution of valid certificates. Suppose that a distinguisher existed. Then we
break the security of the Paillier cryptosystem as follows: we give the reduction
access to the secret keys of the group manager. The reduction chooses a random
z ∈ Ω and asks the encryption oracle to give it an encryption of either 0 or z. It is
easy to see that if the oracle returns an encryption of 0, then the resulting tuple
will be distributed according to D1, while if the oracle returns an encryption of
z, then the resulting tuple will be distributed according to D2. Thus we can use
the distinguisher for D1 and D2 to break the semantic security of the Paillier
cryptosystem. ut

Based on this way of forging a single membership certificate, we can now build
a deceiver D. In fake mode, on input a list L, D does not forward the messages
pertaining to Join with appointed verifier for user A and verifier V if (A, V) ∈ L.
Instead, he impersonates the group manager GM to A. D proceeds as follows: it
conducts steps 1 through 4 of the Join with appointed verifier protocol exactly
the same way as GM would to get an input S. Then it creates a fake certificate
(Z, c, e, u) using the forger described above. As the secret key x = logh̃ S̃U of
user A was given to D as input, D succeeds in carrying out the PK in step 7. It
then stores this certificate.

For (A, V) /∈ L, D forwards all the messages, and, in case of a successfully
carried out Join, stores the certificate.

When A engages in sid that is an Authenticate to appointed verifier with
some verifier V , D proceeds as follows (recall that verifiable encryption is by
itself a three-move proof of knowledge): it first receives, from A, all messages
up to step 5 and buffers them. Then, it receives the first message of the VE
protocol, and in particular the ciphertext c̃ and the value Z̃. By the properties
of VE, this first message contains an ElGamal encryption under (ṽ, ũ) of values
r̃1 and r̃2. It checks whether ṽ = ũx for some secret key x of a player A controls.
If this is not the case, then it knows that the verifier will reject anyway– so
it forwards the message to V . If it finds the right x, then it decrypts the first
message of the verifiable encryption and obtains r̃1 and r̃2. If the first message
of the verifiable encryption is invalid, it detects that and then it knows that V
will reject, so it forwards A’s message to V . It then sets c := c̃/(g r̃1v r̃

nv
1). It then

looks up a membership certificate that contains the ciphertext c. If it fails to
find one, it knows that the verifier will reject – so it forwards the message to V .

If it finds one, and it is a valid membership certificate, then it forwards all the
messages between A and V for this sid.

If it is a fake membership certificate that includes ciphertext c, it checks
whether this certificate also includes the value Z := Z̃/(ar̃13). If it does not, then
D knows that the verifier will reject anyway – so it forwards the message to V .

Otherwise, this first message of A is valid. Since D has the valid membership
certificate for (A, V), D tells F to send the first valid message of an Authenticate
to appointed verifier to V . Then D simulates V for A: it creates a challenge
message and sends it to A. If A responds to the message so as to correctly
complete the corresponding proof of knowledge and verifiable encryption, then
D tells F to send V a message that corresponds to a valid response to V ’s
challenge. Otherwise, D tells F to send to V a message that does not constitute
a valid response. After that, V either responds to F with an accept or reject. F
forwards that response to D, which in turn sends it to A.

It is easy to see that the following lemma holds [10]:

Lemma 4. Under the assumption that the Paillier cryptosystem is semantically
secure, the strong RSA assumption, and the assumption that computing discrete
logarithms modulo a safe prime product is hard, the following holds: Provided that
V never performs the Convert and Identify operation for A, if the probability
that B accepts when talking to D in real mode differs non-negligibly from the
probability that B accepts when talking to D in fake mode, then: B and verifier
V have engaged in the Authenticate with appointed verifier protocol in which V
accepted such that a subsequent Identify operation, if carried out, will point to
A.

Using Lemma 4, the following is immediate by Definition 2:

Theorem 2. Under standard number-theoretic assumptions, the construction
presented in Section 5 is an identity escrow scheme with the appointed verifier
property, as required by Definition 2.

6 Concluding Remarks

We note that in order to implement several identity escrow schemes at the same
time using our methods, the set-up, apart from the public-key infrastructure, has
to be repeated for each instance. In particular, the public keys of the verifiers
will have to be different for each instance. It is an interesting question whether
it would be possible to avoid this and yet have a practical construction that
is secure against adaptive attacks. It is also interesting whether the public-key
model can be eliminated from the picture.

An appointed-verifier identity escrow scheme is only the first step towards
a bigger goal of realizing protocols in which it is provably hard to convince an
unauthorized party of the truth of some statement. It would be interesting to
apply our methods in the context of electronic voting and consider existing voting
schemes and how close they come to satisfying an appropriate modification of

our definition, and, if a gap appears, whether the techniques developed in this
paper could resolve it.

Acknowledgments

The second author acknowledges the support of an NSF graduate fellowship and
of the Lucent Technologies GRPW program.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE Journal on Selected Areas in Communications, 18(4):591–610, 2000.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In CRYPTO 2000, vol. 1880 of
LNCS, pp. 255–270. Springer Verlag, 2000.

3. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In EUROCRYPT ’97, vol. 1233 of LNCS, pp. 480–494.

4. M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. In EUROCRYPT ’98, vol. 1403 of LNCS, pp.
236–250. Springer Verlag, 1998.

5. J. C. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections (extended ab-
stract). In Proc. 26th STOC, pp. 544–553. ACM, 1994.

6. S. Brands. Untraceable off-line cash in wallets with observers. In CRYPTO ’93,
vol. 773 of LNCS, pp. 302–318, 1993.

7. J. Camenisch. Efficient anonymous fingerprinting with group signatures. In ASI-

ACRYPT 2000, vol. 1976 of LNCS, pp. 415–428. Springer Verlag, 2000.
8. J. Camenisch and I. Damg̊ard. Verifiable encryption, group encryption, and their
applications to group signatures and signature sharing schemes. In ASIACRYPT

2000, vol. 1976 of LNCS, pp. 331–345, 2000.
9. J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In EUROCRYPT

2001, vol. 2045 of LNCS, pp. 93–118. Springer Verlag, 2001.
10. J. Camenisch and A. Lysyanskaya. An identity escrow scheme with appointed

verifiers. http://eprint.iacr.org/2001, 2001.
11. J. Camenisch and M. Michels. A group signature scheme with improved efficiency.

In ASIACRYPT ’98, vol. 1514 of LNCS, pp. 160–174. Springer Verlag, 1998.
12. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.

In CRYPTO ’97, vol. 1296 of LNCS, pp. 410–424. Springer Verlag, 1997.
13. R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD

thesis, Weizmann Institute of Science, Rehovot 76100, Israel, June 1995.
14. R. Canetti. Security and composition of multi-party cryptographic protocols. Jour-

nal of Cryptology, 13(1):143–202, 2000.
15. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM, 24(2):84–88, February 1981.
16. D. Chaum. Security without identification: Transaction systems to make big

brother obsolete. Communications of the ACM, 28(10):1030–1044, Oct. 1985.
17. D. Chaum. Designated confirmer signatures. In EUROCRYPT ’94, vol. 950 of

LNCS, pp. 86–91. Springer Verlag Berlin, 1994.

18. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO ’88,
vol. 403 of LNCS, pp. 319–327. Springer Verlag, 1990.

19. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT ’91, vol. 547 of
LNCS, pp. 257–265. Springer-Verlag, 1991.

20. L. Chen and T. P. Pedersen. New group signature schemes. In EUROCRYPT ’94,
vol. 950 of LNCS, pp. 171–181. Springer-Verlag, 1995.

21. R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computation from threshold
homomorphic encryption. Manuscript. Available from http://eprint.iacr.org.

22. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO ’98, vol. 1642 of LNCS,
pp. 13–25, Berlin, 1998. Springer Verlag.

23. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
In Proc. 6th ACM CCS, pp. 46–52. ACM press, nov 1999.

24. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT 2000, vol. 1807 of LNCS, pp. 431–444. Springer Verlag, 2000.

25. C. Dwork and A. Sahai. Concurrrent zero-knowledge: Reducing the need for timing
constraints. In CRYPTO ’98, vol. 1642 of LNCS, pp. 105–120, 1998.

26. A. Fiat and A. Shamir. How to prove yourself: Practical solution to identification
and signature problems. In CRYPTO ’86, vol. 263 of LNCS, pp. 186–194, 1987.

27. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In CRYPTO ’97, vol. 1294 of LNCS, pp. 16–30, 1997.

28. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the
random oracle. In EUROCRYPT ’99, vol. 1592 of LNCS, pp. 123–139, 1999.

29. D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion routing for anonymous
and private internet connections. Communications of the ACM, 42(2):84–88, 1999.

30. M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryp-
tion. In EUROCRYPT 2000, vol. 1807 of LNCS, pp. 539–556, 2000.

31. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In EUROCRYPT ’96, vol. 1233 of LNCS, 1996.

32. J. Kilian and E. Petrank. Identity escrow. In CRYPTO ’98, vol. 1642 of LNCS,
pp. 169–185, Berlin, 1998. Springer Verlag.

33. A. Lysyanskaya and Z. Ramzan. Group blind digital signatures: A scalable solution
to electronic cash. In Proc. Financial Cryptography, 1998.

34. T. Okamoto and S. Uchiyama A new public-key cryptosystem as secure as factor-
ing. In EUROCRYPT ’98, vol. 1403 of LNCS, pp. 308–318, 1998.

35. P. Paillier. Public-key cryptosystems based on composite residuosity classes. In
EUROCRYPT ’99, vol. 1592 of LNCS, pp. 223–239. Springer Verlag, 1999.

36. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In CRYPTO ’91, vol. 576 of LNCS, pp. 129–140. Springer Verlag, 1992.

37. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. In Proc. 7th ACM CCS, pp. 245–254. ACM press, nov 2000.

