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Abstract. A fixed-pattern padding consists in concatenating to the
message m a fixed pattern P . The RSA signature is then obtained by
computing (P |m)d mod N where d is the private exponent and N the
modulus. In Eurocrypt ’97, Girault and Misarsky showed that the size
of P must be at least half the size of N (in other words the parameter
configurations |P | < |N |/2 are insecure) but the security of RSA fixed-
pattern padding remained unknown for |P | > |N |/2. In this paper we
show that the size of P must be at least two-thirds of the size of N , i.e.
we show that |P | < 2|N |/3 is insecure.
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1 Introduction

RSA was invented in 1977 by Rivest, Shamir and Adleman [8], and is
now the most widely used public-key cryptosytem. RSA is commonly
used for providing privacy and authenticity of digital data, and securing
web traffic between servers and browsers.

A very common practice for signing with RSA is to first hash the
message, add some padding, and then raise the result to the power of the
decryption exponent. This paradigm is the basis of numerous standards
such as PKCS #1 v2.0 [9].

In this paper, we consider RSA signatures with fixed-pattern padding,
without using a hash function. To sign a message m, the signer concate-
nates a fixed padding P to the message, and the signature is obtained by
computing:

s = (P |m)d mod N



|N |/3 2|N |/3
←−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

FF . . . . . . . . . . . . . . . FF16 Message

Fig. 1. Example of an RSA padding forgeable by De Jonge and Chaum’s method where
ω = 1 and a = FF . . . FF 00 . . . 0016

where d is the private exponent and N the modulus.

More generally, we consider RSA signatures in which a simple affine
redundancy is used. To sign a message m, the signer first computes:

R(m) = ω ·m + a where

{

w is the multiplicative redundancy
a is the additive redundancy

(1)

The signature of m is then:

s = R(m)d mod N

A left-padded redundancy scheme P |m is obtained by taking ω = 1 and
a = P · 2`, whereas a right-padding redundancy scheme m|P is obtained
by taking ω = 2` and a = P .

No proof of security is known for RSA signatures with affine redun-
dancy, and several attacks on such formats have appeared (see [6] for
a thorough survey). At Crypto ’85, De Jonge and Chaum [1] exhibited
a multiplicative attack against RSA signatures with affine redundancy,
based on the extended Euclidean algorithm. Their attack applies when
the multiplicative redundancy ω is equal to one and the size of the mes-
sage is at least two-thirds of the size of the RSA modulus N .

|message| Â
2

3
|N |

For example, a signature can be forged if one uses the affine redundancy
of figure 1.

De Jonge and Chaum’s attack was extended by Girault and Misarsky
[2] at Eurocrypt ’97, using Okamoto-Shiraishi’s algorithm [7], which is an
extension of the extended Euclidean algorithm. They increased the field
of application of multiplicative attacks on RSA signatures with affine
redundancy as their attack applies to any value of ω and a, when the size
of the message is at least half the size of the modulus (refer to figure 2
for an illustration):

|message| Â
1

2
|N |



|N |/2 |N |/2
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

FF . . . . . . . . . . . . . . . . . . . . . . . . . . . FF16 Message

Fig. 2. Example of an RSA padding forgeable by Girault and Misarsky’s method where
ω = 1 and a = FF . . . FF 00 . . . 0016

2|N |/3 |N |/3
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−→

FF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FF16 Message

Fig. 3. Example of an RSA padding forgeable by our technique where the ω is equal
to one and a = FF . . . FF 00 . . . 0016

Girault and Misarsky also extended the multiplicative attacks to RSA
signatures with modular redundancy:

R(m) = ω1 ·m + ω2 · (m mod b) + a (2)

where ω1, ω2 is the multiplicative redundancy, a is the additive redun-
dancy and b is the modular redundancy. In this case, the size of the
message must be at least half the size of the modulus plus the size of the
modular redundancy.

Finally, Girault and Misarsky’s attack was extended by Misarsky [5]
at Crypto ’97 to a redundancy function in which the message m and the
modular redundancy m mod b can be split into different parts, using the
LLL algorithm [4]. The attack applies when the size of the message is at
least half the size of the modulus plus the size of the modular redundancy.

In this paper, we extend Girault and Misarsky’s attack against RSA
signatures with affine redundancy to messages of size as small as one third
of the size of the modulus, as illustrated in figure 3.

|message| Â
1

3
|N |

As Girault and Misarsky’s attack, our attack applies for any w and a
and runs in polynomial time. However, our attack is existential only, as
we cannot choose the message the signature of which we forge, whereas
Girault and Misarsky’s attack is selective: they can choose the message
which signature is forged.



2 The New Attack

In this section we extend Girault and Misarsky’s multiplicative attack on
RSA signatures with affine redundancy, to messages of size as small as
one third of the size of N . A multiplicative attack is an attack in which
the redundancy function of a message can be expressed as a multiplicative
combination of the redundancy functions of other messages. So we look
for four distinct messages m1, m2, m3 and m4, each as small as one third
of the size of the modulus, such that:

R(m1) ·R(m2) = R(m3) ·R(m4) mod N (3)

Then, using the signatures of m2, m3 and m4, one can forge the signature
of m1 by:

R(m1)
d =

R(m3)
d ·R(m4)

d

R(m2)d
mod N

From (3) we obtain:

(ω ·m1 + a) · (ω ·m2 + a) = (ω ·m3 + a) · (ω ·m4 + a) mod N

Denoting P = a/ω mod N , we obtain:

(P + m1) · (P + m2) = (P + m3) · (P + m4) mod N

and letting:

t = m3 y = m2 −m3

x = m1 −m3 z = m4 −m1 −m2 + m3

(4)

we obtain:

((P + t) + x) · ((P + t) + y) = (P + t) · ((P + t) + x + y + z) mod N

which simplifies into:

x · y = (P + t) · z mod N (5)

Our goal is consequently to find four integers x, y, z and t, each as small
as one third of the size of N , satisfying equation (5).

First, we obtain two integers z and u such that

P · z = u mod N with

{

−N
1

3 < z < N
1

3

0 < u < 2 ·N
2

3



As noted in [3], this is equivalent to finding a good approximation of the
fraction P/N , and can be done efficiently by developing it in continued
fractions, i.e. applying the extended Euclidean algorithm to P and N . A
solution is found such that |z| < Z and 0 < u < U if Z ·U > N , which is

the case here with Z = N
1

3 and U = 2 ·N
2

3 .

We then select an integer y such that N
1

3 ≤ y ≤ 2·N
1

3 and gcd(y, z) =
1. We find the non-negative integer t < y such that:

t · z = −u mod y

which is possible since gcd(y, z) = 1. Then we take

x =
u + t · z

y
≤ 4N

1

3

and obtain:
P · z = u = x · y − t · z mod N

which gives equation (5), with x, y, z and t being all smaller than 4 ·N
1

3 .
From x, y, z, t we derive using (4) four messages m1, m2, m3 and m4,
each of size one third the size of N :

m1 = x + t m2 = y + t
m3 = t m4 = x + y + z + t

(6)

Since −N1/3 < z < N1/3 and y ≥ N1/3, we have y + z > 0, which gives
using u ≥ 0 :

x + t =
u + t · (y + z)

y
≥ 0

which shows that the four integers m1, m2, m3 and m3 are non-negative,
and we have

R(m1) ·R(m2) = R(m3) ·R(m4) mod N

The complexity of our attack is polynomial in the size of N . In the
appendix we give an example of such a forgery computed using RSA
Laboratories’ official 1024-bits challenge-modulus RSA-309.

3 Extension to Selective Forgery

The attack of the previous section is only existential: we can not choose
the message to be forged. In this section we show how we can make the



forgery selective, but in this case the attack is no longer polynomial. Let
m3 be the message which signature must be forged. Letting x, y, z and t
as in (4), we compute two integers z and u such that

(P + t) · z = u mod N with

{

−N
1

3 < z < N
1

3

0 < u < 2 ·N
2

3

We then factor u, and try to write u as the product x · y of two integers
of roughly the same size, so that eventually we have four integers x, y, z,
t of size roughly one third of the size of the modulus, with:

x · y = (P + t) · z mod N

which gives again

R(m1) ·R(m2) = R(m3) ·R(m4) mod N

The signature of m3 can now be forged using the signatures of m1, m2

and m4. For a 512-bit modulus the selective forgery attack is truly prac-
tical. For a 1024-bit modulus the attack is more demanding but was still
implemented with success.

4 Conclusion

We have extended Girault and Misarsky’s attack on RSA signatures with
affine redundancy: we described a chosen message attack against RSA
signatures with affine redundancy for messages as small as one third of
the size of the modulus. Consequently, when using a fixed padding P |m or
m|P , the size of P must be at least two-thirds of the size of N . Our attack
is polynomial in the length of the modulus. It remains an open problem
to extend this attack to even smaller messages (or, equivalently, to bigger
fixed-pattern constants): we do not know if there exists a polynomial
time attack against RSA signatures with affine redundancy for messages
shorter than one third of the size of the modulus. However, we think
that exploring to what extent affine padding is malleable increases our
understanding of RSA’s properties and limitations.
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A A practical forgery

We describe a practical forgery with ω = 1 and a = 21023 − 2352, the
modulus N being RSA Laboratories official challenge RSA-309, which
factorisation is still unknown.

N = RSA-309

= bdd14965 645e9e42 e7f658c6 fc3e4c73 c69dc246 451c714e b182305b 0fd6ed47

d84bc9a6 10172fb5 6dae2f89 fa40e7c9 521ec3f9 7ea12ff7 c3248181 ceba33b5

5212378b 579ae662 7bcc0821 30955234 e5b26a3e 425bc125 4326173d 5f4e25a6

d2e172fe 62d81ced 2c9f362b 982f3065 0881ce46 b7d52f14 885eecf9 03076ca5



R(m1) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 00415df4 ca4219b6 ea5fa8e4

e2eabcfc 61348b80 e7ccbac7 3d1f5cc7 249e1519 9412886a f76220c6 d1409cd6

R(m2) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 00127f44 f753253a a0348be7

826e893f 693032db c2194dbb 3b81e1c2 630b66d3 1448a3f4 7fd2d34f b28aefd6

R(m3) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 00781bd4 e0c918a7 308fcff7

8f64044c a35b4937 36cd37d7 93f281b5 fdd0a951 52a0479b 57dd73b2 25b6df85

R(m4) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 000919fd 86e5afce 7fc11c94

0e0827c8 03be05bb 71f8de48 c61d6d5f 0feb036d a1ff2f8b 5f596108 3d142538

We obtain:

R(m1) ·R(m2) = R(m3) ·R(m4) mod N

where messages m1, m2, m3 and m4 are as small as one third of the size
of the modulus.


