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Abstract. We present lattice-based attacks on RSA with prime factors
p and q of unbalanced size. In our scenario, the factor q is smaller than
Nβ and the decryption exponent d is small modulo p− 1. We introduce
two approaches that both use a modular bivariate polynomial equation
with a small root. Extracting this root is in both methods equivalent to
the factorization of the modulus N = pq. Applying a method of Copper-
smith, one can construct from a bivariate modular equation a bivariate
polynomial f(x, y) over Z that has the same small root. In our first
method, we prove that one can extract the desired root of f(x, y) in

polynomial time. This method works up to β < 3−
√

5
2

≈ 0.382. Our
second method uses a heuristic to find the root. This method improves
upon the first one by allowing larger values of d modulo p− 1 provided
that β ≤ 0.23.

Keywords: RSA, lattice reduction, Coppersmith’s method, small secret
exponent

1 Introduction

An RSA key is a tuple (N, e) where N = pq is the product of two primes and
e is the public key. The corresponding secret key d satisfies the equation ed =

1 mod (p−1)(q−1)
2 with gcd(p − 1, q−1

2 ) = 1. The Chinese Remainder Theorem

(CRT) gives us the equations ed = 1 mod p− 1 and ed = 1 mod q−1
2 .

To speed up the RSA decryption and signature generation process, one is
tempted to use small secret decryption exponents d. Unfortunately, Wiener [17]

showed that d < 1
3N

1
4 leads to a polynomial time attack on the RSA cryptosys-

tem. This result was generalized by Verheul and Tilborg [16] to the case where
one guesses high-order bits of the prime factors. They showed that in order to
improve Wiener’s bound for r bits one has to guess approximately 2r bits.

Recently, Boneh and Durfee [3] showed how to improve the bound of Wiener
up to d < N0.292. Their attack works in polynomial time and builds upon Cop-
persmith’s method for finding small roots of modular polynomial equations. This
method in turn is based on the famous L3-lattice reduction algorithm of Lenstra,
Lenstra and Lovász [9]. Coppersmith’s method is rigorous for the univariate case
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but the proposed generalization in the modular multivariate case is a heuristic.
Since Boneh and Durfee use Coppersmith’s method in the bivariate modular
case, their attack is a heuristic. In contrast, the approach of Wiener is a prov-
able method. However, the Boneh-Durfee attack works very well in practice. In
fact, many other works (e.g. [1, 5, 8]) are based on this useful heuristical multi-
variate approach.

The results above show that one cannot use a small decryption exponent d.
But there is another way to speed up the decryption and signature generation
process. One can use a decryption exponent d such that dp = d mod p − 1 and
dq = d mod q−1

2 are small. Such an exponent d is called a small CRT-exponent.
In order to sign a message m, one computes mdp mod p and mdq mod q. Both
terms are combined using the Chinese Remainder Theorem to yield the desired
term md mod N . The attacks described before do not work in this case, since d
is likely to be large.

It is an open problem if there is a polynomial time algorithm that breaks
RSA if dp and dq are small. This problem is mentioned several times in the
literature, see e.g. [17, 2, 3]. The best algorithm that is known runs in time
O(min(

√

dp,
√

dq)) which is exponentially in the bit-size.

In this work, we give the first polynomial time attack on RSA with small
CRT-exponent. Unfortunately, our results are restricted to the case of unbal-
anced prime numbers p and q. The use of unbalanced primes was first proposed
by Shamir [13] to guard the modulus N against different kinds of factorization
algorithms and to speed up the computation. There are also other systems that
use unbalanced primes [10, 15]. Interestingly, sometimes the use of unbalanced
primes decreases the security. For instance, Durfee and Nguyen [5] showed that
the Boneh-Durfee attack works for larger exponents d if the prime factors are
unbalanced. This breaks the RSA-type scheme of Sun, Yang and Laih [15].

We show in the following work that there is also a decrease in security for
unbalanced primes when using small CRT-exponents. The more unbalanced the
prime factors are, the larger are the CRT-exponents that can be attacked by our
methods.

Let q < Nβ and dp ≤ N δ. We show in Section 3 that an RSA public key tuple
(N, e) satisfying the condition 3β + 2δ ≤ 1− logN (4) yields the factorization of
N in time O(log2(N)). Thus, this method does only work provided that β < 1

3 .

Like the methods in [1, 3, 5, 8], our approach is based on Coppersmith’s tech-
nique [4] in the modular multivariate case. More precisely, we use a modular
bivariate polynomial equation with a small root. This root gives us the factor-
ization ofN . Using a Theorem of Howgrave-Graham [7], we can turn the modular
bivariate polynomial into a polynomial f(x, y) over Z such that the desired small
root must be among the roots of f(x, y). Interestingly, for the polynomial f(x, y)
we are able to prove that this small root can be extracted easily. This shows that
our method provably factors the modulus N . Note, that this is in contrast to
other works using the multivariate approach [1, 3, 5, 8] which rely on a heuristic
assumption. To our knowledge, this is the first rigorous method using a modular
bivariate approach. We think that this method will be useful in other settings
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as well. As an example, we show that our technique yields an elegant and simple
proof of the results of Wiener[17] and Verheul, Tilborg [16].

The attack in Section 3 uses a two-dimensional lattice. In Section 4, we gener-
alize our method to lattices of arbitrary dimension. This improves the condition
above to 3β − β2 + 2δ ≤ 1 − ε for some small error term ε. Therefore, this ap-

proach works as long as β < 3−
√

5
2 = φ̂2, where φ̂ = 1−

√
5

2 is the conjugate of
the golden ratio. Again, we can show that the desired root can be extracted in
polynomial time. This yields a rigorous method for factoring N .

In Section 5, we use a different modular bivariate polynomial. This approach
works for larger CRT-exponents than our first attack provided that β ≤ 0.23.
Unfortunately, we cannot give a rigorous proof for this method. It relies on
Coppersmith’s heuristic for modular multivariate polynomials.

Finally, we compare our approaches in Section 6.

2 Preliminaries

Let ZN denote the ring of integers modulo N . Let Z∗
N denote the multiplicative

group of invertible integers modulo N . The order of Z∗
N is given by the Euler

phi-function φ(N). Using RSA, we have N = pq and φ(N) = (p− 1)(q− 1). If x
is a random element in Z∗

N , we use the notation x ∈R Z∗
N .

Let f(x, y) =
∑

i,j ai,jx
iyj ∈ Z[x, y] be a bivariate polynomial with coeffi-

cients ai,j in the ring of integers. We will often use the short-hand notation f

when the parameters follow from the context. The degree of f is the maximal
sum i + j taken over all monomials ai,jx

iyj with non-zero coefficients. The co-
efficient vector of f is the vector of the coefficients ai,j . The Euclidean norm of
f is defined as the norm of the coefficient vector: ||f ||2 =

∑

i,j a
2
i,j .

In the following, we state a few basic facts about lattices and lattice basis
reduction and refer to the textbooks [6, 14] for an introduction into the theory
of lattices.

Let v1, . . . , vn ∈ Rm, m ≥ n be linearly independent vectors. A lattice L

spanned by {v1, . . . , vn} is the set of all integer linear combinations of v1, . . . , vn.
If m = n, the lattice is called a full rank lattice. The set of vectors B =
{v1, . . . , vn} is called a basis for L.

We denote by v∗1 , . . . , v
∗
n the vectors obtained by applying Gram-Schmidt

orthogonalization to the basis vectors. The determinant of L is defined as

det(L) =

n
∏

i=1

||v∗i ||,

where ||v|| denotes the Euclidean norm of v. Any lattice L has infinitely many
bases but all bases have the same determinant. If a lattice is full rank, det(L) is
the absolute value of the determinant of the (n× n)-matrix whose rows are the
basis vectors v1, . . . , vn. Hence if the basis matrix is triangular, the determinant
is very easy to compute.

A well-known result by Minkowski relates the determinant of a lattice L to
the length of a shortest vector in L. Minkowski’s Theorem shows that every
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n-dimensional lattice L contains a non-zero vector v with ||v|| ≤ √
n det(L)

1
n .

Unfortunately, the proof of this theorem is non-constructive.
In dimension 2, the Gauss reduction algorithm yields a shortest vector of a

lattice. In arbitrary dimension, we can use the famous L3-reduction algorithm
of Lenstra, Lenstra and Lovász [9] to approximate a shortest vector.

Fact 1 (Lenstra, Lenstra and Lovász) Let L be a lattice spanned by {v1, . . . ,

vn}. The L3-reduction algorithm will output in polynomial time a lattice basis

{v′1, . . . , v′n} with

||v′1|| ≤ 2
n−1

4 det(L)
1
n and ||v′2|| ≤ 2

n
2 det(L)

1
n−1 .

2.1 Key generation using the Chinese Remainder Theorem (CRT)

We briefly describe the key generation process. In our scenario, the RSA modulus
N is composed of a large prime factor p and a small prime factor q. The secret
decryption exponent d is chosen to be small modulo p− 1 and of arbitrary size
modulo q − 1.

CRT Key Generation Process

Fix a bit-size n for the public key modulus N . Additionally, fix two positive
parameters β, δ with β ≤ 1

2 and δ ≤ 1.

Modulus: Choose randomly prime numbers p and q with bit-sizes approxi-
mately (1 − β)n and βn. Additionally, p − 1 and q−1

2 must be coprime.
Compute the modulus N = pq. If the smaller prime factor q does not satisfy
q < Nβ , repeat the prime generation.

Secret exponent: Choose a small secret dp ∈R Z∗
p−1 such that dp ≤ N δ.

Choose another secret dq ∈R Z∗
q−1
2

arbitrarily.

Chinese remaindering: Compute the unique d mod φ(N)
2 that satisfies d =

dp mod p− 1 and d = dq mod q−1
2 .

Public exponent: Compute the inverse e of d in Z∗
φ(N)

2

.

Public parameters: Publish the tuple (N, e).

In this work, we will study the following question:
Up to which parameter choices for β and δ does the public key tuple (N, e) yield
the factorization of N ?

Note, that the decryption and the signature generation process of a message
m are very efficient for small β and δ. Since dp is small, the computation of
mdp mod p − 1 requires only a small amount of multiplications. On the other
hand, the computation of mdq mod q−1

2 is cheap because q is small. Both terms

can easily be combined to yield the desired term md mod φ(N)
2 using the Chinese

Remainder Theorem(CRT).
In the next section, we will show that given the public key (N, e) there is a

provable polynomial time algorithm that factorsN if the condition 3β+2δ ≤ 1−ε
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holds, where ε is a small error term. This implies that our method works as long
as β < 1

3 . The smaller β is chosen, the larger δ can be in the attack. For β = 0,

we obtain δ < 1
2 . Later, we will improve the bound for β up to 3−

√
5

2 ≈ 0.382
and for δ up to 1.

3 An approach modulo p

Given a public key (N, e) that is constructed according to the CRT Key Gener-
ation process. We know that

edp = 1 mod p− 1.

Thus, there is an integer k such that

edp + k(p− 1) = 1 over Z. (1)

We can rewrite this equation as

edp − (k + 1) = −kp (2)

In the following, we assume that q does not divide k. Otherwise, the right hand
side of the equation is a multiple of N and we can obtain much stronger results.
This case will be analyzed later.
Equation (2) gives us the polynomial

fp(x, y) = ex− y

with a root (x0, y0) = (dp, k + 1) modulo p.

By construction, we have dp ≤ N δ . Since e < (p−1)(q−1)
2 , we obtain

|k + 1| =
∣

∣

∣

∣

edp − 2

p− 1

∣

∣

∣

∣

<
edp

p− 1
<
q − 1

2
dp < Nβ+δ.

Let as define two upper bounds X = N δ and Y = Nβ+δ. Then, we have a
modular bivariate polynomial equation fp with a small root (x0, y0) that satisfies
|x0| ≤ X and |y0| ≤ Y . This modular equation can be turned into an equation
over the integers using a theorem of Howgrave-Graham.

Fact 2 (Howgrave-Graham) Let f(x, y) be a polynomial that is a sum of at
most ω monomial. Suppose f(x0, y0) = 0 mod pm for some positive integer m,

where |x0| ≤ X and |y0| ≤ Y . If ||f(xX, yY )|| < pm√
ω
, then f(x0, y0) = 0 holds

over the integers.

Using our polynomial fp(x, y), we want to construct a polynomial f(x, y)
that satisfies the conditions of Howgrave-Graham’s theorem. Since we have to
find a small Euclidean norm polynomial f(xX, yY ), we use lattice reduction
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methods. Our first approach uses a lattice of dimension 2. In that dimension,
the Gauss reduction algorithm finds a shortest vector.

Let m be the integer defined in Fact 2. We choose m = 1. Next, we use the
helper polynomial f0(x) = Nx that also has the root x0 modulo p, since N is
a multiple of p. Therefore, every integer linear combination of f0 and fp has
the root (x0, y0) modulo p. We construct a lattice Lp that is spanned by the
coefficient vectors of the polynomials f0(xX) and fp(xX, yY ). These coefficient
vectors are the row vectors of the following (2× 2)-lattice basis Bp:

Bp =

[

NX

eX −Y

]

We will now give a condition under which the lattice Lp has a vector v with
norm smaller than p√

2
. This vector v can then be transformed into a polynomial

f(x, y) satisfying Fact 2.

Lemma 3 Let X = N δ and Y = Nβ+δ with

3β + 2δ ≤ 1− logN (4).

Then Lp has a smallest vector v with ||v|| < p√
2
.

Proof: By Minkowski’s Theorem, Lp must contain a vector v with ||v|| ≤
√

2 det(Lp). Thus, v has norm smaller than p√
2
if the condition

√

2 det(Lp) <
p√
2

holds.
We have det(Lp) = NXY . This implies NXY < p2

4 .

By the CRT Key Generation Process, we know p > N 1−β . On the other
hand, we have X = N δ and Y = Nβ+δ.
Hence, we obtain

N1+β+2δ ≤ 1

4
N2−2β <

p2

4
.

This implies the condition 3β + 2δ ≤ 1− logN (4) and the claim follows.

Using Lemma 3, we obtain for every fixed ε > 0 the condition 3β+2δ ≤ 1− ε
for suitably large moduli N .

Assume we have found a vector v in Lp with norm smaller than p√
2
by lattice

reduction. Let v be the coefficient vector of the polynomial f(xX, yY ). Applying
Fact 2, we know that f(x, y) has a root (x0, y0) = (dp, k + 1) over the integers.
The next theorem shows that the root (x0, y0) can easily be determined.

Lemma 4 Let v = (c0, c1) · Bp be a shortest vector in Lp with ||v|| < p√
2
. Then

|c0| = k and |c1| = qdp.
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Proof: We have v = c0(NX, 0)+c1(eX,−Y ). Define the polynomial f(xX, yY )
that has the coefficient vector v. By construction, ||f(xX, yY )|| < p√

2
and we can

apply Fact 2.
Therefore, the polynomial

f(x, y) = c0Nx+ c1(ex− y)

has the root (x0, y0) over Z. Plugging (x0, y0) into the equation yields

c0Nx0 = −c1(ex0 − y0).

We know that (x0, y0) = (dp, k + 1). That leads to

c0Ndp = −c1(edp − (k + 1)).

Using equation (2) and dividing by p gives us

c0qdp = c1k.

Since we assumed that q does not divide k, we have gcd(qdp, k) = gcd(dp, k).
Now, let us look at equation (1). Every integer that divides both dp and k must
also divide 1. Hence, gcd(dp, k) = 1.

Thus, we obtain
c0 = ak and c1 = aqdp

for some integer a. But v is a shortest vector in Lp. Therefore, we must have
|a| = 1 and the claim follows.

Summing up the results gives us the following theorem.

Theorem 5 Given an RSA public key tuple (N, e) with N = pq and secret

exponent d. Let q < Nβ, dp ≤ N δ and

3β + 2δ ≤ 1− logN (4).

Then N can be factored in time O(log2(N)).

Proof: Construct the lattice basis Bp and find a shortest vector v = (c0, c1) ·Bp

using Gauss reduction. Compute gcd(N, c1) = q. The total running time for
Gauss reduction and greatest common divisor computation is O(log2(N)).

In the previous analysis, we made the assumption that q does not divide k.
If we are in the very unlikely case that k = qr for some r ∈ Z, then we obtain
analogous to the reasoning before the following stronger result.

Theorem 6 Given an RSA public key tuple (N, e) with N = pq and secret

exponent d. Let q < Nβ, dp ≤ N δ,

k = qr and β + 2δ ≤ 1− logN (4).

Then N can be factored in time O(log2(N)).
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Proof: The polynomial fp(x, y) = ex− y has the root (x0, y0) = (dp, k+1) not
just modulo p but also modulo N . Thus, we can use the modulus N in Fact 2.
Analogous to Lemma 3, we conclude that Lp has a shortest vector v with norm
smaller than N√

2
as long as the condition β + 2δ ≤ 1− log4(N) holds. Following

the proof of Lemma 4, we see that v = (c0, c1) · Bp with |c0| = r and |c1| = dp.

Since
1−edp
r

= q(p − 1) by equation (1), the computation gcd(
1−edp
r

, N) = q

reveals the factorization.

Interestingly , choosing β = 1
2 in Theorem 6 gives us the bound δ ≤ 1

4 −
logN (4). This is similar to Wiener’s bound in the attack on low secret exponent
RSA [17]. In fact, one can prove the results of Wiener and Verheul, Tilborg [16]
in terms of lattice theory in the same manner. We briefly sketch how to obtain
their results in a simpler fashion.

Verheul and Tilborg studied the case where they guess high order bits of
p. Assume we know p̃ with |p − p̃| ≤ N

1
2−γ and by calculating q̃ = N

p̃
we

know an approximation of q with accuracy N
1
2−γ as well. The RSA-equation

ed+ k(N +1− p− q)− 1 = 0 gives us a polynomial fN ′(x, y) = ex− y with root
(x′0, y

′
0) = (d, k(p − p̃ + q − q̃) + 1) modulo N + 1 − p̃ − q̃. We have |x′0| ≤ N δ

and |y′0| ≤ N δ+ 1
2−γ . Working through the arithmetic, this gives us the condition

δ ≤ 1
4 +

γ
2 −ε, where ε is a small error term. Wiener’s result follows as the special

case where γ = 0.

4 Improving the bound to β < N 0.382

Using Theorem 5, our approach with the two-dimensional lattice Lp only works
provided that β < 1

3 . In this section, we use lattices of larger dimension to make
our method work for less unbalanced moduli. We are able to improve the bound

up to β < 3−
√

5
2 ≈ 0.382.

In section 3, we used Fact 2 with the parameter choice m = 1. Now, we
generalize the method for arbitrary m.
We define the x-shifted polynomials

gm,i,j(x, y) = Nmax(0,m−j)xif jp (x, y),

where fp is defined as in section 3. Note, that every integer linear combination
of polynomials gm,i,j has the zero (x0, y0) = (dp, k + 1) modulo pm.

We fix a lattice dimension n. Next, we build a lattice Lp(n) of dimension n

using as basis vectors the coefficient vectors of gm,i,j(xX, yY ) for j = 0 . . . n− 1
and i = n− j − 1. The parameter m is a function of n and must be optimized.

For example, take n = 4 and m = 2. The lattice Lp(n) is spanned by the row
vectors of the following (4× 4)-matrix

Bp(4) =









N2X3

eNX3 −NX2Y

e2X3 −2eX2Y XY 2

e3X3 −3e2X2Y 3eXY 2 −Y 3









.
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Note, that the lattice Lp of section 3 is equal to Lp(2).

To apply Fact 2, we need a coefficient vector v with norm smaller than pm√
n
.

The following Lemma gives us a condition for finding such a vector.

Lemma 7 For every fixed ε > 0, there are parameters n and N0 such that for

every N ≥ N0 the following holds: Let X = n+1
2 N δ and Y = n+1

2 Nβ+δ with

3β − β2 + 2δ ≤ 1− ε.

Then using the L3-reduction algorithm, we can find a vector v in Lp(n) with

norm smaller than pm√
n
, where m is a function of n.

Proof: An easy computation shows that

det(Lp(n)) = N
m(m+1)

2 (XY )
n(n−1)

2 =
(n+ 1

2

)n(n−1)
N

m(m+1)
2 +(2δ+β)

n(n−1)
2

for m < n. By Fact 1, the L3-algorithm will find a vector v in Lp(n) with

||v|| ≤ 2
n−1

4 det(Lp(n))
1
n .

Using p > N1−β , we must have

2
n−1

4 det(Lp(n))
1
n ≤ N (1−β)m

√
n

.

We plug in the value for det(Lp(n)) and obtain the inequality

N
m(m+1)

2 +(2δ+β)
n(n−1)

2 ≤ cN (1−β)mn,

where the factor c =
(

(

2−
3
4 (n+ 1)

)n−1√
n
)−n

does not depend on N . Thus, c

contributes to the error term ε and will be neglected in the following.
We obtain the condition

m(m+ 1)

2
+ (2δ + β)

n(n− 1)

2
− (1− β)mn ≤ 0.

Using straightforward arithmetic to minimize the left hand side, one obtains
that m = (1 − β)n is asymptotically optimal for n → ∞. Again doing some
calculations, we finally end up with the desired condition 3β − β2 + 2δ ≤ 1.

Now, we can use the above Lemma 7 in combination with Fact 2 to construct
a bivariate polynomial f(x, y) of degree n with at most n monomials and root
(x0, y0). The problem is how to extract the root (x0, y0).

Analogous to Lemma 4, one can show for a vector v = (c1, c2, . . . , cn) ·Bp(n)

with norm smaller than pm√
n
that k divides c1 and dp divides cn. But we may not

be able to find these factors k and dp easily.
Therefore, we use another method to obtain the root. This is described in

the following Lemma.
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Lemma 8 Let X = n+1
2 N δ and Y = n+1

2 Nβ+δ. Let fp(x, y) = ex − y be a

polynomial with root (x0, y0) modulo p that satisfies |x0| ≤ N δ, |y0| ≤ Nβ+δ.

Let v be a vector in Lp(n) with norm smaller than
pm√
n
, where v is the coefficient

vector of a polynomial f(xX, yY ). Then, the polynomial p(x, y) = y0x − x0y ∈
Z[x, y] must divide f(x, y). We can find p by factoring f over Z[x, y].

Proof: The point (x0, y0) is a root of fp. For every integer a, the point (ax0, ay0)
is also a root of fp. Every root (ax0, ay0) with |a| ≤ n+1

2 satisfies the conditions
|ax0| ≤ X and |ay0| ≤ Y of Fact 2. These are at least n+ 1 roots. According to
Fact 2, f must contain these roots over Z.

But these roots lie on the line y = y0
x0
x through the origin. Hence, they

are also roots of the polynomial p(x, y) = y0x − x0y ∈ Z[x, y]. Note, that p is
an irreducible polynomial of degree 1 and f is a polynomial of degree n. Us-
ing the Theorem of Bézout (see [12], page 20), either p and f share at most
n points or p must divide f . But we know n + 1 common points of p and f .
Thus, the polynomial p must divide f . Since p is irreducible, we can find an
integer multiple p′ = (by0)x − (bx0)y of p by factoring f over Z[x, y]. Note
that gcd(x0, y0) = 1 since by equation (2) we know that gcd(dp, k + 1) must
divide kp, but gcd(dp, kp) = gcd(dp, k) = 1. Hence, we obtain p by computing

p = p′

gcd(by0,bx0)
.

Summarizing the results in this section, we obtain the following theorem.

Theorem 9 Given an RSA public key tuple (N, e) with N = pq and secret

exponent d. Let q < Nβ, δ ≤ N δ and

3β − β2 + 2δ ≤ 1− ε,

where ε > 0 is arbitrary small for N suitably large. Then in deterministic time

polynomial in log(N), we can find the factorization of N .

Proof: Construct the lattice basis Bp(n) according to Lemma 7 and find a short

vector v with norm smaller than ||v|| < pm√
n

using the L3-reduction algorithm.

Find the polynomial p(x, y) = y0x−x0y using Lemma 8 which gives us (x0, y0) =
(dp, k + 1).

It is known that the factorization of the polynomial f(x, y) ∈ Z[x, y] in
Lemma 8 can be done in deterministic time polynomial in log(N). Note that the
coefficients of f(x, y) must be of bit-size polynomial in log(p) since the coefficient

vector of f(xX, yY ) has norm smaller than pm√
n
.

We may assume that we are in the case that k does not divide q in equa-
tion (2). Otherwise Theorem 6 proves the claim. Hence f(x0, y0) = −kp and
gcd(f(x0, y0), N) = p yields the factorization of N .

In practice, the factorization of polynomials over Z[x, y] is very fast. Thus,
our method is practical even for large n.



252 A. May

5 An approach modulo e

Throughout this section, we assume that e is of the same order of magnitude as
N . The results in this section as well as the results in section 3 and 4 can be
easily generalized to arbitrary exponents e.

Analogous to the works [3, 17] dealing with small secret exponent RSA, the
smaller the exponent e is the better our methods work. On the other hand, one
can completely counteract the attacks by adding to e a suitably large multiple
of φ(N). We will give a detailed analysis of this in the full version of the paper.

Let us look again at equation (1) and rewrite it as

(k + 1)(p− 1)− p = −edp.

Multiplying with q yields

(k + 1)(N − q)−N = −edpq

This gives as the polynomial

fe(y, z) = y(N − z)−N

with a root (y0, z0) = (k + 1, q) modulo e.
Let us define the upper bounds Y = Nβ+δ and Z = Nβ . Note, that |y0| ≤ Y

and |z0| ≤ Z. Analogous to section 3, we can define a three-dimensional lattice
Le that is spanned by the row vectors of the (3× 3)-matrix

Be =





e

eY

−N NY −Y Z



 .

Using a similar argumentation as in section 3, one can find a vector v ∈ Le with
norm smaller than the bound e√

3
of Fact 2 provided that 3β+2δ ≤ 1− ε. Hence

as before, this approach does not work if β ≥ 1
3 or δ ≥ 1

2 . In section 4, we used
x-shifted polynomials to improve the bound for β. Now, z-shifted polynomials
will help us to improve the bound for δ up to δ < 1.

Fix the parameter m. Let us define the y-shifted polynomials

gi,j(y, z) = em−iyjf ie(y, z)

and the z-shifted polynomials

hi,j(y, z) = em−izjf ie(y, z).

All these polynomials have the common root (y0, z0) modulo em. Thus, every
integer linear combination of these polynomials also has the root (y0, z0).

We build a lattice Le(m) that is defined by the span of the coefficient vectors
of the y-shifted polynomials gi,j(yY, zZ) and hi,j(yY, zZ) for certain parameters
i, j. We take the coefficient vectors of gi,j for all non-negative i, j with i+ j ≤ m



Cryptanalysis of Unbalanced RSA with Small CRT-Exponent 253

and the coefficient vectors hi,j for i = 0 . . .m and j = 1 . . . t for some t. The
parameter t has to be optimized as a function of m.

For example, choose m = 2 and t = 1. We take the coefficient vectors of g0,0,
g0,1, g1,0, g0,2, g1,1, g2,0 and the coefficient vectors of h0,1, h1,1, h2,1 to build the
lattice basis Be(2):





























e2

e2Y

−eN eNY −eY Z
e2Y 2

−eNY eN2Y 2 −eY 2Z

N2 −2N2Y 2NY Z N2Y 2 −2NY 2Z Y 2Z2

e2Z

eNY Z −eNZ −eY Z2

−2N2Y Z N2Y 2Z −2NY 2Z2 N2Z 2NY Z2 Y 2Z3





























The row vectors of Be(2) span the lattice Le(2).
In order to apply Fact 2, we need a vector in Le(m) with norm smaller than
em√

dimLe(m)
. The following lemma gives us a condition under which we can find

such a vector.

Lemma 10 For every constant ε > 0 there exist m, N0 such that for every

N ≥ N0 the following holds: Let Y = Nβ+δ, Z = Nβ with

5

3
β +

2

3

√

3β − 5β2 + δ ≤ 1− ε,

where ε is arbitrary small for N suitably large. Then we can find a vector v in

Le(m) with norm smaller than em√
dimLe(m)

using the L3-algorithm.

Proof: A straightforward computation shows that

detLe(m) = (eY )
1
6 (2m3+(6+3t)m2+(4+3t)m)Z

1
6 (m3+(3+6t)m2+(2+9t+3t2)m+3t+3t2).

Let t = τm and e = N1−o(1). Using Y = Nβ+δ and Z = Nβ , we obtain

detLe(m) = N
1
6m

3((1+β+δ)(2+3τ)+β(1+6τ+3τ2)+o(1)).

Analogous to the reasoning in Lemma 7, we obtain the condition

detLe(m) < cN (1−o(1))m dimLe(m),

where c does not depend on N and contributes to the error term ε. An easy

calculation shows that dim(L) = (m+1)(m+2)
2 + t(m + 1). We plug in the value

for detLe(m) and dimLe(m). Neglecting all low order terms yields the condition

3β(τ2 + 3τ + 1) + δ(3τ + 2)− 3τ − 1 < 0
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for m→∞. Using elementary calculus to minimize the left hand side, we obtain
an optimal choice for the value τ = 1−3β−δ

2β . Plugging this value in, we finally

end up with the condition 5
3β + 2

3

√

3β − 5β2 + δ ≤ 1.

Using Lemma 10, we can again apply Fact 2 and obtain a polynomial f(y, z)
with root (y0, z0) over Z. But in contrast to the previous sections, we are not
able to give a rigorous method to extract this root. Instead, we follow a heuristic
approach due to Coppersmith [4]. Using the bounds of Fact 1 and a slightly
different error term ε in Lemma 10, the L3-algorithm must find a second vector
that is short enough. This gives us another polynomial g(y, z) with the same
root (y0, z0) over Z.

We take the resultant of f and g with respect to y. The resultant is a poly-
nomial in z that can be solved by standard root finding algorithms. This gives
as the unknown z0 = q and with it the factorization of N . Unfortunately, we
cannot prove that the resultant is not the zero polynomial. It may happen that
f and g share a non-trivial greatest common divisor. In this case, the resultant
vanishes.

We carried out several experiments. If both y-shifted and z-shifted polyno-
mials were used, we did not find any example where the resultant vanished.
Thus although we cannot state the result as a theorem due to the gap in the-
ory, the method works very well in practice. In fact, there are many results in
cryptanalysis that rely on this heuristic, this includes among others [1, 3, 5, 8].

One can improve the shape of the curve for the approach modulo e slightly
by using only a certain subset of the z-shifted polynomials. This approach leads
to non-triangular lattice bases. We will analyze this in the full version of the
paper.

We do not know if our lattice based approach yields the optimal bound. But
there is a heuristic argument that gives us an upper bound for our method when
using the polynomial fe(y, z).

Assume that the function h(y, z) = y(N − z) mod e takes on random values
in Ze for |y| ≤ Y and |z| ≤ Z. Every tuple (y, z) with h(y, z) = N mod e is
a root of fe. The expected number of those tuples is Ω(Y Z

e
) = Ω(N2β+δ−1).

As soon as 2β + δ − 1 is larger than some positive fixed constant, the number
of small roots satisfying fe is exponentially in log(N). All of these roots fulfill
the criterion in Fact 2. But we require that f(y, z) has a unique root over the
integers in order to extract this root by resultant computation.
Thus heuristically, we cannot expect to obtain a bound better than 2β + δ ≤ 1
using the polynomial fe.

It is an open problem if one can really reach this bound.

6 Comparison of the methods

We compare the methods introduced in section 4 and section 5. In the figure
below, we plotted the maximal δ as a function of β for which our two approaches
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succeed. The method modulo p is represented by the dotted line δ = 1
2− 3

2β+
1
2β

2

resulting from Theorem 9. The approach modulo e gives as the curve δ = 1 −
5
3β − 2

3

√

3β − 5β2 by Lemma 10. The points below the curves are the feasible
region of parameter choices for our attacks. We see that our method modulo e
yields better results for small β. The breaking point is approximately β = 0.23.

0

0.2

0.4

0.6

0.8

1

δ

0.1 0.2 0.3 0.4
β

Fig. 1. Comparison of the two methods

One might we tempted to combine the two approaches and use the polyno-
mials ez · fp(x, y) and N · fe(y, z) in a single lattice basis (i.e. working modulo
eN). However, such a lattice will always contain an extremely short coefficient
vector corresponding to the polynomial f(x, y, z) = exz + y(N − z)− z over Z.
But this polynomial can be obtained by multiplying equation (1) with q and
does not help us any further. It is an open problem if there is a successful way
how to combine the methods.
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