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Abstract. For certain security applications, including identity based
encryption and short signature schemes, it is useful to have abelian va-
rieties with security parameters that are neither too small nor too large.
Supersingular abelian varieties are natural candidates for these appli-
cations. This paper determines exactly which values can occur as the
security parameters of supersingular abelian varieties (in terms of the
dimension of the abelian variety and the size of the finite field), and
gives constructions of supersingular abelian varieties that are optimal
for use in cryptography.

1 Introduction

The results of this paper show that it is the best of times and the worst of times
for supersingular abelian varieties in cryptology. The results in Part 1 give the
bad news. They state exactly how much security is possible using supersingular
abelian varieties. Part 2 gives the good news, producing the optimal supersin-
gular abelian varieties for use in cryptographic applications, and showing that it
is sometimes possible to accomplish this with all computations taking place on
an elliptic curve.

One-round tripartite Diffie-Hellman, identity based encryption, and short
digital signatures are some problems for which good solutions have recently been
found. These solutions make critical use of supersingular elliptic curves and Weil
(or Tate) pairings. It was an open question whether or not these new schemes
could be improved (more security for the same signature size or efficiency) using
abelian varieties in place of elliptic curves. This paper answers the question in
the affirmative. We construct families of examples of the “best” supersingular
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abelian varieties to use in these cryptographic applications (§§5–6), and deter-
mine exactly how much security can be achieved using supersingular abelian
varieties (§§3–4).

Abelian varieties are higher dimensional generalizations of elliptic curves (el-
liptic curves are the one-dimensional abelian varieties). Weil and Tate pairings
exist and have similar properties for abelian varieties that they have for elliptic
curves. Supersingular abelian varieties are a special class of abelian varieties. For
standard elliptic curve cryptography, supersingular elliptic curves are known to
be weak. However, for some recent interesting cryptographic applications [18, 15,
2, 3, 22, 9], supersingular elliptic curves turn out to be very good. New schemes
using supersingular elliptic curves and Weil or Tate pairings are being produced
rapidly. The abelian varieties in this paper can be utilized in all these applica-
tions, to give better results (e.g., shorter signatures, or shorter ciphertexts) for
the same security.

The group of points on an abelian variety over a finite field can be used in
cryptography in the same way one uses the multiplicative group of a finite field.
The security of the system relies on the difficulty of the discrete logarithm (DL)
problem in the group of points. One of the advantages of using the group A(Fq)
of an abelian variety in place of the multiplicative group F∗q of a finite field
Fq is that there is no known subexponential algorithm for computing discrete
logarithms on general abelian varieties.

One of the attacks on the DL problem in A(Fq) is to map A(Fq) (or the
relevant large cyclic subgroup of A(Fq)) into a multiplicative group F∗qk , using

the Weil or Tate pairing [17, 8, 7]. If this can be done for some small k, then the
subexponential algorithm for the DL problem in F∗qk can be used to solve the

DL problem in A(Fq). Thus, to have high security, #A(Fq) should be divisible
by a large prime that does not divide #F∗qk = qk − 1 for any very small values
of k.

On the other hand, for cryptographic applications that make use of the Weil
or Tate pairing, it is important that A(Fq) (or the relevant large cyclic subgroup
of A(Fq)) can be mapped into F∗qk with k not too large, in order to be able to
compute the pairing efficiently. Thus for these applications it is of interest to
produce families of abelian varieties for which the security parameter k

g is not

too large, but not too small, where g is the dimension of the abelian variety. (In
defining the security parameter, one takes the minimal k.) Taking supersingular
elliptic curves (so g = 1), one can attain security parameter up to 6. However,
it seems to be difficult to systematically produce elliptic curves with security
parameter larger than 6 but not enormous. To obtain security parameters that
are not too large but not too small, it is natural to consider supersingular abelian
varieties.

In [9], Galbraith defined a certain function k(g) and showed that if A is a
supersingular abelian variety of dimension g over a finite field Fq, then there
exists an integer k ≤ k(g) such that the exponent of A(Fq) divides q

k − 1. For
example, k(1) = 6, k(2) = 12, k(3) = 30, k(4) = 60, k(5) = 120, and k(6) = 210.
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Note that, since cryptographic security is based on the cyclic subgroups of
A(Fq), for purposes of cryptology it is only necessary to consider simple abelian
varieties, i.e., abelian varieties that do not decompose as products of lower di-
mensional abelian varieties.

In §4, we determine exactly which security parameters can occur, for simple
supersingular abelian varieties. For example, we show that if A is a simple su-
persingular abelian variety over Fq of dimension g, then the exponent of A(Fq)
divides qk−1 for some positive integer k less than or equal to the corresponding
entry in Table 1 (where p = char(Fq)), and each entry can be attained. The
maximum of each column shows how these bounds compare with the bounds of
Galbraith stated above, and how they improve on his bounds when g ≥ 3. For

Table 1. Upper bounds on the cryptographic exponents

g 1 2 3 4 5 6

q a square 3 6 9 15 11 21

q not a square, p > 11 2 6 ∗ 12 ∗ 18

q not a square, p = 2 4 12 ∗ 20 ∗ 36

q not a square, p = 3 6 4 18 30 ∗ 42

q not a square, p = 5 2 6 ∗ 15 ∗ 18

q not a square, p = 7 2 6 14 12 ∗ 42

q not a square, p = 11 2 6 ∗ 12 22 18

these bounds, see Theorems 11, 12, and 6 below. A ‘∗’ means that there are no
simple supersingular abelian varieties of dimension g over Fq.

In particular, we show that the highest security parameter for simple super-
singular 4-dimensional abelian varieties is 7.5 = 30/4, and this can be attained
if and only if p = 3 and q is not a square. In particular, this answers in the af-
firmative an open question from [3] on whether one can use higher dimensional
abelian varieties to obtain short signatures with higher security. When the di-
mension is 6 the highest security parameter is 7, and this can be attained if
and only if p = 3 or 7 and q is not a square. In dimension 2 the highest security
parameter is 6, which ties the elliptic curve case. However, these abelian surfaces
are in characteristic 2, while the best supersingular elliptic curves occur only in
characteristic 3. Therefore, there may be efficiency advantages in using abelian
surfaces over binary fields.

In §§5–6 we find the best supersingular abelian varieties for use in cryp-
tography. Theorem 17 gives an algorithm whose input is an elliptic curve and
whose output is an abelian variety with higher security. The abelian variety is
constructed as a subvariety of a Weil restriction of scalars of the elliptic curve
(in the same way that the “XTR supergroup” [16] turns out to be the Weil
restriction of scalars from Fp6 to Fp of the multiplicative group). The group of
points of the abelian variety lies inside the group of points of the elliptic curve
over a larger field, and thus all computations on the abelian variety can be done
directly on the curve. We construct 4-dimensional abelian varieties with security
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parameter 7.5, thereby beating the security of supersingular elliptic curves, and
construct abelian surfaces over binary fields with security parameter 6. We ob-
tain efficient implementations of a variant of the BLS short signature scheme [3]
using these abelian varieties (embedded in elliptic curves over larger fields). This
gives the first practical application to cryptography of abelian varieties that are
not known to be Jacobians of curves.

Theorem 20 gives a method for generating supersingular curves whose Jaco-
bian varieties are good for use in cryptography. This result produces varieties in
infinitely many characteristics. Example 21 gives families of examples of Jaco-
bian varieties that are “best possible” in the sense that they achieve the upper
bounds listed in the top row of Table 1.

Since k
ϕ(k) →∞ as k →∞ (where ϕ is Euler’s ϕ-function), Theorems 11 and

12 imply that security parameters for simple supersingular abelian varieties are
unbounded (as the dimension of the varieties grows). However, k

ϕ(k) grows very

slowly, and computational issues and security considerations preclude using high
dimensional abelian varieties with high security parameters, at least at this time.
We therefore restrict the examples in this paper to small dimensional cases.

The results in §4 rely on the theory of cyclotomic fields, Honda-Tate theory,
and work of Zhu. The proof of Theorem 17 uses the theory of Weil restriction of
scalars. The proof of Theorem 20 uses the theory of complex multiplication of
abelian varieties, applied to Fermat curves.

Part 1: Bounds on the security

We begin with some preliminaries on abelian varieties.
Suppose A is an abelian variety over a finite field Fq, where q is a power of

a prime p. Then A is simple if it is not isogenous over Fq to a product of lower
dimensional abelian varieties, and A is supersingular if A is isogenous over Fq
to a power of a supersingular elliptic curve. (An elliptic curve E is supersingular
if E(Fq) has no points of order p.) A supersingular q-Weil number is a
complex number of the form

√
qζ where ζ is a root of unity. (Throughout the

paper,
√
q denotes the positive square root.)

Theorem 1 ([13, 21, 24]) Suppose A is a simple supersingular abelian vari-
ety over Fq, where q is a power of a prime p, and P (x) is the characteristic
polynomial of the Frobenius endomorphism of A. Then:

(i) P (x) = G(x)e, where G(x) ∈ Z[x] is a monic irreducible polynomial and
e = 1 or 2;

(ii) the roots of G are supersingular q-Weil numbers;
(iii) A(Fq) ∼= (Z/G(1)Z)e unless q is not a square and either

(a) p ≡ 3 (mod 4), dim(A) = 1, and G(x) = x2 + q, or
(b) p ≡ 1 (mod 4), dim(A) = 2, and G(x) = x2 − q;

in these exceptional cases, A(Fq) ∼= (Z/G(1)Z)a × (Z/G(1)
2 Z× Z/2Z)b with

non-negative integers a and b such that a+ b = e;
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(iv) #A(Fq) = P (1).

The roots of G are called the q-Weil numbers for A. For a given abelian
variety, its q-Weil numbers are the Galois conjugates of a given one (under the
action of the Galois group of Q̄ over Q). We retain the notation of this section,
including P , G, and e, throughout the paper. Note that

dim(A) =
deg(P )

2
=
edeg(G)

2
.

Theorem 2 ([13, 21]) The map that associates to a simple supersingular abel-
ian variety over Fq one of its q-Weil numbers gives a one-to-one correspondence
between the Fq-isogeny classes of simple supersingular abelian varieties over Fq
and Galois conjugacy classes of supersingular q-Weil numbers.

2 Definition of the cryptographic exponent cA

We introduce a useful new invariant, cA, which we will call the cryptographic
exponent. In the next section we show that cA captures the MOV security [17]
of the abelian variety.

Suppose A is a simple supersingular abelian variety over Fq and
√
qζ is

a q-Weil number for A. Let m denote the order of the root of unity ζ. Note
that if

√
qζ ′ is another q-Weil number for A, and m′ is the order of ζ ′, then

ζ2 and (ζ ′)2 are Galois conjugate, and therefore have the same order, namely
m

gcd(2,m) = m′

gcd(2,m′) . If q is a square, then ζ and ζ ′ are Galois conjugate, and

thus m = m′. Therefore when q is a square, m depends only on A.

Definition 3

cA =

{

m
2 if q is a square,

m
gcd(2,m) if q is not a square.

We will call cA the cryptographic exponent of A. Let αA = cA/g and call it
the security parameter of A.

Roughly speaking, for a group G to have security parameter α means that
the DL problem in G can be reduced to the DL problem in the multiplicative
group of a field of size approximately |G|α. The group G = A(Fq) has order
approximately qg, and we will see in §3 below that qcA is the size of the smallest
field F such that every cyclic subgroup of A(Fq) can be embedded in F ∗.

When q is not a square, cA is a natural number. When q is a square, cA is
either a natural number or half of a natural number.

If gcd(t, 2cA) = 1, then the cryptographic exponent for A over Fqt is the
same as the cryptographic exponent for A over Fq.

Let N denote the set of natural numbers. If k ∈ N, write Φk(x) for the k-th
cyclotomic polynomial

∏

ζ (x− ζ), where the product is over the primitive k-th
roots of unity ζ. Note that deg(Φk) = ϕ(k), where ϕ is Euler’s ϕ-function.
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Lemma 4 Suppose that Φm(d) is divisible by a prime number `, and ` - m.
Then m is the smallest natural number k such that dk − 1 is divisible by `.

Proof. The roots of Φm in F` are exactly the primitive m-th roots of unity, since
` - m. By assumption, d is a root of Φm in F`, and so m is the order of d in F∗` .

We include a useful closely related result.

Proposition 5 If m, d ∈ N, d > 1, and (m, d) 6= (6, 2), then m is the smallest
natural number k such that dk − 1 is divisible by Φm(d).

Proof. Since xm − 1 =
∏

r|m Φr(x), we have that Φm(d) divides dm − 1. The

proposition is true if m = 1 or 2. If m > 2 and (m, d) 6= (6, 2), it follows from an
1892 result of Zsigmondy (see Theorem 8.3, §IX of [14]) that Φm(d) has a prime
divisor that does not divide m. The proposition now follows from Lemma 4.

In the exceptional case (m, d) = (6, 2), we have Φm(d) = 3 = d2 − 1.

Theorem 6 Suppose A is a simple supersingular abelian variety over Fq.

(i) If q is a square then the exponent of A(Fq) divides Φ2cA(
√
q), which divides√

q2cA − 1.
(ii) If q is not a square then the exponent of A(Fq) divides ΦcA(q), which divides

qcA − 1.

Proof. By Theorem 1(iii), the exponent of A(Fq) divides G(1). Let π be a
q-Weil number for A. If q is a square, then Φ2cA(

π√
q ) = 0. Thus, G(x) =

√
qϕ(2cA)Φ2cA(

x√
q ) and G(1) =

√
qϕ(2cA)Φ2cA(

1√
q ) = ±Φ2cA(

√
q). If q is not a

square, then ΦcA(
π2

q ) = 0, so G(x) divides qϕ(cA)ΦcA(
x2

q ). Therefore G(1) di-

vides qϕ(cA)ΦcA(
1
q ) = ±ΦcA(q). As in Proposition 5, Φm(d) divides dm − 1.

3 The cryptographic exponent and MOV security

The next result shows that the cryptographic exponent cA captures the MOV
security of the abelian variety. In other words, if A(Fq) has a subgroup of large
prime order `, then qcA is the size of the smallest field of characteristic p con-
taining a multiplicative subgroup of order `. Recall e ∈ {1, 2} from Theorem
1.

Theorem 7 Suppose A is a simple supersingular abelian variety of dimension
g over Fq, q = pn, ` > 5 is a prime number, ` | #A(Fq), and ` > (1 +

√
p)ng/e.

Let r denote the smallest natural number k such that ` | pk − 1. Then pr = qcA .

Since the proof is rather technical, we do not give it here, but instead prove
the following slightly weaker result.
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Theorem 8 Suppose A is a simple supersingular abelian variety over Fq, ` is
a prime number, ` | #A(Fq), and ` - 2cA. Then cA is the smallest half-integer k
such that qk − 1 is an integer divisible by `.

Proof. By Theorem 6, we have ` | Φ2cA(
√
q) if q is a square, and ` | ΦcA(q)

otherwise. The theorem now follows from Lemma 4.

Remark 9 For purposes of cryptography we are only interested in the case where
` is large. If ` > 2g + 1, then ` - 2cA, so the condition ` - 2cA is not a problem.
This follows since 2g = deg(P ) = edeg(G), deg(G) = ϕ(2cA) if q is a square,
deg(G) = ϕ(cA) or 2ϕ(cA) if q is not a square, and ϕ(M) ≥ `− 1 if ` |M .

4 Bounding the cryptographic exponent

Next we determine exactly which values can occur as cryptographic exponents
for simple supersingular abelian varieties. Let

Wn = {k ∈ N : ϕ(k) = n}.

For example, W1 = {1, 2}, Wn = ∅ if n is odd and n > 1,

W2 = {3, 4, 6}, W4 = {5, 8, 10, 12}, W6 = {7, 9, 14, 18}.

Let k′ denote the odd part of a natural number k. If p is a prime, define

Xp =

{

{k ∈ N : 4 - k and 2 has odd order in (Z/k′Z)∗} if p = 2,

{k ∈ N : p - k and p has odd order in (Z/kZ)∗} if p is odd;

Vp =











{k ∈ N : k ≡ 4 (mod 8)} if p = 2,

{k ∈ N : p | k and k ≡ 2 (mod 4)} if p ≡ 3 (mod 4),

{k ∈ N : p | k and k is odd} if p ≡ 1 (mod 4);

Kg(p) =











(W2g ∩ Vp) ∪ (Wg − Vp) if g > 2,

(W4 ∩ Vp) ∪ (W2 − Vp) ∪ {1} if g = 2,

(W2 ∩ Vp) ∪ (W1 − Vp − {1}) if g = 1.

The next result can be shown to follow from Proposition 3.3 of [24].

Proposition 10 ([24]) Suppose A is a simple supersingular abelian variety of
dimension g over Fq.

(i) If q is a square, then e = 2 if and only if 2cA ∈ Xp.
(ii) If q is not a square, then e = 2 if and only if cA = 1 and g = 2.

Theorem 11 Suppose g and n are natural numbers and n is even. Then c = m
2

occurs as the cryptographic exponent of a simple supersingular abelian variety of
dimension g over Fpn if and only if m ∈ (Wg ∩Xp) ∪ (W2g −Xp).
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Proof. If ζ is a primitive m-th root of unity, then
√
pnζ corresponds by The-

orem 2 to a simple supersingular abelian variety over Fpn of dimension d =
edeg(G)/2 = eϕ(m)/2. By Proposition 10(i), d = g if and only if m ∈ (Wg ∩
Xp) ∪ (W2g −Xp).

Theorem 12 Suppose g and n are natural numbers and n is odd. Then c oc-
curs as the cryptographic exponent of a simple supersingular abelian variety of
dimension g over Fpn if and only if c ∈ Kg(p).

Proof. Suppose A is a simple supersingular abelian variety of dimension g over
Fq = Fpn with a q-Weil number π =

√
qζ with ζ a primitive m-th root of unity.

Then ϕ(cA) = [Q(π2) : Q]. We have 2g = e[Q(π) : Q] = e[Q(π) : Q(π2)][Q(π2) :
Q]. It follows from Lemma 2.6 of [24] that Q(π) = Q(π2) if and only if cA ∈ Vp.
It follows from Proposition 10(ii) that cA ∈ Kg(p). The converse follows by the
same reasoning.

For any given g and q, it is easy to work out from Theorems 11 and 12
exactly which values can occur as cryptographic exponents cA for g-dimensional
simple supersingular abelian varieties A over Fq, as is done in the following two
corollaries.

Corollary 13 If n is even, then the only possible cryptographic exponents cA
for simple supersingular abelian surfaces A over Fpn are the numbers of the form
m
2 with m ∈ {3, 4, 5, 6, 8, 10, 12}. For m ∈ {3, 4, 6}, m2 occurs as a cA if and only
if p ≡ 1 (mod m), and for m ∈ {5, 8, 10, 12}, m

2 occurs as a cA if and only
if p 6≡ 1 (mod m). An analogous statement holds for 4-dimensional varieties,
with {3, 4, 6} and {5, 8, 10, 12} replaced by {5, 8, 10, 12} and {15, 16, 20, 24, 30},
respectively.

Corollary 14 If n is odd, then the exact sets of cryptographic exponents cA that
occur for simple supersingular abelian varieties A of dimension g over Fpn with
2 ≤ g ≤ 5 are given below.

(i) Suppose g = 2.

(a) cA ∈ {1, 3, 4, 6} if p ≥ 7;
(b) cA ∈ {1, 3, 4, 5, 6} if p = 5;
(c) cA ∈ {1, 3, 4} if p = 3;
(d) cA ∈ {1, 3, 6, 12} if p = 2.

(ii) Suppose g = 3.

(a) There does not exist such an A if
p 6= 3, 7;

(b) cA = 14 if p = 7;
(c) cA = 18 if p = 3.

(iii) Suppose g = 4.

(a) cA ∈ {5, 8, 10, 12} if p ≥ 7;
(b) cA ∈ {8, 10, 12, 15} if p = 5;
(c) cA ∈ {5, 8, 10, 12, 30} if p = 3;
(d) cA ∈ {5, 10, 20} if p = 2.

(iv) Suppose g = 5.

(a) There does not exist such an A if
p 6= 11;

(b) cA = 22 if p = 11.

Corollary 15 Suppose p is prime, n and g are odd natural numbers, and g > 1.
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(i) If p 6≡ 3 (mod 4), then there does not exist a simple supersingular abelian
variety of dimension g over Fpn .

(ii) If p ≡ 3 (mod 4), and there exists a simple supersingular abelian variety of
dimension g over Fpn , then g = pb−1(p− 1)/2 for some natural number b.

Proof. Suppose there is a simple supersingular abelian variety A of dimension g
over Fpn . Since g > 1 is odd, we conclude from Theorem 12 that ϕ(cA) = 2g ≡ 2
(mod 4) and p | cA. This is only possible if cA = pb or 2pb, and p ≡ 3 (mod 4).

Part 2: Optimal supersingular abelian varieties

Definition 16 Suppose A is a supersingular abelian variety of dimension g over
Fq. We say that A is optimal if A is simple, and cA ≥ cB for every simple
supersingular abelian variety B of dimension g over Fq.

Optimal supersingular elliptic curves are well-known. The Jacobian of the
genus 2 curve y2 + y = x5 + x3 over F2 is optimal (cA = 12), and was given in
[9]. Recall that the genus of a curve is the same of the dimension of the Jacobian
variety of the curve.

The next two sections give two different constructions of families of exam-
ples of optimal supersingular abelian varieties. The first comes from taking a
piece of the Weil restriction of scalars of an elliptic curve. This construction has
the advantage of producing abelian varieties of dimensions 2, 3, 4, and 6 with
the largest security parameter possible for abelian varieties of that dimension,
namely 6, 6, 7.5, and 7, respectively. The best such examples occur in character-
istics 2 and 3, which gives a computational advantage. The second construction
comes from Jacobian varieties of superelliptic curves, and has the advantage of
giving a choice of infinitely many abelian varieties and characteristics.

5 A subvariety of the Weil restriction of scalars

If k ⊂ k′ are finite fields, E is an elliptic curve over k, and Q ∈ E(k′), write
Trk′/kQ =

∑

σ∈Gal(k′/k) σ(Q). See the appendix for a proof of a generalization of
the following result.

Theorem 17 Suppose E is a supersingular elliptic curve over Fq, π is a q-Weil
number for E, and π is not a rational number. Fix r ∈ N with gcd(r, 2pcE) = 1.
Then there is a simple supersingular abelian variety A over Fq such that:

(i) dim(A) = ϕ(r);
(ii) for every primitive r-th root of unity ζ, πζ is a q-Weil number for A;
(iii) cA = rcE;
(iv) αA = r

ϕ(r)αE;

(v) there is a natural identification of A(Fq) with the subgroup of E(Fqr )

{Q ∈ E(Fqr ) : TrFqr/Fqr/`
Q = O for every prime ` | r}.
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Abelian varieties of this form were considered by Frey in §3.2 of [6].

Remark 18 By Theorem 17(iii), A(Fq) has the same MOV security as E(Fqr ).
By Theorem 17(v), computation in A(Fq) is as efficient as computation in
E(Fqr ). The advantage of using A(Fq) is that (by Theorem 17(iv)) its secu-
rity parameter αA is higher than that of E(Fqr ) by a factor r/ϕ(r), so (for
example) it provides shorter signatures for the same security in the BLS short
signature scheme [3].
Using E(Fqr ), a signature in the BLS scheme is the x-coordinate of a point

on the elliptic curve, which is an element of Fqr and therefore is r log2(q) bits.
Fixing a basis for Fqr over Fq, an element of Fqr can be viewed as a vector

with r coordinates in Fq. Using A(Fq) in the short signature scheme and identi-
fying it with a subgroup of E(Fqr ) as in Theorem 17(v), a signature will now be
only the first ϕ(r) coordinates of the x-coordinate of a point in E(Fqr ) (along
with a few extra bits to resolve an ambiguity that may arise), so the signature
is about ϕ(r) log2(q) bits. Thus, for signature generation there is no additional
computation required: just follow the algorithm in [3] to produce the x-coordinate
of a point in E(Fqr ), and drop the extra coordinates. However, for signature ver-
ification there is now an extra step: given a signature one must reconstruct the
missing coordinates to get the x-coordinate of a point in our subgroup of E(Fqr ),
and then follow the verification algorithm in [3]. For more information on this
extra verification step, see the examples below.

Theorem 17 can be applied in particular to the low dimensional cases where
the tuple (dim(A), p, r, cA) is (2, 2, 3, 12), (2, p > 3, 3, 6), (4, 2, 5, 20), (4, 3, 5, 30),
(6, 2, 9, 36), or (6, 3, 7, 42). Next we use Theorem 17 to give implementations in
the cases (4, 3, 5, 30) and (2, 2, 3, 12).

5.1 dim(A) = 4, p = 3

The largest security parameter for a 4-dimensional abelian variety is 7.5, and
this occurs only in characteristic 3.

When gcd(n, 6) = 1 there are exactly 2 isogeny classes of elliptic curves
over F3n with security parameter 6. Equations for a curve from each isogeny
class, along with one of its Weil numbers and its characteristic polynomial of
Frobenius, are given below, where ( 3

n ) denotes the Jacobi symbol, which is +1
if n ≡ ±1 (mod 12), and −1 if n ≡ ±5 (mod 12).

curve equation Weil number characteristic polynomial

E+
n y2 = x3 − x+ ( 3

n )
√
3ne7πi/6 Gn(x) = x2 + 3

n+1

2 x+ 3n

E−n y2 = x3 − x− ( 3
n )

√
3neπi/6 Hn(x) = x2 − 3

n+1

2 x+ 3n

By Theorem 11 there is no elliptic curve over F3n with security parameter 6
when n is even. If n is an odd multiple of 3 then there are again two isogeny
classes of curves with the same Weil numbers and characteristic polynomials as
in the above table, but with different curves E+

n and E−n .
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Applying Theorem 17 to the elliptic curves E+
n and E−n over F3n with r = 5

produces 4-dimensional abelian varieties A+
n and A−n over F3n , described in the

following table.

Weil number characteristic polynomial

A+
n

√
3neπi/30 H5n(x

5)/Gn(x)

A−n
√
3ne17πi/30 G5n(x

5)/Hn(x)

Write E for E±n and A for A±n . By Theorem 17(iv), αA = 5
4αE = 7.5. Using

the characteristic polynomials to compute #A(F3n) for various n, we find the
following sample values of n for which #A(F3n) is of a size suitable for cryp-
tographic applications, and has a large prime factor. Here the signature length
is 4 log2(3

n) (see Remark 18), the DL security column contains log2(`) where `
is the largest prime dividing #A(F3n), and the MOV security column contains
log2(q

cA) = log2(3
30n).

variety n signature length DL security MOV security
A+
n 15 95 95 713

A+
n 17 108 100 808

A+
n 19 120 112 903

A+
n 33 209 191 1569

A+
n 43 273 265 2045

Let k = F3n and k1 = F35n . As discussed in Remark 18, the extra computa-
tion required for signature verification amounts to solving the problem: given 4
of the 5 k-coordinates of x, where (x, y) ∈ E(k1) and Trk1/k(x, y) = O, compute
the fifth.

We next give an algorithm to do this. Suppose Q = (x, y) ∈ E(k1) and
∑4

i=0 σ
i(Q) = O where σ generates Gal(k1/k). Then there is a function F on

E with zeros at the points σi(Q) for 0 ≤ i ≤ 4, a pole of order 5 at O, and

no other zeros or poles. Let g(z) =
∏4
i=0(z − σi(x)) ∈ k[z], and let X and Y

denote the coordinate functions on E. Then g(X) is a function on E with zeros
at ±σi(Q) for 0 ≤ i ≤ 4, a pole of order 10 at O, and no other zeros or poles.
Thus g(X) = FF̃ , where F̃ is F composed with multiplication by −1 on E.
Write F = f1(X) + f2(X)Y with f1(X), f2(X) ∈ k[X]. Since X has a double
pole at O and Y a triple pole, we have deg(f1) ≤ 2 and deg(f2) = 1. Setting
g(X) = f1(X)2 − Y 2f2(X)2 = f1(X)2 − (X3 − X ± 1)f2(X)2 gives equations
relating the coefficients of g, f1, and f2.

Suppose we know 4 of the 5 coordinates of x with respect to some fixed basis
of k1 over k, and let b ∈ k denote the missing coordinate. The coefficients of g are
polynomials in b with coefficients in k. Solving the above system of equations
for b reduces to computing the resultant of 2 polynomials in 2 variables, and
then finding the roots of a degree 9 polynomial in k[z]. (The extra bits in the
signature are used here in case the polynomial has more than one root.) This
extra verification step takes a few seconds on a desktop computer, using the
number theory software package KASH to compute the resultant and find its
roots, but this could be optimized by writing a dedicated program.
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Remark 19 k-coordinates of x, An alternative way to generate a signature from
the point Q above is to take 4 of the 5 symmetric functions of x and its conjugates
(i.e., 4 of the 5 coefficients of the polynomial g), instead of taking 4 of the 5 k-
coordinates of x. It is computationally very fast to recover the missing coefficient
of g using the algorithm above. Then x can be computed by factoring g over k1.
In our experiments the method above, which works over k rather than k1, seems
to be more efficient.
One could alternatively apply Theorem 17 with q = 3 and r = 5n and gain

an additional factor of n/ϕ(n) in the signature length. However, the verification
problem becomes harder.

5.2 dim(A) = 2, p = 2

The largest security parameter for an abelian surface is 6, and this occurs only
in characteristic 2.

When n is odd there are exactly 2 isogeny classes of elliptic curves over F2n

with αE = 4, namely those of y2 + y = x3 +x+1 and y2 + y = x3 +x. Applying
Theorem 17 with these curves and r = 3 produces two abelian surfaces A±n over
F2n with Weil number ±

√
2neπi/12 and characteristic polynomial of Frobenius

x4 ∓ 2
n+1

2 x3 + 2nx2 ∓ 2
3n+1

2 x+ 22n.

(One of these abelian varieties was given in [9] as the Jacobian of a hyperelliptic
curve.)

By Theorem 17(iv) (or directly from the definition), αA±n = 6. Using the

characteristic polynomials to compute #A±n (F2n) for various n, we find the
following sample values of n that are suitable for cryptographic applications.
Here the signature length is 2n.

variety n signature length DL security MOV security
A+ 43 86 82 516
A− 53 106 93 636
A+ 79 158 141 948
A+ 87 174 167 1044
A− 87 174 156 1044
A− 103 206 192 1236
A− 121 242 220 1452

As discussed in Remark 18, there is no extra computation required to gener-
ate short signatures using A±n , and the extra computation required for signature
verification amounts to solving the following problem: given two of the three F2n-
coordinates of a point in the subgroup of E±n (F23n) corresponding to A±n (F2n)
under Theorem 17(v), find the third coordinate. Using the method described
above in the case of p = 3, g = 4, and r = 5, in the present case the computation
reduces to taking one square root in F2n and solving one quadratic polynomial
over F2n . Taking square roots in a field of characteristic 2 is just a single expo-
nentiation, and solving a quadratic equation is not much harder. Neither of these
operations took measurable time on a desktop computer with the field F2103 .
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6 Jacobian varieties that are optimal when q is a square

The next result gives families of examples of Jacobian varieties that are optimal.
They have the advantage of giving a choice of infinitely many field characteristics.

Theorem 20 Suppose that a, b, n ∈ N have no common divisor greater than 1,
n is odd, and n+2− ((n, a)+ (n, b)+ (n, a+ b)) = ϕ(n). Let q be a prime power
congruent to −1 (mod n), and let F = Fq2 . For γ ∈ F ∗, let Cγ be the curve

yn = γxa(1− x)b

over F and write Aγ for its Jacobian variety. Then the dimension of Aγ is ϕ(n)/2
and Aγ is supersingular. If in addition γ generates F

∗ modulo n-th powers, then
Aγ is simple, cAγ

= n, and Aγ(F ) is cyclic.

Proof. The dimension of Aγ is the genus of Cγ . The genus g of Cγ being ϕ(n)/2
follows from the fact that g is independent of γ, and the formula for the genus
of C±1 given on p. 55 of [4].

Since q ≡ −1 (mod n), Theorem 20.15 of [19] shows that the Frobenius
endomorphism of A1 is multiplication by −q. In particular, the characteristic
polynomial of Frobenius is (x+ q)2g, and A1 is supersingular. Since every Aγ is
isomorphic to A1 over the algebraic closure F̄ , every Aγ is supersingular.

The endomorphism ring End(Aγ) contains the group of n-th roots of unity
µn, where ξ ∈ µn acts on Cγ by sending (x, y) to (x, ξy). Fix an n-th root δ of

γ. Then δq
2

is also an n-th root of γ. Let ζ = γ(q2−1)/n = δq
2−1. Then ζn = 1,

so we can view ζ ∈ µn ⊂ End(Aγ). We have a commutative diagram

C1
φ1−−−−→ C1

λ





y





yλ′

Cγ
φγ−−−−→ Cγ

where φ1, φγ are the q2-power maps (x, y) 7→ (xq
2

, yq
2

) of C1 and Cγ , respec-
tively, and λ, λ′ : C1 → Cγ are the isomorphisms (x, y) 7→ (x, δy), (x, y) 7→
(x, δq

2

y). Writing [φγ ], [λ
′], etc. for the induced maps on A1 and Aγ , we noted

above that [φ1] = −q, and so the Frobenius endomorphism of Aγ is

[φγ ] = [λ′◦φ1◦λ−1] = [λ−1]◦[φ1]◦[λ′] = [λ−1]◦(−q)◦[λ′] = −q◦[λ′◦λ−1] = −ζq.

Suppose now that γ generates F ∗ modulo n-th powers. Then ζ is a primitive
n-th root of unity, and since n is odd, −ζ is a primitive 2n-th root of unity.
The characteristic polynomial P (x) of Frobenius on Aγ has degree 2g = ϕ(n) =
ϕ(2n), and has −ζq as a root, so P (x) =

∏

ξ(x − ξq), product over primitive

2n-th roots of unity ξ. Thus P (x) = qϕ(2n)Φ2n(x/q). Since Φ2n(x) is irreducible,
so is P (x). Therefore Aγ is simple and cA = n. By Theorem 1, Aγ(F ) is cyclic.
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Example 21 Suppose (g, n, a, b) is one of the following 4-tuples:

g n a b
3 9 3 1
4 15 5 3
6 21 7 3
9 27 9 1
10 33 11 3
`−1
2 ` α β

where in the last row ` is a prime, 1 ≤ α, β ≤ `−1, and α+β 6= `. Let q be a prime
power congruent to −1 (mod n), F = Fq2 , and γ a generator of F

∗ modulo n-th
powers. Let C be the curve yn = γxa(1 − x)b and A its Jacobian variety. Then
by Theorem 20, A is simple and supersingular, genus(C) = dim(A) = g, cA = n,
A(F ) is cyclic, and 2n is the smallest integer k such that #A(F ) divides qk− 1.
In the table, if g = 3, 4, 6, 9, 10, or if g > 3 and g is a prime of the form (`−1)/2,
then 2n is the largest element of W2g, so A is optimal. Optimal examples with
g = 1 and 5 are obtained by taking ` = 3 and 11 in the last row, and non-optimal
examples with g = 2 and 3 by taking ` = 5 and 7 in the last row.

7 Security

Proofs of security for cryptosystems based on elliptic curves rely on the difficulty
of some problem (EC Diffie-Hellman and/or Weil Diffie-Hellman, for the systems
in [18, 15, 2, 3, 22]). These hard problems generalize to abelian varieties, where
they are also believed to be hard. However, we note some additional security
considerations.

Allowing the cryptographic exponent cA to take half-integer values when q
is a square means that cA correctly captures the MOV security of the variety.
For example, for every prime p there is a supersingular elliptic curve E over Fp2
such that cA = 1

2 , by Theorem 11. By Theorem 1, E(Fp2) ∼= (Z/(p− 1)Z)2, and
the smallest field in which the Weil and Tate pairings take their values is Fp.
Therefore, solving the DL problem in F∗p will break cryptographic schemes that
base their security on the difficulty of solving the DL problem in a subgroup of
E(Fp2). In other words, the MOV security here really comes from Fp, and not
Fq. Theorem 7 says that in general the MOV security comes from a field of size
qcA .

It follows from Theorem 8 that in the special case where A is an elliptic curve,
q is not a square, and Q is a point in A(Fq) of large order, the cryptographic
exponent cA coincides with the “security multiplier” for Q that was defined in
[3].

Abelian varieties that are Jacobians of hyperelliptic curves over a finite field
whose size is small compared to the curve’s genus are considered to be weak
for use in cryptography, due to attacks in [1, 11]. The examples coming from
§5 do not appear in general to be Jacobians of curves. The examples in §6 are
Jacobians, but outside of the cases equivalent to the a = b = 1 case they do not



Supersingular Abelian Varieties in Cryptology 351

appear to be Jacobians of hyperelliptic curves. In any case, these attacks do not
apply to abelian varieties of small dimension.

Weil descent attacks [12, 10] have been carried out for certain elliptic curves
over binary fields. In these attacks one starts with an elliptic curve over Fqr and
takes its Weil restriction of scalars down to Fq. This is an abelian variety B of
dimension r over Fq. The attack proceeds by looking for a hyperelliptic curve
whose Jacobian variety is related to B, solving the DL problem for this Jacobian
variety, and using it to solve the DL problem for the original elliptic curve. For
an abelian variety A produced by Theorem 17 from an elliptic curve E, we have
A(Fq) ⊆ E(Fqr ). It is tempting to try to break the associated cryptosystems
by solving the DL problem on E(Fqr ) using Weil descent. However, the Weil
descent attack replaces (the subfield curve) E by its Weil restriction of scalars
from Fqr to Fq, which has A as a large simple factor, so we are back where
we started. In addition, it is not known how to carry out Weil descent attacks
except when p = 2 and dim(A) ≥ 4, and the most important applications of
Theorem 17 (the examples in §5) have either p = 3 and dim(A) = 4, or p = 2
and dim(A) = 2. For these examples, one could ask whether there is an efficient
way to find hyperelliptic curves, if they exist, whose Jacobians are related to
the given abelian variety in a helpful way. This is likely to be a hard problem in
general. Its analogue in characteristic zero would solve a long-standing problem
by producing a sequence of elliptic curves of unbounded rank.

Acknowledgments. The authors thank Steven Galbraith for his observations
and Dan Boneh for helpful conversations.
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Appendix

In this appendix we will state and prove a more general version (Theorem 24
below) of Theorem 17.

Write Res(f, g) for the resultant of two polynomials f and g.

Lemma 22 Suppose a, b, c are pairwise relatively prime integers. Then there are
g1(x), g2(x) ∈ Z[x] such that

g1(x)
∏

a|d|abc
Φd(x) + g2(x)

∏

b|d|abc
Φd(x) =

∏

ab|d|abc
Φd(x).
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Proof. Let f1(x) =
∏

a|d|abc,b-d Φd(x) and f2(x) =
∏

b|d|abc,a-d Φd(x). If ηi is a

root of fi for i = 1 and 2, then η1/η2 is a root of unity of order divisible by both
a prime divisor of a and a prime divisor of b. Hence η1/η2 − 1 is a (cyclotomic)
unit in the ring of algebraic integers. Therefore Res(f1, f2), an integer which
is the product of the differences of the roots of f1 and the roots of f2, is ±1.
By Proposition 9 in §3.5 of [5], there are g1, g2 ∈ Z[x] such that g1(x)f1(x) +
g2(x)f2(x) = Res(f1, f2).

Lemma 23 Suppose M is a square matrix over a field F with characteristic
polynomial fM , and g(x) ∈ F [x]. Then det(g(M)) = Res(g, fM ).

Proof. This is clear if M is upper-triangular. To obtain the general case, replace
F by its algebraic closure and upper-triangularize M .

Recall the notation e from Theorem 1.

Theorem 24 Suppose E is a supersingular abelian variety over Fq with e = 1.
Fix r ∈ N such that gcd(r, 2pcE) = 1. Then there is a simple supersingular
abelian variety A over Fq such that:

(i) dim(A) = ϕ(r) dim(E);
(ii) if π is a q-Weil number for E, then πζ is a q-Weil number for A for every

primitive r-th root of unity ζ;
(iii) cA = rcE ;
(iv) αA = r

ϕ(r)αE ;

(v) there is a natural identification of A(Fq) with the subgroup of E(Fqr )

{Q ∈ E(Fqr ) : TrFqr/Fqr/`
Q = O for every prime ` | r}.

Proof. Let Ω be the set of q-Weil numbers for E , and d = dim(E). Since e = 1,
the characteristic polynomial of the Frobenius endomorphism φE on E is PE(x) =
∏

π∈Ω(x− π).
Let k = Fq and k1 = Fqr , and let B denote the Weil restriction of scalars

(§1.3 of [23]) of E from k1 to k. Then B is an rd-dimensional abelian variety
defined over k, there is a natural isomorphism

B(k) ∼= E(k1), (1)

and PB(x) =
∏

π∈Ω(x
r − πr) is the characteristic polynomial of the Frobenius

endomorphism on B over k. Fix a π ∈ Ω and a primitive r-th root of unity ζ.
Then PB(πζ) = 0, so B has a simple supersingular abelian subvariety A with
πζ as a q-Weil number. We will show that the conclusions of the theorem hold
for A.

Assertion (iii) holds by Definition 3. By Proposition 10 and the fact that
p - r, e = 1 for A. Thus, 2 dim(A) = [Q(πζ) : Q]. Since gcd(r, 2pcE) = 1 we have
Q(ζ) ∩Q(π) = Q, so [Q(πζ) : Q] = [Q(π) : Q][Q(ζ) : Q] = 2 dim(E)ϕ(r). This
proves (i), and (ii) and (iv) follow. The isomorphism (1) identifies A(k) with a
subgroup of E(k1), and it remains only to determine this subgroup.



354 K. Rubin and A. Silverberg

If ` is a prime divisor of r, write r = `im with ` - m, let k` = Fqr/` , and let

h`(x) =
∏

d|m Φ`id(x) = (xr − 1)/(xr/` − 1). Let

T = {Q ∈ E(k1) : Trk1/k`Q = O for every prime ` | r} = ∩`|r ker(h`(φE)).

Applying Lemma 22 inductively one can show that there are γ`(x) ∈ Z[x] such
that

∑

`|r γ`(x)h`(x) = Φr(x). It follows that T = ker(Φr(φE)). Since φE is

(purely) inseparable (see Proposition II.2.11 of [20]), it follows that Φr(φE) is
separable (its action on the space of differential forms on E is Φr(0) 6≡ 0 (mod p);
see Proposition II.4.2(c) of [20]). By Theorem III.4.10(c) of [20], #T is the degree
of the endomorphism Φr(φE).

Applying Lemma 23 to the matrix ME giving the action of φE on the `-adic
Tate module of E for some prime ` 6= p shows that

#T = deg(Φr(φE)) = det(Φr(ME))

= Res(Φr, PE) =
∏

Φr(η)=0

PE(η) = PA(1) = #A(k).

If E(k1) is cyclic, it follows that the isomorphism (1) identifies A(k) with T .
In the special cases where E(k1) is not cyclic (Theorem 1(iii)) one can show that
#A(k) = PA(1) is odd, and since the odd part of E(k1) is always cyclic, (1)
identifies A(k) with T in this case also.


