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Abstract. A simple and efficient shuffling scheme containing two pro-
tocols is proposed. Firstly, a prototype, Protocol-1 is designed, which is
based on the assumption that the shuffling party cannot find a linear
relation of the shuffled messages in polynomial time. As application of
Protocol-1 is limited, it is then optimised to Protocol-2, which does not
need the assumption. Both protocols are simpler and more efficient than
any other shuffling scheme with unlimited permutation. Moreover, they
achieve provable correctness and ZK privacy.
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1 Introduction

Shuffling is a very important cryptographic primitive. In a shuffling, a party
re-encrypts and shuffles a number of input ciphertexts to the same number of
output ciphertexts and publicly proves the validity of his operation. Its most
important application is to build up anonymous channels used in e-voting [13],
anonymous email [4] and anonymous browsing [7] etc. It is also employed in
other cryptographic applications like multiparty computation [17] and electronic
auction [18]. Two properties must be satisfied in a shuffling. The first property is
correctness, which requires the shuffling party’s validity proof to guarantee that
the plaintexts of the outputs are a permutation of the plaintexts of the inputs.
The second property is privacy, which requires the validity proof of the shuffling
to be zero knowledge.
Recently, several shuffling schemes [1, 2, 6, 13, 8, 19, 15] have been proposed.

Among them, [2] is a slight modification of [1]; [15] is a Paillier-encryption-based
version of [6]; a similar idea is used in [13] and [8]. Except [19], all of them
employ complicated proof techniques to prove correctness of the shuffling. The
shuffling in [1] and [2] employs a large and complex shuffling circuit; [6] and
[15] explicitly deal with a n × n matrix (n is the number of inputs); [13] and
[8] employ proof of equality of product of exponents. Complexity of the proof
causes several drawbacks. Firstly, correctness of the shuffling is not always strict.
More precisely, in [8], if an input is shuffled to its minus (gq = −1 mod 2q + 1



where q and 2q+1 are primes and the order of g modulo 2q+1 is 2q), the proof
can be accepted with a probability no smaller than 0.5. Secondly, some details
of the proof (for example, the efficiency optimisation mechanism in [8]) are too
complex to be easily understood or strictly analysed. Thirdly, the proofs in [6],
[13] and [15] are not honest-verifier zero knowledge as pointed out in [10], [15]
and [14]. So their privacy cannot be strictly and formally guaranteed. Finally,
the proof is inefficient in all of them except [19]. Especially, the computational
cost in [1] and [2] are linear in n log n while [13] and [8] need seven rounds of
communication.

Although [19] is simple and very efficient, it has two drawbacks. Firstly, only
a fraction of all the possible permutations are permitted. Secondly, it needs an
assumption called linear ignorance assumption in this paper.

Definition 1 Let D() be the decryption function for an encryption scheme with
plaintext space {0, 1, . . . , q − 1}. Suppose an adversary A is given a set of n
valid ciphertexts c1, c2, . . . , cn. A succeeds if it outputs integers l1, l2, . . . , ln, not
all zero, such that

∑n
i=1 liD(ci) = 0 mod q. The linear ignorance assumption

states that there is no efficient adversary that can succeed with non-negligible
probability.

In [19], linear ignorance assumption is used against the shuffling party, who re-
ceives some ciphertext to shuffle and acts as the adversary. It is assumed in [19]
that given the ciphertexts to shuffle, the probability that the shuffling party can
efficiently find a linear relation about the messages encrypted in them is negligi-
ble. When the encryption scheme is semantically secure and the distribution of
D(c1), D(c2), . . . , D(cn) is unknown, this assumption is reasonable. However, if
some party with some information about D(c1), D(c2), . . . , D(cn) collude with
the shuffling party, this assumption fails.

In this paper, two correct and private shuffling protocols, denoted as
Protocol-1 and Protocol-2, are proposed. Protocol-1 is a prototype and needs the
linear ignorance assumption against the shuffling party. So the shuffling party’s
knowledge of the shuffled messages is strictly limited in Protocol-1. Therefore,
Protocol-1 is not suitable for applications like e-voting, where the shuffling party
(tallier) may get some information about the shuffled messages from some mes-
sage providers (colluding voters). Protocol-2 is an optimization of Protocol-1.
It requires slightly more computation than Protocol-1, but concretely realises
linear ignorance of the shuffling party in regard to the ciphertexts to shuffle.
Namely, in Protocol-2, linear ignorance of the shuffling party in regard to the
ciphertexts is not an assumption but a provable fact, which is an advantage over
[19] and Protocol-1. As a result, Protocol-2 does not need the linear ignorance
assumption, so is suitable for a much wider range of applications than Protocol-
1. Both the new shuffling protocols are honest-verifier zero knowledge and more
efficient than [1, 2, 6, 13, 8, 15]. Moreover, neither of them limits the permutation,
which is an advantage over [19].



2 The Shuffling Protocol

Let n be the number of inputs. An additive homomorphic semantically-secure en-
cryption scheme1 like Paillier encryption [16] is employed where E(m, r) stands
for encryption of message m using random integer r, RE(c, r) stands for re-
encryption of ciphertext c using random integer r and D(c) stands for decryp-
tion of ciphertext c. Additive homomorphism of the encryption scheme implies
RE(c, r) = cE(0, r). Let q be the modulus of the message space, which has no
small factor. Any computation in any matrix or vector is modulo q in this paper.
In encryption or re-encryption the random factor r is chosen from a set Q de-
pendent on the encryption algorithm. |m| stands for the bit length of an integer
m. L is a security parameter, such that 2L is no larger than the smallest factor
of q.

M ′ stands for the transpose matrix of a matrix M . A matrix is called a
permutation matrix if there is exactly one 1 in every row and exactly one 1 in
every column in this matrix while the other elements in this matrix are zeros.
ZP ( x1, x2, . . . , xk | f1, f2, . . . , fl ) stands for a ZK proof of knowledge of secret
integers x1, x2, . . . , xk satisfying conditions f1, f2, . . . , fl. ExpCost(x) stands for
the computational cost of an exponentiation computation with a x bit expo-
nent. In this paper, it is assumed that ExpCost(x) equals 1.5x multiplications.
ExpCostn(x) stands the computational cost of the product of n exponentiations
with x-bit exponents. Bellare et al. [3] showed that ExpCostn(x) is no more
than n+ 0.5nx multiplications.
In a shuffling, ciphertexts c1, c2, . . . , cn encrypting messages m1,m2, . . . ,mn

are sent to a shuffling party, who shuffles the ciphertexts into c′1, c
′
2, . . . , c

′
n

and has to prove that D(c′1), D(c
′
2), . . . , D(c

′
n) is a permutation of

D(c1), D(c2), . . . , D(cn). Batch verification techniques in [17] indicate that if

n
∑

i=1

siD(ci) =

n
∑

i=1

sπ(i)D(c
′
i) mod q (1)

can be satisfied with a non-negligible probability where s1, s2, . . . , sn are ran-
domly chosen and π() is a permutation, the shuffling is correct and D(c′i) =
D(cπ(i)) for i = 1, 2, . . . , n. However, direct verification of Equation (1) requires
knowledge of π(). To protect privacy of the shuffling, π() must not appear in
the verification. Groth’s shuffling scheme [8] shows that to prove Equation (1)
without revealing π() is complicated and inefficient. In the new shuffling scheme
a much simpler method is employed. Firstly, it is proved that the shuffling party
knows t1, t2, . . . , tn such that

n
∑

i=1

siD(ci) =

n
∑

i=1

tiD(c
′
i) mod q (2)

1 An encryption algorithm with encryption function E() is additive homomorphic if
E(m1)E(m2) = E(m1+m2) for any messages m1 and m2. An encryption algorithm
is semantically-secure if given a ciphertext c and two messages m1 and m2, such that
c = E(mi) where i = 1 or 2, there is no polynomial algorithm to find out i.



where it is not required to prove that t1, t2, . . . , tn are a permutation of
s1, s2, . . . , sn. This proof does not reveal the permutation, but is not strong
enough to guarantee validity of the shuffling. Actually, Equation (2) only
implies that under the linear ignorance assumption against the shuffling
party there exists a matrix M such that (D(c′1), D(c

′
2), . . . , D(c

′
n)) · M =

(D(c1), D(c2), . . . , D(cn)). As M need not be a permutation matrix, this
proof only guarantees that D(c1), D(c2), . . . , D(cn) is a linear combination
of D(c′1), D(c

′
2), . . . , D(c

′
n) under the linear ignorance assumption against the

shuffling party. However, repeating this proof in a non-linear manner can
guarantee M is a permutation matrix under the linear ignorance assumption
against the shuffling party. In Protocol-1, given random integers si and s

′
i from

{0, 1, . . . , 2L−1} for i = 1, 2, . . . n, the shuffling party has to prove that he knows
secret integers ti and t

′
i from Zq for i = 1, 2, . . . n, such that

n
∑

i=1

siD(ci) =
n

∑

i=1

tiD(c
′
i) mod q

n
∑

i=1

s′iD(ci) =

n
∑

i=1

t′iD(c
′
i) mod q

n
∑

i=1

sis
′
iD(ci) =

n
∑

i=1

tit
′
iD(c

′
i) mod q

Note that sis
′
i and tit

′
i in the third equation breaks the linear relation among

the three equations. Under the linear ignorance assumption against the shuffling
party, the three equations above can guarantee correctness of the shuffling with
an overwhelmingly large probability. In Protocol-2, every input to be shuffled
is randomly distributed into two inputs, each in one of two input sets. Then
the two sets of inputs are shuffled separately using the same permutation. As
the distribution is random, the input messages in both shufflings are random
and are unknown even to the original message providers. So it is impossible
for the shuffling party to find any linear relation of the input messages in either
shuffling as the employed encryption algorithm is semantically secure. As the two
shufflings are identical, their outputs can be combined to be the final shuffled
outputs.

2.1 Protocol-1

In Protocol-1, it is assumed that the shuffling party cannot find a linear relation
of m1,m2, . . . ,mn in polynomial time. Protocol-1 is as follows.

1. The shuffling party randomly chooses π(), a permutation of {1, 2, . . . , n},
and integers ri from Q for i = 1, 2, . . . n. He then outputs c′i = RE(cπ(i), ri)
for i = 1, 2, . . . n while concealing π().

2. A verifier randomly chooses and publishes si from {0, 1, . . . , 2L − 1} for
i = 1, 2, . . . n. The shuffling party chooses r′i from Q for i = 1, 2, . . . n and



publishes c′′i = c′
ti
i E(0, r

′
i) for i = 1, 2, . . . n where ti = sπ(i). The shuffling

party publishes ZK proof

ZP ( ti, r
′
i | c

′′
i = c′

ti
i E(0, r

′
i) ) for i = 1, 2, . . . n (3)

and

ZP ( ri, ti, r
′
i for i = 1, 2, . . . , n |

n
∏

i=1

csii

n
∏

i=1

(E(0, ri))
tiE(0, r′i) =

n
∏

i=1

c′′i ) (4)

3. The verifier randomly chooses and publishes s′i from {0, 1, . . . , 2L − 1} for
i = 1, 2, . . . n. The shuffling party sets t′i = s′π(i) for i = 1, 2, . . . n and
publishes ZK proof

ZP ( ri, ti, r
′
i, t

′
i for i = 1, 2, . . . n |

n
∏

i=1

c
s′i
i

n
∏

i=1

(E(0, ri))
t′i =

n
∏

i=1

c′
t′i
i ,

n
∏

i=1

c
sis
′
i

i

n
∏

i=1

(E(0, ri))
tit
′
i(E(0, r′i))

t′i =
n

∏

i=1

c′′
t′i
i ) (5)

If the shuffling party is honest and sets ti = sπ(i) and t′i = s′π(i), he can

pass the verification as
∑n

i=1 tiD(c
′
i) =

∑n
i=1 sπ(i)D(cπ(i)) =

∑n
i=1 siD(ci);

∑n
i=1 t

′
iD(c

′
i) =

∑n
i=1 s

′
π(i)D(cπ(i)) =

∑n
i=1 s

′
iD(ci) and

∑n
i=1 tit

′
iD(c

′
i) =

∑n
i=1 sπ(i)s

′
π(i)D(cπ(i)) =

∑n
i=1 sis

′
iD(ci). Theorem 1 shows that if the shuffling

party can pass the verification with a non-negligible probability, his shuffling is
correct.

Theorem 1. If the verifier chooses his challenges si and s
′
i randomly and the

shuffling party in Protocol-1 can provide ZK proofs (3), (4) and (5) with a prob-
ability larger than 2−L, there exists a n × n permutation matrix M such that
(m′

1,m
′
2, . . . ,m

′
n)M = (m1,m2, . . . ,mn) under the linear ignorance assumption

against the shuffling party.

To prove Theorem 1, the following lemmas are proved first.

Lemma 1. If given random integers si from {0, 1, . . . , 2
L−1} for i = 1, 2, . . . , n,

a party can find in polynomial time integers ti from Zq for i = 1, 2, . . . , n with
a probability larger than 2−L, such that

∑n
i=1 simi =

∑n
i=1 tim

′
i mod q, then

he can find in polynomial time a matrix M such that (m′
1,m

′
2, . . . ,m

′
n)M =

(m1,m2, . . . ,mn).

Proof: Given any integer k in {1, 2, . . . , n} there must exist integers
s1, s2, . . . , sk−1, sk+1, . . . , sn in {0, 1, . . . , 2

L − 1} and two different integers sk
and ŝk in {0, 1, . . . , 2

L − 1} such that given s1, s2, . . . , sn and ŝk, the party can
find in polynomial time ti and t̂i from Zq for i = 1, 2, . . . , n to satisfy the follow-
ing two equations.

n
∑

i=1

simi =

n
∑

i=1

tim
′
i mod q (6)



(

k−1
∑

i=1

simi)ŝkmk

n
∑

i=k+1

simi =

n
∑

i=1

t̂im
′
i mod q (7)

Otherwise, for any s1, s2, . . . , sk−1, sk+1, . . . , sn there is at most one sk to satisfy
equation

∑n
i=1 simi =

∑n
i=1 tim

′
i mod q. This deduction implies that among the

2nL possible combinations of s1, s2, . . . , sn, the party can find in polynomial time
ti for i = 1, 2, . . . , n to satisfy

∑n
i=1 simi =

∑n
i=1 tim

′
i mod q for at most 2

(n−1)L

combinations. This conclusion leads to a contradiction: given random integers si
from {0, 1, . . . , 2L − 1} for i = 1, 2, . . . , n the party can find in polynomial time
ti for i = 1, 2, . . . , n to satisfy

∑n
i=1 simi =

∑n
i=1 tim

′
i mod q with a probability

no larger than 2−L.
Subtracting (7) from (6) yields

(sk − ŝk)mk =

n
∑

i=1

(ti − t̂i)m
′
i mod q

Note that sk ∈ {0, 1, . . . , 2L − 1}, ŝk ∈ {0, 1, . . . , 2L − 1}, sk 6= ŝk and
2L is no larger than the smallest factor of q. So sk − ŝk 6= 0 mod q.
Namely, given a non-zero integer sk − ŝk, the party can find in poly-
nomial time ti − t̂i for i = 1, 2, . . . , n such that (sk − ŝk)mk =
∑n

i=1(ti − t̂i)m
′
i mod q. So, for any k in {1, 2, . . . , n} the party knows a

vector Vk = ( (t1 − t̂1)/(sk − ŝk), (t2 − t̂2)/(sk − ŝk), . . . , (tn − t̂n)/(sk − ŝk) )
′

such thatmk = (m
′
1,m

′
2, . . . ,m

′
n)Vk. Therefore, the party can find in polynomial

time a matrix M such that (m1,m2, . . . ,mn) = (m′
1,m

′
2, . . . ,m

′
n)M where

M = (V1, V2, . . . , Vn). 2

Lemma 2. If a party can find in polynomial time a n × n singular matrix M
such that (m′

1,m
′
2, . . . ,m

′
n)M = (m1,m2, . . . ,mn) where (m1,m2, . . . ,mn) and

(m′
1,m

′
2, . . . ,m

′
n) are two vectors, then he can find in polynomial time a linear

relation about m1,m2, . . . ,mn.

Proof: Suppose M = (V1, V2, . . . , Vn). Then mi = (m
′
1,m

′
2, . . . ,m

′
n)Vi.

AsM is singular and the party can find in polynomial timeM , he can find in
polynomial time integers l1, l2, . . . , ln and k such that

∑n
i=1 liVi = (0, 0, . . . , 0)

where 1 ≤ k ≤ n and lk 6= 0 mod q. So

n
∑

i=1

limi =

n
∑

i=1

li(m
′
1,m

′
2, . . . ,m

′
n)Vi = (m

′
1,m

′
2, . . . ,m

′
n)

n
∑

i=1

liVi = 0

Namely, the party can find in polynomial time l1, l2, . . . , ln to satisfy
∑n

i=1 limi = 0 where 1 ≤ k ≤ n and lk 6= 0 mod q. 2

Lemma 3. If a party can find a n × n non-singular matrix M and inte-
gers l1, l2, . . . , ln and k in polynomial time such that (m′

1,m
′
2, . . . ,m

′
n) =



(m1,m2, . . . ,mn)M ,
∑n

i=1 lim
′
i = 0, 1 ≤ k ≤ n and lk 6= 0 mod q where

(m1,m2, . . . ,mn) and (m
′
1,m

′
2, . . . ,m

′
n) are two vectors, then he can find a linear

relation about m1,m2, . . . ,mn in polynomial time.

Proof: As (m′
1,m

′
2, . . . ,m

′
n) = (m1,m2, . . . ,mn)M and

∑n
i=1 lim

′
i = 0,

n
∑

i=1

li(m1,m2, . . . ,mn)Vi = 0 where M = (V1, V2, . . . , Vn)

So

(m1,m2, . . . ,mn)

n
∑

i=1

liVi = 0

Note that
∑n

i=1 liVi 6= (0, 0, . . . , 0) as M is non-singular, 1 ≤ k ≤ n
and lk 6= 0 mod q. Therefore, the party can find a linear relation about
m1,m2, . . . ,mn in polynomial time. 2

Lemma 4. If given random integers si from {0, 1, . . . , 2L − 1} for i =
1, 2, . . . , n, a party can find a n × n non-singular matrix M and integers ti
from Zq for i = 1, 2, . . . , n in polynomial time such that (m1,m2, . . . ,mn) =
(m′

1,m
′
2, . . . ,m

′
n)M and

∑n
i=1 simi =

∑n
i=1 tim

′
i mod q where (m1,m2, . . . ,mn)

and (m′
1,m

′
2, . . . ,m

′
n) are two vectors, then (s1, s2, . . . , sn)M = (t1, t2, . . . , tn)

under the linear ignorance assumption against the shuffling party.

Proof:
(m1,m2, . . . ,mn) = (m

′
1,m

′
2, . . . ,m

′
n)M

implies
mi = (m

′
1,m

′
2, . . . ,m

′
n)Vi for i = 1, 2, . . . , n

where M = (V1, V2, . . . , Vn).
So

n
∑

i=1

simi =

n
∑

i=1

tim
′
i mod q

implies

(m′
1,m

′
2, . . . ,m

′
n)

n
∑

i=1

siVi = (m
′
1,m

′
2, . . . ,m

′
n)











t1
t2
...
tn











So given random integers si from {0, 1, . . . , 2
L − 1} for i = 1, 2, . . . , n, the party

can find matrix M = (V1, V2, . . . , Vn) and integers ti from Zq for i = 1, 2, . . . , n
in polynomial time such that

(m′
1,m

′
2, . . . ,m

′
n)(

n
∑

i=1

siVi −











t1
t2
...
tn











) = 0 (8)



As M is non-singular,

(m′
1,m

′
2, . . . ,m

′
n) = (m1,m2, . . . ,mn)M

−1

So

n
∑

i=1

siVi −











t1
t2
...
tn











=











0
0
...
0











otherwise according to Lemma 3 the party can find a linear relation about
m1,m2, . . . ,mn in polynomial time, which is contradictory to the linear igno-
rance assumption against the shuffling party. So

n
∑

i=1

siVi =











t1
t2
...
tn











and thus M ′











s1
s2
...
sn











=











t1
t2
...
tn











Namely,

(s1, s2, . . . , sn)M = (t1, t2, . . . , tn)

2

Lemma 5. If
∑n

i=1 yisi = 0 mod q with a probability larger than 2
−L for ran-

dom integers s1, s2, . . . , sn from {0, 1, 2, . . . , 2L − 1}, then yi = 0 mod q for
i = 1, 2, . . . , n.

Proof: Given any integer k in {1, 2, . . . , n}, there must exist integers
s1, s2, . . . , sk−1, sk+1, . . . , sn in {0, 1, . . . , 2

L − 1} and two different integers sk
and ŝk in {0, 1, . . . , 2

L − 1} such that the following two equations are correct.

n
∑

i=1

yisi = 0 mod q (9)

(
k−1
∑

i=1

yisi) + ykŝk +
n

∑

i=k+1

yisi = 0 mod q (10)

Otherwise, for any s1, s2, . . . , sk−1, sk+1, . . . , sn there is at most one sk to sat-
isfy equation

∑n
i=1 yisi = 0 mod q. This deduction implies among the 2

nL pos-
sible combinations of s1, s2, . . . , sn, equation

∑n
i=1 yisi = 0 mod q is correct

for at most 2(n−1)L combinations. This conclusion leads to a contradiction:
given random integers si from {0, 1, . . . , 2L − 1} for i = 1, 2, . . . , n, equation
∑n

i=1 yisi = 0 mod q is correct with a probability no larger than 2
−L.



Subtracting (10) from (9) yields

yk(sk − ŝk) = 0 mod q

Note that GCD(sk − ŝk, q) = 1 as 2L is no larger than the smallest fac-
tor of q, sk 6= ŝk and sk,ŝk are L-bit integers. So, yk = 0 mod q. Note that
k can be any integer in {1, 2, . . . , n}. Therefore yi = 0 mod q for i = 1, 2, . . . , n. 2

Proof of Theorem 1:
According to additive homomorphism of the employed encryption algorithm, ZK
proofs (3), (4) and (5) guarantee that the shuffling party can find integers ti and
t′i for i = 1, 2, . . . , n to satisfy

n
∑

i=1

simi =

n
∑

i=1

tim
′
i mod q (11)

n
∑

i=1

s′imi =

n
∑

i=1

t′im
′
i mod q (12)

n
∑

i=1

sis
′
imi =

n
∑

i=1

tit
′
im

′
i mod q (13)

where m′
i = D(c′i) and si and s

′
i for i = 1, 2, . . . , n are randomly chosen by the

verifier.
According to Lemma 1, the shuffling party knows a matrix M such that

(m′
1,m

′
2, . . . ,m

′
n)M = (m1,m2, . . . ,mn) (14)

According to Lemma 2, M is non-singular under the linear ignorance as-
sumption against the shuffling party.
According to Lemma 4, Equations (14) together with Equations (11), (12)

and (13) implies

(s1, s2, . . . , sn)M = (t1, t2, . . . , tn) (15)

(s′1, s
′
2, . . . , s

′
n)M = (t′1, t

′
2, . . . , t

′
n) (16)

(s1s
′
1, s2s

′
2, . . . , sns

′
n)M = (t1t

′
1, t2t

′
2, . . . , tnt

′
n) (17)

under the linear ignorance assumption against the shuffling party.
Equation (15), Equation (16) and Equation (17) respectively imply

(s1, s2, . . . , sn)V1 = t1 (18)

(s′1, s
′
2, . . . , s

′
n)V1 = t′1 (19)

(s1s
′
1, s2s

′
2, . . . , sns

′
n)V1 = t1t

′
1 (20)

where M = (V1, V2, . . . , Vn).
Equation (18) and Equation (19) imply

(s′1, s
′
2, . . . , s

′
n)V1(s1, s2, . . . , sn)V1 = t1t

′
1 (21)



Equation (20) and Equation (21) imply

(s′1, s
′
2, . . . , s

′
n)V1(s1, s2, . . . , sn)V1 = (s1s

′
1, s2s

′
2, . . . , sns

′
n)V1

So

(s′1, s
′
2, . . . , s

′
n)V1(s1, s2, . . . , sn)V1 = (s

′
1, s

′
2, . . . , s

′
n)











v1,1s1
v1,2s2
...

v1,nsn











where V1 =











v1,1

v1,2

...
v1,n











under the linear ignorance assumption against the shuffling party.
Note that s′1, s

′
2, . . . , s

′
n are randomly chosen by the verifier. So according to

Lemma 5,

V1(s1, s2, . . . , sn)V1 =











v1,1s1
v1,2s2
...

v1,nsn











under the linear ignorance assumption against the shuffling party. So

(s1, s2, . . . , sn)V1v1,i = v1,isi for i = 1, 2, . . . , n

under the linear ignorance assumption against the shuffling party.
Note that V1 6= (0, 0, . . . , 0) as M is non-singular. So there must exist integer

k such that 1 ≤ k ≤ n and vi,k 6= 0 mod q. So

(s1, s2, . . . , sn)V1 = sk

under the linear ignorance assumption against the shuffling party. Namely,

s1v1,1 + s2v1,2 + . . .+ snv1,n = sk mod q

and thus

s1v1,1+s2v1,2+. . .+sk−1v1,k−1+(sk−1)v1,k+sk+1v1,k+1+. . .+snv1,n = 0 mod q

under the linear ignorance assumption against the shuffling party.
Note that s1, s2, . . . , sn are randomly chosen by the verifier. So according to

Lemma 5, v1,1 = v1,2 = . . . = v1,k−1 = v1,k+1 = . . . = v1,n = 0 and v1,k = 1
under the linear ignorance assumption against the shuffling party. Namely, V1

contains one 1 and n − 1 0s under the linear ignorance assumption against the
shuffling party.



For the same reason, Vi contains one 1 and n− 1 0s for i = 2, 3, . . . , n under
the linear ignorance assumption against the shuffling party. Note that M is
non-singular. Therefore, M is a permutation matrix under the linear ignorance
assumption against the shuffling party. 2

In some applications of shuffling like [17], only semantically encrypted cipher-
texts c1, c2, . . . , cn are given to the shuffling party while no information about
m1,m2, . . . ,mn is known. So the linear ignorance assumption against the shuf-
fling party (the shuffling party cannot find a linear relation aboutm1,m2, . . . ,mn

in polynomial time) is satisfied. Therefore, the shuffling by Protocol-1 is correct
in these applications according to Theorem 1.

2.2 Protocol-2

In Protocol-1, the linear ignorance assumption is necessary. That means
Protocol-1 cannot guarantee correctness of the shuffling if someone with knowl-
edge of any shuffled message colludes with the shuffling party. For example,
when the shuffling is used to shuffle the votes in e-voting, some voters may col-
lude with the shuffling party and reveal their votes. Then the shuffling party can
tamper with some votes without being detected. So Protocol-1 is upgraded to
Protocol-2, which can guarantee the linear ignorance and thus correctness of the
shuffling without any assumption. The upgrade is simple. The input ciphertexts
c1, c2, . . . , cn are divided into two groups of random ciphertexts d1, d2, . . . , dn
and e1, e2, . . . , en such that ci = eidi for i = 1, 2, . . . , n. Then Protocol-1 can
be applied to shuffle d1, d2, . . . , dn and e1, e2, . . . , en using an identical permuta-
tion. After the shuffling, the two groups of outputs are combined to recover the
re-encrypted permutation of c1, c2, . . . , cn. Protocol-2 is as follows.

1. The shuffling party calculates di = h(ci) for i = 1, 2, . . . , n where h() is a
random oracle query implemented by a hash function from the ciphertext
space of the employed encryption algorithm to the same ciphertext space.
Thus two groups of ciphertexts di for i = 1, 2, . . . , n and ei = ci/di for
i = 1, 2, . . . , n are obtained.

2. The shuffling party randomly chooses π(), a permutation of {0, 1, . . . , n}
and integers ri and ui from Q for i = 1, 2, . . . n. He then outputs d′i =
RE(dπ(i), ri) and e

′
i = RE(eπ(i), ui) for i = 1, 2, . . . n while concealing π().

3. The verifier randomly chooses and publishes si from {0, 1, . . . , 2L − 1} for
i = 1, 2, . . . n. The shuffling party chooses r′i from Q for i = 1, 2, . . . n and
publishes d′′i = d′

ti
i E(0, r

′
i) for i = 1, 2, . . . n where ti = sπ(i). The shuffling

party publishes ZK proof

ZP ( ti, r
′
i | d

′′
i = d′

ti
i E(0, r

′
i) ) for i = 1, 2, . . . n (22)

and

ZP ( ri, ui, ti, r
′
i for i = 1, 2, . . . , n |



n
∏

i=1

dsii

n
∏

i=1

(E(0, ri))
tiE(0, r′i) =

n
∏

i=1

d′′i , (23)

n
∏

i=1

esii

n
∏

i=1

(E(0, ui))
ti =

n
∏

i=1

e′
ti
i )

4. The verifier randomly chooses and publishes s′i from {0, 1, . . . , 2L − 1} for
i = 1, 2, . . . n. The shuffling party sets t′i = s′π(i) for i = 1, 2, . . . n and
publishes ZK proof

ZP ( ri, ti, r
′
i, t

′
i for i = 1, 2, . . . n |

n
∏

i=1

d
s′i
i

n
∏

i=1

(E(0, ri))
t′i =

n
∏

i=1

d′
t′i
i ,

n
∏

i=1

d
sis
′
i

i

n
∏

i=1

(E(0, ri))
tit
′
i(E(0, r′i))

t′i =
n

∏

i=1

d′′
t′i
i ) (24)

5. If the proofs above are verified to be valid, the outputs of the shuffling are
c′i = d′ie

′
i for i = 1, 2, . . . n.

Just like in Protocol-1, if the shuffling party is honest and sets ti = sπ(i) and
t′i = s′π(i), he can pass the verification in Protocol-2. Theorem 2 shows that if
the shuffling party can pass the verification in Protocol-2 with a non-negligible
probability, his shuffling is correct even without the linear ignorance assumption.

Theorem 2. If the verifier chooses his challenges si and s′i randomly and
the shuffling party in Protocol-2 can provide ZK proofs (22), (23) and
(24) with a probability larger than 2−L, then there is an identical per-
mutation from D(d1), D(d2), . . . , D(dn) to D(d′1), D(d

′
2), . . . , D(d

′
n) and from

D(e1), D(e2), . . . , D(en) to D(e
′
1), D(e

′
2), . . . , D(e

′
n).

Proof: According to additive homomorphism of the employed encryption, ZK
proofs (22), (23) and (24) guarantee that the shuffling party can find integers ti
and t′i for i = 1, 2, . . . , n to satisfy

n
∑

i=1

siD(di) =
n

∑

i=1

tiD(d
′
i) mod q (25)

n
∑

i=1

siD(ei) =

n
∑

i=1

tiD(e
′
i) mod q (26)

n
∑

i=1

s′iD(di) =

n
∑

i=1

t′iD(d
′
i) mod q (27)

n
∑

i=1

sis
′
iD(di) =

n
∑

i=1

tit
′
iD(d

′
i) mod q (28)

where si and s
′
i for i = 1, 2, . . . , n are randomly chosen by the verifier.



Note that d1, d2, . . . , dn are produced by the hash function h(), which
is regarded as a random oracle. So to find a linear relation about
D(d1), D(d2), . . . , D(dn) is equivalent to repeatedly querying a random oracle
for a vector of n random ciphertexts and then finding a linear relation on the
plaintexts corrresponding to one of these vectors. This is infeasible as the em-
ployed encryption algorithm is semantically secure. So the probability that the
shuffling party can find any linear relation about D(d1), D(d2), . . . , D(dn) is neg-
ligible. For the same reason, the probability that the shuffling party can find any
linear relation about D(e1), D(e2), . . . , D(en) is negligible.
According to Theorem 1, Equations (25), (27) and (28) imply that there

exists a permutation matrix M such that

(D(d′1), D(d
′
2), . . . , D(d

′
n))M = (D(d1), D(d2), . . . , D(dn))

So according to Lemma 4,

(s1, s2, . . . , sn)M = (t1, t2, . . . , tn) (29)

According to Lemma 1 and Lemma 4, Equation (26) implies that there exists
a matrix M̂ such that

(D(e′1), D(e
′
2), . . . , D(e

′
n))M̂ = (D(e1), D(e2), . . . , D(en))

and

(s1, s2, . . . , sn)M̂ = (t1, t2, . . . , tn) (30)

Subtracting (30) from (29) yields

(s1, s2, . . . , sn)(M − M̂) = (0, 0, . . . , 0)

According to Lemma 5, every column vector in matrix M − M̂ contains
n zeros. So M = M̂ . Therefore there is an identical permutation (ma-
trix) from D(d1), D(d2), . . . , D(dn) to D(d′1), D(d

′
2), . . . , D(d

′
n) and from

D(e1), D(e2), . . . , D(en) to D(e
′
1), D(e

′
2), . . . , D(e

′
n). 2

According to Theorem 2, D(d1)D(e1), D(d2)D(e2), . . . , D(dn)D(en)
is permuted to D(d′1)D(e

′
1), D(d

′
2)D(e

′
2), . . . , D(d

′
n)D(e

′
n). Namely,

D(c′1), D(c
′
2), . . . , D(c

′
n) is a permutation of D(c1), D(c2), . . . , D(cn) even

in the absence of the linear ignorance assumption.

3 Implementation and Cost

The additive homomorphic semantically secure encryption employed in Protocol-
1 may be the modified ElGamal encryption [11, 12] or Paillier encryption [16].
The implementation details and computational cost are slightly different with
different encryption schemes. For example, the following Paillier encryption al-
gorithm can be employed. N = p1p2, p1 = 2p

′
1 + 1, p2 = 2p

′
2 + 1 where p1, p2,



p′1 and p′2 are large primes and GCD(N, p′1p
′
2) = 1. Integers a, b are randomly

chosen from Z∗
N and g = (1 + N)a + bN mod N . The public key consists of N

and g. The private key is βp′1p
′
2 where β is randomly chosen from Z∗

N . A message
m ∈ ZN is encrypted to c = gmrN mod N2 where r is randomly chosen from
Z∗
N . The modulus of the message space is N . If Paillier encryption is employed,
Protocol-1 can be implemented as follows.

1. The shuffling party randomly chooses integers ri from Z∗
N for i = 1, 2, . . . n.

He then outputs c′i = cπ(i)r
N
i mod N

2 for i = 1, 2, . . . n.
2. After the verifier publishes si from {0, 1, . . . , 2L − 1} for i = 1, 2, . . . n,
the shuffling party chooses r′i from Z∗

N for i = 1, 2, . . . n and publishes

c′′i = c′
ti
i r

′N
i mod N

2 for i = 1, 2, . . . n where ti = sπ(i). The shuffling party
publishes ZK proof

ZP ( ti, r
′
i | c

′′
i = c′

ti
i r

′N
i mod N

2 ) for i = 1, 2, . . . n (31)

and

ZP ( R1 | R
N
1 = C1 mod N

2 ) (32)

where R1 =
∏n

i=1 r
ti
i r

′
i mod N

2 and C1 =
∏n

i=1 c
′′
i /

∏n
i=1 c

si
i mod N

2.
3. After the verifier publishes s′i from {0, 1, . . . , 2L − 1} for i = 1, 2, . . . n, the
shuffling party sets t′i = s′π(i) for i = 1, 2, . . . n and publishes ZK proof

ZP ( R2, R3, t
′
i for i = 1, 2, . . . n | C2R

N
2 =

∏n
i=1 c

′t
′
i
i mod N

2,

C3R
N
3 =

∏n
i=1 c

′′t
′
i
i mod N

2 ) (33)

where R2 =
∏n

i=1 r
t′i
i mod N

2, R3 =
∏n

i=1 r
tit
′
i

i r′
t′i
i mod N

2, C2 =
∏n

i=1 c
s′i
i mod N

2 and C3 =
∏n

i=1 c
sis
′
i

i mod N2.

Non-interactive implementation of ZK proof (31), (32) and (33) can be im-
plemented as follows.

1. The shuffling party randomly chooses W1 ∈ Z∗
N , W2 ∈ Z∗

N , W3 ∈ Z∗
N ,

vi ∈ ZN for i = 1, 2, . . . , n, v′i ∈ ZN for i = 1, 2, . . . , n and xi ∈ Z∗
N for

i = 1, 2, . . . , n. He calculates ai = c′
vi
i x

N
i mod N

2 for i = 1, 2, . . . , n, f =

WN
1 mod N2, a = (

∏n
i=1 c

′v
′
i
i )/W

N
2 mod N2 and b = (

∏n
i=1(c

′′v
′
i)/WN

3 mod
N2.

2. The shuffling party calculates c = H(f, a, b, a1, a2, . . . , an) where H() is a
random oracle query implemented by a hash function with a 128-bit output.

3. The shuffling party calculates z1 = W1R
c
1 mod N

2, z2 = W2/R
c
2 mod N

2,
z3 = W3/R

c
3 mod N

2, αi = xir
c
i mod N

2 for i = 1, 2, . . . , n, γi = vi +
cti mod N for i = 1, 2, . . . , n and γ′i = ct′i − v′i mod N for i = 1, 2, . . . , n.

4. The shuffling party publishes z1, z2, z3, α1, α2, . . . , αn, γ1, γ2, . . . , γn, γ
′
1, γ

′
2,

. . . , γ′n. Anyone can verifiy that

c = H( zN1 /Cc
1, C

c
2/(z

N
2

∏n
i=1 c

′γ
′
i
i ), C

c
3/(bz

N
3

∏n
i=1 c

′′γ
′
i
i ),

c′
γi
i α

N
i /c

′′
i
c
for i = 1, 2, . . . , n ) (34)



This implementation is a combination of ZK proof of knowledge of logarithm
[20], ZK proof of equality of logarithms [5] and ZK proof of knowledge of
root [9]. All the three proof techniques are correct and specially sound, so this
implementation guarantees Equations (3), (4) and (5). All of the three proof
techniques are honest-verifier zero knowledge. So if the hash function can be
regarded as a random oracle query, this implementation is zero knowledge.
Therefore, ZK privacy is achieved in Protocol-1. In this implementation, the
computational cost of shuffling is n full length exponentiations2; the cost of
proof is 3nExpCost(|N |)+2ExpCostn(|N |)+nExpCost(L)+3ExpCostn(L)+
ExpCostn(2L) + (n + 3)ExpCost(128) + 3, which is approximately equal to
11n/3 + 8nL/(3|N |) + 128(n+ 3)/|N |+ 3 full length exponentiations.

ZK proofs (22), (23) and (24) in Protocol-2 can be implemented similarly.
When Paillier encryption is employed, the computational cost of shuffling is 2n
full length exponentiations; the cost of proof is approximately equal to 11n/3 +
11nL/(3|N |)+128(n+4)/|N |+3 full length exponentiations. It is well known [11,
12] that ElGamal encryption can be modified to be additive homomorphic. If the
additional DL search in the decryption function caused by the modification is
not an efficiency concern (e.g. when the messages are in a known small set), the
modified ElGamal encryption can also be applied to our shuffling. An ElGamal-
based shuffling only uses ZK proof of knowledge of logarithm [20] and ZK proof of
equality of logarithms [5]. Note that in the ElGamal-based shuffling each output
ciphertext must be verified to be in the ciphertext space. When a prime p is the
multiplication modulus, the ciphertext space is the cyclic subgroup G with order
q where q is a prime and p = 2q+1. If an output is in Z∗

p−G, Proofs (3), (4), (5)
cannot guarantee correctness of the shuffling. The implementation and cost of
the ElGamal-based shuffling are similar to those of Paillier-based shuffling in
both Protocol-1 and Protocol-2.

In summary, both protocols can be efficiently implemented with either Paillier
encryption or ElGamal encryption to achieve correctness and privacy in the
shuffling.

4 Conclusion

Two new shuffling protocols are proposed in this paper. The first protocol is a
prototype and based on an assumption. The second one removes the assumption
and can be applied to more applications. Both protocols are simple and efficient,
and achieve all the desired properties of shuffling. In Tables 1, the new shuffling
protocols based on Paillier encryption are compared against the existing shuffling
protocols. It is demonstrated in Table 1 that Protocol-2 is the only shuffling
scheme with strict correctness, unlimited permutation, ZK privacy and without
the linear ignorance assumption. In Table 1 the computational cost is counted
in terms of full-length exponentiations (with 1024-bit exponent) where L = 20.

2 An exponentiation is called full length if the exponent can be as long as the order
of the base.



Table 1. Comparison of computation cost in full-length exponentiations

Correctness Permutation Privacy Linear ignor- Computation cost Communication

-ance assumption (shuffling and proof) Rounds

[1, 2] strict unlimited ZK unnecessary ≥ 16(n log2 n − 2n + 2) 3

[6, 15] strict unlimited not ZK unnecessary 10n 3

[13] strict unlimited not ZK unnecessary 12n 7

[8]a not strict unlimited ZK unnecessary 8n + 3n/κ + 3 7

[19]b strict limited ZK necessary 2n + k(4k − 2) 3

Protocol-1 strict unlimited ZK necessary n + 369
96

n + 27
8

< 5n 3

Protocol-2 strict unlimited ZK unnecessary 2n + 3077
768

n + 3.5 ≈ 6n 3

a
κ is a chosen parameter.

b
k is a small parameter determined by the flexibility of permutation and strength of
privacy.

It is demonstrated that the new shuffling protocols are more efficient than the
existing shuffling schemes except [19], which is not a complete shuffling.
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