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Abstract. The Full-Domain Hash (FDH) signature scheme [3] forms
one the most basic usages of random oracles. It works with a family F
of trapdoor permutations (TDP), where the signature of m is computed
as f−1(h(m)) (here f ∈R F and h is modelled as a random oracle).
It is known to be existentially unforgeable for any TDP family F [3],
although a much tighter security reduction is known for a restrictive
class of TDP’s [10, 14] — namely, those induced by a family of claw-free
permutations (CFP) pairs. The latter result was shown [11] to match the
best possible “black-box” security reduction in the random oracle model,
irrespective of the TDP family F (e.g., RSA) one might use.
In this work we investigate the question if it is possible to instantiate
the random oracle h with a “real” family of hash functions H such that
the corresponding schemes can be proven secure in the standard model,
under some natural assumption on the family F . Our main result rules

out the existence of such instantiations for any assumption on F which
(1) is satisfied by a family of random permutations; and (2) does not
allow the attacker to invert f ∈R F on an a-priori unbounded number of
points. Moreover, this holds even if the choice ofH can arbitrarily depend
on f . As an immediate corollary, we rule out instantiating FDH based
on general claw-free permutations, which shows that in order to prove
the security of FDH in the standard model one must utilize significantly
more structure on F than what is sufficient for the best proof of security
in the random oracle model.

1 Introduction

Full Domain Hash. Dating back to Diffie-Hellman [13], the simplest classical
suggestion for the design of digital signature schemes is to set the signature of
the message m to be σ = f−1(m), where f comes from a family of trapdoor per-
mutations (TDP) F such RSA. Unfortunately, this simple scheme is existentially
forgeable (even under no message attack), since any σ happens to be the signa-
ture of m = f(σ). A folklore suggestion to fix this problem, which is the basis of
several existing standards such as PKCS #1 [1], is to hash the message before
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inverting f : namely, to set σ = f−1(h(m)) for a carefully chosen hash function
h. This invalidates the trivial existential forgery above and seems to work well
in practice for a “crazy” enough h, such as SHA-1. This signature scheme is
commonly called Full Domain Hash (FDH), and yields one of the simplest and
most practical signature schemes known.
From a theoretical point of view, however, one can wonder if it is possible to

formally prove the security of FDH for some TDP f and hash function h?

Random Oracle Model. Partially motivated by this question, in their seminal
paper Bellare and Rogaway [3] introduced the random oracle (RO) model as a
“paradigm for designing efficient protocols”. It mathematically models h as a
truly random function, which is freely available to all the parties including the
adversary. In particular, under this idealized assumption Bellare and Rogaway
formally confirmed the intuition of practitioners that the FDH signature scheme
is existentially unforgeable in the RO model, for any TDP family F . In fact, this
was one of the first applications of the so called “random oracle methodology”.
Namely, one first formally analyzes and proves the security of a scheme like
FDH in the RO model, and then practically instantiates this abstract scheme by
replacing the ideal hash function h by some “real” implementation (such as SHA-
1, or, more abstractly, some family of “real” functions H), heuristically hoping
that no security flaws will suddenly appear in the standard model. Therefore, it
is clearly of fundamental importance to understand under which conditions one
can provably instantiate the random oracles in the standard model. In particular,
in this work we will concentrate on the FDH signature scheme, which, as we said,
is one of the most basic and important applications of random oracles. Before
addressing it in more detail, however, let us summarize what is known about
this scheme in the RO model.

FDH in RO model. As we mentioned, Bellare and Rogaway showed that FDH
is existentially unforgeable in the RO model, for any TDP family F . On the
other hand, a much tighter security reduction in the random oracle model was
subsequently found by [10, 14] for a special class of TDP’s: namely, those induced
by a family of claw-free permutation (CFP) pairs4 which luckily includes all
popular families such as RSA. Moreover, Coron [11] subsequently showed that
the above tighter reduction from CFP-induced TDP’s is optimal, as long as
the reduction treats the adversary as a “black-box” and irrespective of which
particular TDP family F is used (e.g., even with RSA one cannot find a better
black-box reduction in the RO model).

Our Goal. As we see, in the RO model very weak assumptions on the function
family F are sufficient to prove the security of FDH: in fact, a single (although
“ideal”) hash function h simultaneously works for all such F . Unfortunately,
it is not hard to see that previously studied “realizable” properties of random
oracles, such as collision-resistance, pseudorandomness (even verifiable; see [5])
or perfect one-wayness [9] are not sufficient in general to implement the random

4 Such families consist of pairs of functions (f, g) for which is it infeasible to find a
“claw” (x, y) satisfying f(x) = g(y). One get an induced TDP family by taking f
and “ignoring” g.



oracle h, even for specific function families F (i.e., one can come up with an
artificial counter-example family H which nevertheless satisfies the given prop-
erty but for which the FDH scheme is insecure with F). On the other hand,
many practitioners strongly believe that for most “real” TDP families F there
should probably exist “good enough” hash functions like SHA-1 which would
make FDH with F secure. Therefore, our main question is to examine for which
TDP families F can we provably instantiate FDH in the standard model?

Initial Attempt. Let us make this question more precise. Given a function
family F , we are trying to design a hash family H, such that a random h sampled
from H will make FDH secure. Clearly, H should be allowed to depend on F
(since assuming otherwise seems to place unfair restrictions on the signature
designer). In fact, we also want to allow H to depend on a specific function f
sampled from F (and whatever public information is associated with such f).
For example, if F is induced by a family of claw-free permutation pairs (which,
as we know, is very beneficial in the RO model), a random member f from F
is sampled by choosing a random pair (f, g) from the CFP family, and then
“ignoring” g. In this case it seems natural that the signature designer might
want to use both f and g in designing the hash function h. For example, setting
h = g results in a signature scheme f−1(g(m)) which is provably unforgeable
under no message attack. Although the latter task can be easily achieved by
other means (e.g., making h to be a random constant), this shows a potential
utility one might get by using g in a less obvious manner.

Thus, the ambitious question would be to characterize the TDP families F
for which one can choose an efficient H (depending of f) which would make FDH
secure. Unfortunately, this seems to be an extremely difficult question given our
current state-of-the-art knowledge. In particular, even for specific families such
as RSA we do not seem to be able to say anything more meaningful than making
a tautological assumption of the form “SHA-1 makes a good RSA-based FDH
signature scheme”.

Our Approach. Instead, we will ask a slightly more general question: which
security assumptions on F are sufficient to instantiate FDH in the standard
model. For example, can we match the RO result stating that any TDP family
can be instantiated? And, if not, maybe more restricted CFP-induced families
can? Or maybe some other elegant assumption on F will be sufficient?

While a positive answer to these kind of questions would be even harder and
more remarkable than the ambitious question asked about specific families F
like RSA, the extra generality will allow us to get a meaningful negative result,
which we believe is still very important. In particular, it will allow us to fur-
ther realize the differences between the standard and the random oracle model.
For example, we will see that being induced by a family of CFP’s by itself is
insufficient to instantiate FDH, in contrast to the RO model, where nothing be-
yond this property is likely to be of any extra advantage! Additionally, looking
at the current general proofs of security of FDH in the RO model, it seems rea-
sonable to hope that even in the standard model some natural and relatively
general assumption on F might be sufficient for the proof to “go through” (with



an appropriately chosen H). In this regard, our approach allows us to further
understand which security assumptions on F will certainly be insufficient (by
themselves) to try instantiating FDH. In particular, if a given set of properties
of F will be consistent with some assumption that we formally rule out, then
more properties are needed. For example, it easily follows from our result below
that one cannot instantiate FDH even if we assume F to be one-way against any
distribution of “super-logarithmic” entropy. This is an extremely strong assump-
tion that might appear quite useful for FDH upon the first look: for example,
a similar assumption was recently utilized by Wee [28] to successfully obfuscate
“equality” queries in the standard model, which was previously known only in
the random oracle model [24]. Yet, we show that this assumption is insufficient
for FDH.

Our Modeling. A bit more formally, we will study the question if there exists
a black-box reduction (see [21]) from a given security assumption on F (such as
being one-way or induced by CFP family, etc.) to the security of FDH. This
means that all the relevant parties — adversary and “challenger” for the as-
sumption (see below), potential forger for FDH, as well as the designer of the
hash family H5 — should work given oracle access to f (and possibly even f−1;
see below). While seemingly restrictive, we believe this captures the essence of
what it means to instantiate FDH given any F satisfying a given security as-
sumption. Indeed, allowing non-black-box access to F essentially maps us back
to the original “beyond-the-reach” question, where the designer of H can use
some “extra” properties of F which do not follow from the security assumption
alone. For example, we do not know how to show the insecurity of RSA-based
FDH when the designer of the scheme chooses h to be SHA-1. In fact, most
practitioners actually hope that the resulting scheme is secure!

In our modeling, a given security assumption is formalized by a “game” G
between the adversary A and the challenger C. At the start of the game, a
random f is chosen from F (possibly with some other public information), after
which A and C engage in some protocol using oracle access to f , and the end of
which C output 1 if the adversary has won and 0 otherwise. For example, in the
one-wayness game defining plain TDP’s the challenger simply asks A to invert
f(x), for a random x of its choice. Similarly, in the “claw-free” game defining
F induced by some CFP family, C simply waits for A to provide a claw (x, y),
where A can have oracle access to both f and its “twin” permutation g. Many
other assumptions can be put in this framework as well.

Given such an abstract game G, we can look at the corresponding class of
black-box permutation families F for which no polynomial time adversary can
win with non-negligible probability. To argue a separation result for a given game
G, we must essentially (see below) show that there exist a black-box family F
such that (1) F is “black-box” secure with respect to G, but (2) F cannot be
instantiated for the use in FDH, for any polynomial size circuit family H (which
is allowed to depend on F , but in a “black-box” manner).

5 As we stated, it seems very restrictive not to allow such a dependency.



Our Main Result. Our main result is pretty general: we show than no game
G between A and C can lead to an “instantiable” security assumption on F ,
provided that a family of truly random permutations satisfies the security of G.
Intuitively, it rules out all the assumptions involving “inverting” f on more or
less arbitrary inputs (since random permutations are very hard to invert), or
finding some inputs to f whose images satisfy some non-trivial relation (e.g., x
and y such that f(x) = f(y)⊕ 1), etc. In fact, our main results extends even to
games where the challenger is allowed to invert f to the attacker, as long as this
is done for an a-priori bounded number of times.6 To state this result differently,
any assumption on F which (1) is satisfied by a family of random permutations;
and where (2) the challenger does not invert f on an a-priori unbounded number
of points, is insufficient to instantiate FDH in the standard model.

Thus, to generically instantiate FDH one must assume a property on F which
is not satisfied by random permutations, such as being “homomorphic” or “self-
reducible”.

Other Results. As special cases, we rule out such instantiations based on
plain TDP’s, as well the sub-class of TDP’s induced by CFP’s, since both of
those are easily seen to be satisfied by random permutations. In particular, this
shows that more assumptions on F are needed in the standard model than
what is sufficient for the best reduction in the RO model, giving yet another
separation between the standard the the RO model (see related work below). As
another interesting corollary, we notice that many cryptographic primitives such
as collision-resistant hash functions, trapdoor commitments and even general
signature schemes follow — in a black-box manner — from the existence of
CFP families. Our separation result therefore shows that even assuming the
existence of all these powerful primitives is not sufficient to build an “FDH-
like” signature scheme (in a black-box manner), despite the fact that general,
“non-FDH-like” signature schemes can be built! For example, there seem to be
a “price to pay” for insisting on inverting a trapdoor permutation on the hash
of the message, as opposed to applying to it any secure signature scheme on
short messages: the latter is provably secure as long as the hash is collision-
resistant (this is the famous “hash-then-sign” paradigm), while we show that
much stronger assumptions seem to be required for the former.

We remark that our main impossibility result uses the full power of the
chosen message attack, since our FDH breaker is allowed to ask more signing
queries than the description of the hash function h. If we restrict our attention
to the class of general TDP’s (as opposed to all hard games satisfied by random
permutations), we also strengthen our separation and show that there is no
black-box reduction from the security of TDP’s to the security of FDH even as

6 Essentially, for a number of times slightly smaller than the number of signing queries
the FDH forger is allowed to make. Without this restriction, one can define games
modeling tautological assumptions of the form “SHA-1 makes FDH secure for a given
F” (which are trivially instantiable by setting h equal to SHA-1).



a one-time signature scheme, as long as the message space is super-polynomial
in the security parameter.7

Our Techniques. In both of our results we use an elegant “two-oracle” obser-
vation of Hsiao and Reyzin [21] for showing general black-box separation results.
Applied to our setting, they show that it is sufficient to design an oracle F for
F and another “breaking” oracle G, such that G does not help the attacker to
win the game G with F, but always helps the forger to break the security of
FDH (even if H can depend of F but not on G). In both of our results we use
a family of random permutations to model the oracle F for our TDP family F .
The oracles G, however, are very different.
For our general separation result we use a novel oracle G which takes a

description of the hash function h, and will forge the FDH-like signature of a
new message only if the attacker can “prove” that he has oracle access to the
FDH signing oracle. Remarkably, the oracle G is designed in such a careful way
that its addition is literally of “no use” to the attacker in any game G! So if G
was secure with random permutations, addition of G will not change this fact.
Yet, it clearly breaks any FDH instantiation H, since the forger has a “real”
access to the signing oracle, and thus can successfully utilize G.
On the other hand, the oracle G for our TDP-specific separation is very dif-

ferent and is based on to the corresponding oracle by Simon [27] used to separate
collision-resistant hash functions from one-way permutations.8 In essence, this
oracle returns collisions for any length-decreasing function h (which could de-
pend of f), but in a careful way which does not allow the attacker to invert f . On
the other hand, any collision clearly makes FDH insecure against one-message
attack, as both of the colliding messages have the same signature. The main
technical difficulty we have to resolve here is the fact that Simon’s oracle only
covers length-decreasing function families H (in fact, it is completely useless for
most length-increasing hash families). Therefore, we have to non-trivially extend
it to allow one break FDH for arbitrary function families H, and yet without
suddenly helping the adversary to invert f at a random point.

Related Work. Our work is related to several important results [7, 26, 20, 8, 2]
showing that various schemes provably secure in the random oracle model cannot
be securely instantiated in the standard model. Canetti, Goldreich and Halevi
[7, 8] gave concrete (although somewhat artificial) examples of general signature
and encryption scheme with this property. Nielsen [26] considered the question
of designing so called “non-committing encryption schemes” [6] capable of en-
crypting arbitrary number of messages, and showed that one cannot build such
scheme at all in the standard model, although simple solutions in the random
oracle model exist. Goldwasser and Tauman [20] concentrated on the soundness
of the Fiat-Shamir heuristics [15], and showed a secure (although artificial) 3-
round identification scheme which does not result in a secure signature scheme

7 Otherwise, one can of course instantiate FDH by “hardwiring” an independent ran-
dom challenge ym to be the hash of m.

8 For example, such oracle cannot be extended to cover CFP-induced TDP’s, since it
is known how to build collision-resistance hash functions from CFP’s.



in the standard model, no matter how one implements the hash family. Finally,
Bellare, Boldyreva and Palacio [2] showed a natural ElGamal-based key encap-
sulation mechanism for hybrid encryption which is secure in the random oracle
model (for any symmetric-key component), but where for every real hash family
one can come up with (artificial) symmetric-key encryption scheme making the
overall hybrid scheme insecure.
We notice that an attractive feature of all these results as compared to our

result, is that their separations are not black-box. However, our setting appears
to be significantly more constrained as well. Intuitively, in all of the above results
the syntax of the question allowed one enough freedom to adapt the scheme after
the hash function h was chosen. While such adaptation was pretty non-trivial
in each of the above works, our setting appears to be more restrictive. Namely,
we must “commit” to a “real” TDP family F (possibly satisfying even more
constraints), and then, given an arbitrary non-black-box function h depending of
f , find some point m where we can invert h(m)! Without “reverse-engineering”
such an h, the latter task seems quite hopeless to do (even using the signing
oracle since it is hard to predict on which points it will invert f). Indeed, our
black-box assumption essentially allows us to get a weak, but luckily sufficient
“handle” to determine how h actually depends on f .
From a different perspective, our work naturally relates to a rich body of work

on various black-box separations [22, 27, 18, 23, 17, 16, 11, 14, 21]. For example, we
already pointed out how our breaking oracle for the case of general TDP’s relates
to the oracle of Simon [27], and how we use the simplified framework of Hsiao
and Reyzin [21] to get our black-box separations. To the best of our knowledge,
however, our work is the first to show a black-box separation result with respect
to instantiating random oracles in the standard model, as opposed to separating
different cryptographic assumptions from each other [22, 27, 18, 21] or showing
lower bounds on the efficiency or exact security of various “black-box” reductions
[23, 17, 16, 11, 14].
Finally, we already mentioned a complimentary recent work of Boldyreva

and Fischlin [5], who considered the question of instantiating random oracles
in various scenarios, including FDH, by popular families of “realizable” hash
functions, such as verifiable pseudorandom functions [25] (VRFs). In particular,
they showed that such VRFs cannot generically instantiate FDH, no matter
which TDP family F is used.

2 Preliminaries

Basic Definitions and Notation. For a set X we denote by x ∈R X a value
chosen uniformly at random from X . A function µ : N → [0, 1] is negligible if for
any c > 0 there is an n0 such that µ(n) ≤ 1/n

c for all n ≥ n0. We write negl(·)
as a shorthand for a negligible function.

TM is a shorthand for Turing-machine. We use the standard definition of
probabilistic polynomial-time TMs (pptTM for short) and pptTMs with oracle
access (opptTM for short). We say that something can be efficiently computed



(relative to an oracle O) if it can be computed by a pptTM (by a opptTM with
oracle access to O).

Trapdoor permutations. A trapdoor permutation family (TDP) is a pair of
efficient algorithms (KeyGen, F ). KeyGen is probabilistic and on input 1n gen-
erates a key/trapdoor pair KeyGen(1n)→ (pk, td) where F (pk, ·) implements a
permutation fpk(.) over {0, 1}

n and F (td, ·) implements its inverse f−1
pk (.).

Security of TDPs. The standard security property for TDPs is one-wayness
which says that inverting is hard without the trapdoor, i.e. for any pptTM A

PrKeyGen(1n)→(pk,td),x∈R{0,1}n [A(fpk(x), pk) = x] = negl(n).

A stronger security property is claw-freeness which says that given two indepen-
dently sampled permutations it is hard to find a collision, i.e. for any pptTM A

Pri∈{1,2}:KeyGen(1n)→(pki,tdi)[A(pk1, pk2) = (x1, x2) where fpk1
(x1) = fpk2

(x2)]

= negl(n).

A TDP with this property is not a standard assumption, but it implies the
following popular primitive.

Claw-free pairs of trapdoor permutations. A family of claw-free pairs of
trapdoor permutations (CFP) is a triple of efficient algorithms (KeyGen, F,G)
where KeyGen is probabilistic and on input 1n generates a key/trapdoor pair
KeyGen(1n)→ (pk, td) for which F (pk, ·) and G(pk, ·) implement permutations
fpk(.) and gpk(.) over {0, 1}

n respectively. F (td, ·) and G(td, ·) implement the
inverses f−1

pk (.) and g
−1
pk (.). The security property for CFPs requires that for any

pptTM A

PrKeyGen(1n)→(pk,td)[A(pk) = (x1, x2) where fpk(x1) = gpk(x2)] = negl(n).

Hash-function. A family of hash-functions is a pair of efficient algorithms

(Index,H). Index is probabilistic and on input 1n generates an index i ∈ In.
For each i ∈ In, H(i, .) implements a function hi : {0, 1}

∗ → {0, 1}n. A family
of hash-functions is collision resistant if

PrIndex(1n)→i[A(1
n, i) = (x1, x2) where x1 6= x2 and hi(x1) = hi(x2)] = negl(n).

Full-domain hash (FDH). The FDH signature-scheme based on a trapdoor
permutation family (KeyGenF , F ) and a family of hash functions (Index,H) is
defined as a triple of functions (KeyGenFDH , sign, verify) where for security
parameter n

– KeyGenFDH(1
n) first runs KeyGenF (1

n) → (pk, td) and Index(1n) → i.9

It outputs the triple (pk, td, i). The public-key of the signature scheme is
(pk, i) and the secret key is (td, i).

9 One would probably choose the randomness for Index and for KeyGenF indepen-
dent here, but we make no such assumption. In particular, (pk, td) and i can be
arbitrarily correlated.



– sign(m, td, i), the signature of a message m ∈ {0, 1}∗ is f−1
pk hi(m) (i.e. com-

puted as F (td,H(i,m))).
– verify(σ,m, pk, i), the verification function evaluates to 1 (with the meaning
that the signature is valid) iff fpk(σ) = hi(m) and to 0 otherwise.

Security of FDH. A FDH signature scheme as above is secure against an
existential forgery in a chosen message attack if for any opptTM A

PrKeyGenF DH(1n)→(pk,td,i)[A
sign(.,td,i)(pk, i)→ (m,σ) where

verify(σ,m, pk, i) = 1 and A did not make the oracle query m] = negl(n). (1)

This means that A cannot come up with a valid signature/message pair for a
message that he had not already signed by the signing oracle.

Game. A game is defined by two opptTMs, a prover A and a challenger C, which
have a common communication tape over which they can exchange messages.
The challenger finally output a decision bit. We say that A wins the game if this
bit is 1 and denote this event by 〈A,C〉 → 1.

Hard Game. An opptTM C as above defines a hard game if no opptTM A can
win the game when the oracle is instantiated with t (where t = t(n) is implic-
itly defined by C and can be polynomial in n) uniform random permutations
π1, . . . , πt over {0, 1}

n. I.e. C defines a hard game if for all opptTM A

Pr[〈Aπ1(.),...,πt(.)(1n), Cπ1(.),...,πt(.)(1n)〉 → 1] = negl(n). (2)

A TDP (KeyGen, F ) is secure for the hard game C if (2) is satisfied even if the
random permutations are replaced with this TDP, i.e. for all pptTM A

Pr∀i=1...t:KeyGen(n)→(pki,tdi)[〈A(pk1, . . . , pkt), C
F (pk1,·),...,F (pkt,·)(1n)〉 → 1]

= negl(n).

Hard games capture many natural security properties, in particular

– one-wayness: Cf(.)(1n) samples x ∈ {0, 1}n uniformly at random and sends
f(x) to A. It outputs 1 iff it receives as the next message x.

– claw-freeness: Cf1(.),f2(.)(1n) just expects x1, x2 ∈ {0, 1}
n and outputs 1 iff

f1(x1) = f2(x2).

In the next section we will show that a TDP which is secure for all hard games
cannot be black-box reduces the security of FDH. There does not exist a TDP
which is secure for all hard games in the standard model,10 but we show an im-
possibility result, and showing impossibility from such a hypothetic TDP implies

10 Consider for example a game where C expects as input a circuit and then checks
if the circuit computes the same value as its oracle on a few (n is enough) random
inputs and outputs 1 only if this is the case. In the standard model A can always
win this game by sending a circuit which computes C’s oracle F (pk, .). But this is
a hard game as if the oracle is a random permutation, it will with high probability
disagree with every polynomial size circuit on most inputs, and C will reject almost
certainly.



impossibility for any assumption it implies. Then in section 4 we will extend the
notion of hard games and give the challenger also access to inversion oracles
π−1
i (.) which he may query at most polynomially many times (for some arbi-
trary but a priori fixed polynomial). With such games we can cover additional
natural assumptions for TDPs, which will therefore be also insufficient to get a
reduction to an FDH signature scheme.

3 No Reduction from any Hard Game

Theorem 1. There is no black-box reduction from a trapdoor permutations
family which is secure for all hard games to a FDH signature scheme secure
against chosen-message attacks.

More precisely, given a TDP (KeyGen, F ) which is secure for all hard games
and any hash function family (Index,H), the security of the signature scheme
sign(m) = f−1

pk h(m) (whereKeyGen(1n)→ (pk, sk) and Index(1n)→ i) cannot
be black-box reduced from the security of the TDP. Here the hash function
can use the TDP as a black-box and the randomness used for KeyGen and
Index can be arbitrarily correlated. Moreover, if we let s(n) = max{|hi| : i ∈
Range(Index(1n))} denote an upper bound on the size of a description of the
hash function used, then the theorem even holds if we restrict the number of
chosen message queries to s(n) and the size of the message-space of the signature
scheme to s(n) + 1.
As corollaries we get that any assumption on TDPs which can be formulated

as a hard game will not be enough to get a reduction to FDH, e.g.

Corollary 1. There is no black-box reduction from claw-free pairs of trapdoor
permutations to a FDH signature scheme secure against chosen-message attacks.

Proof (of Theorem 1). Following [21] (Lemma 1), as to rule out black-box re-
ductions, it is enough to prove that there are two oracles F and G such that the
following holds:

1. There is an opptTM D such that DF implements11 TDP.
2. There is an opptTM A such that AF,G finds a forgery for any signature scheme
of the form sign(m) = f−1(hF(m)) in a chosen message attack, where f is
the TDP implemented by DF and h is any oracle circuit.

3. There is no opptTM B where BF,G breaks the security of TDP implemented
by DF. This means that BF,G cannot win any hard game C instantiated with
this TDP with non-negligible probability.

Points 2 and 3 will follow from Lemmas 1 and 2 below. The first point is satisfied
by the definition of the oracle F we will give, which implements TDP. This F alone
is trivially a secure implementation of TDP. We then define a breaking oracle G

11 Here implement has a purely functional meaning and does not imply any security
assumptions.



for which we will show that it can be used to break any FDH scheme based on the
TDP implemented by F but not the security of the TDP itself. The oracle G will
simply provide a forgery (for the message m = 0) to any signature scheme of the
form sign(m) = f−1(hF(m)) (where f ∈ F and h is any oracle circuit), but only if
it can be sure that the requesting party can compute those signatures herself (e.g.
because she has access to the signing oracle sign(m) = f−1(hF(m)) or knows
the trapdoor for f). For this our G expects as input the values f−1(hF(m)) for
m = 1 . . . `, where ` = |h|. This choice of ` should make it impossible for an
adversary to hardwire the outputs of h on all the inputs requested to values
where she can invert f . However, there would still be at least two ways in which
an adversary could abuse the oracle G to break the security of TDP implemented
by F.

1. She could define an h such that the output of hF collides on (some of) the
requested inputs. Say hF(i) = y for all 1 ≤ i ≤ ` (where she knows f−1(y))
and hF(0) = z (where z could be a challenge in the one-wayness game). As
she can provide the requested signatures f−1(hF(i)) to G, G will output a
forgery w = f−1(hF(0)) = f−1(z) and she wins the game! To avoid this our
G will check if there is such a collision before providing the forgery. This will
not affect the usability of G to provide forgeries, as having a collision for hF

one can compute a forgery without the help of G anyway.
2. She could use f in the definition of hF in a clever way, for example by choosing
an h where hF(m) = f(m) for m 6= 0 (then f−1(hF(m)) = m) and h(0) = z
(where z could be a challenge in the one-wayness game). Our G will prevent
this by checking whether in the computation of hF on any of the requested
inputs, the oracle for f is queried on an input x where f(x) = hF(i) for
i, 1 ≤ i ≤ `. Again, if this check fails we have a forgery as x = f−1(hF(i)).

We will show that the two above checks are not only necessary, but already
sufficient to guarantee that G cannot be used to break the security of TDP
implemented by F.

Definition of F (TDP secure for every hard game). The definition of the oracle F

is straight forward. For any n ∈ N choose 2n + 1 permutations f0,n, . . . , f2n−1,n

and tn at random. Now F is defined as12

– F(td2pk, n, td)→ tn(td)
– F(eval, n, pk, x)→ fpk,n(x)
– F(invert, n, td, y)→ f−1

pk,n(y)

12 With this F a TDP (KeyGen, F ) can be implemented as follows. KeyGen(1n) first
samples a random trapdoor td ∈R {0, 1}

n, then computes the corresponding public-
key F(td2pk, n, td) → pk and outputs (pk, td). F (pk, .) and F (td, .) are computed
by F(eval, n, pk, .) and F(invert, n, td, .) respectively. Informally the reason that this
TDP is secure for every hard game follows from the fact that a permutation, cho-
sen at random from a set of 2n randomly chosen permutations, is computationally
indistinguishable from a truly random permutation. But if there was a hard game
that this TDP could win, we could turn it into a distinguisher.



Definition of G (Breaking Oracle). The oracle G takes as input (n ∈ N, k ∈
{0, 1}n, h ∈ {0, 1}∗, V ) where h is (the description of) an oracle circuit.13 This
can be seen as a request for an existential forgery for the signature scheme
sign(m) = f−1

pk,n(h
F(m)). The vector V = [v1, . . . , v|h|] is a “proof” that the

requesting party can compute those signatures herself. We say that G accepts
the input if the input has the correct form (as above) and

1. f−1
pk,n(h

F(i)) = vi for all i = 1, . . . , |h|.
2. vi 6= vj for all 1 ≤ i < j ≤ |h|.
3. {hF(1), . . . , hF(|h|)} ∩ Y h

F
= ∅ where Y h

F
is defined as

Y h
F = {fpk,n(x)| ∃i, 1 ≤ i ≤ |h|, hF(i) makes the query F(eval, n, pk, x)} (3)

If G accepts the input it outputs a forgery f−1
pk,n(h

F(0)) and ⊥ otherwise.

G Breaks any FDH Signature Scheme. Now we will show that G breaks any FDH
signature scheme based on F.

Lemma 1. There is an opptTM A which outputs a forgery for any signature
scheme sign(m) = f−1

pk,n(h
F(m)) with probability 1, i.e.

Pr[AF,G,sign(.)(n, pk, h)→ (m, s) where s = f−1
pk,n(h

F(m))

and sign(.) was not queried on input m ] = 1

Proof (of Lemma). A must only check if h satisfies conditions 2 and 3. If one of
them is not satisfied, this directly gives a forgery, otherwise A can use G to get
a forgery. More formally A does the following:

– Compute hF(1), . . . , hF(|h|), doing this also compute Y h
F
as in (3).

• If any of the hF(1), . . . , hF(|h|) collide we have a forgery: If say hF(i) =
hF(j), then query sign(i) and output the forgery (j, sign(i)).

• If {hF(1), . . . , hF(|h|)}∩Y h
F
6= ∅, then we have found an x and an i satisfy-

ing fpk,n(x) = hF(i) and thus have a forgery as sign(i) = f−1
pk,n(h

F(i)) =
x.

– If none of the above is the case, then call the oracle sign on inputs 1, . . . , |h|
and let V = [sign(1), . . . , sign(|h|)]. Now query G on input (n, pk, h, V ) to
get a forgery for the message m = 0. ♦

G does not break the security of F. In this section we will prove that F is a secure
implementation of a family of claw-free trapdoor permutations, even when given
access to G, i.e.

13 Usually the hash function h is given as a TM and not as a circuit, but a TM can
be simulated by a circuit whose size is only polynomial in the running time of the
TM. In particular for every efficient h there is an m ∈ N and a circuit hc such
that ∀i ∈ {0, 1}m : hc(i) = h(i) and |hc| < 2m, moreover such hc can be efficiently
computed and is sufficient here.



Lemma 2. With probability 1 (over the choice of F) for any opptTM B and any
hard game C (with t = t(n) implicitly defined by C)

Pr∀i=1...t:KeyGen(n)→(pki,tdi)[(B
F,G(pk1, . . . , pkt), C

fpk1,n,...,fpkt,n(1n))→ 1]

= negl(n). (4)

Proof (Proof Sketch of Lemma). If the oracle G was not there, then (4) would
follow from the fact that for a random pk, fpk,n is computationally indistinguish-
able from a random permutation and that the randomly chosen permutation tn
is one-way (thus one cannot get the trapdoor t−1

n (pk)).
Now we must argue that the presence of the oracle G will not help to win

any hard game. This is not so obvious, after all G provides forgeries f−1
pk,n(h

F(0))
for an h of our choice. But to learn such a forgery we must find an accepting
input (see the definition of G) for G. From Lemma 3 below it now follows that
B cannot find such an accepting input for a random pk and thus will not learn
anything about the fpki,n’s that he could not compute on its own.

14 ♦

Lemma 3. Let f be a random permutation on {0, 1}n and c ≥ 1 be a con-
stant. For any oracle TM A which makes at most nc oracle calls, we have (the
probability is over the random permutation f)

Pr[Af → (h, x1, . . . , x|h|)] = negl(n)

where h, |h| ≤ nc is an oracle circuit and the output satisfies the conditions

1. f−1(hf (i)) = xi for all i = 1, . . . , |h|.
2. xi 6= xj for all 1 ≤ i < j ≤ |h|.
3. {hf (1), . . . , hf (|h|)} ∩ Y h

f = ∅ where Y
h
f is defined as

Y h
f = {f(x)| ∃i, 1 ≤ i ≤ |h|, hf (i) makes the oracle query x}

Proof (of Lemma). Consider any oracle TM A where Af makes nc oracle queries.
After having used up all his oracle queries Af must come up with an output
(h, x1, . . . , x|h|) where h satisfies conditions 2 and 3. Below we prove that with
overwhelming probability there does not even exist an h which satisfies con-
ditions 2 and 3 and where Af has made all the queries x1, . . . , x|h| satisfying
condition 1. But in this case, even when choosing an h which satisfies condi-
tions 2 and 3, Af would still have to guess at least one xi (i.e. f

−1(hf (i))). The
probability that it will guess correctly (i.e. this xi will satisfy condition 1) is

14 To make the proof and the statement of Lemma 3 simple (i.e. purely information
theoretic), we will consider a computationally unbounded TM with oracle access to a
truly random permutation which it can access a polynomial number of times, whereas
Lemma 2 is about a opptTM and permutations chosen randomly from some family
of exponential size. But as already mentioned, considering a random permutation
is fine as a opptTM cannot distinguish a random permutation from fpk,n where
pk ∈R {0, 1}

n anyway. And considering any computationally unbounded oracle TM

(instead of only opptTMs) makes the lemma only stronger.



negligible.15 We must now prove the above statement, i.e. that an h satisfying
conditions 2 and 3 and where Af made all the queries x1, . . . , x|h| satisfying
condition 1 exists only with negligible probability. Let XA

f , |X
A
f | = nc denote all

oracle queries made by Af , i.e.

XA
f := {x|A

f makes the oracle query x}.

Now consider any fixed oracle circuit h, |h| ≤ nc which satisfies the conditions 2
and 3. Let Xh

f = {f
−1(y)|y ∈ Y h

f }, i.e.

Xh
f := {x| ∃i, 1 ≤ i ≤ |h|, hf (i) makes the oracle query x}

and let

H := {f−1(hf (1)), . . . , f−1(hf (|h|))}.

Condition 3 states that f(H) ∩ f(Xh
f ) = ∅, and as f is a permutation this is

equivalent to

H ∩Xh
f = ∅.

Given Xh
f and conditioned on h

f satisfying condition 3, the set H is a random

subset of {0, 1}n \Xh
f . If condition 2 is satisfied then |H| = |h| moreover |X

h
f | ≤

|h|2 ≤ n2c. Now the probability that H ⊆ XA
f can be upper bounded as (here

the probability is over the random permutation f and for a fixed h conditioned
on hf satisfying conditions 2 and 3)

Pr[H ⊆ XA
f ] =

|H|−1
∏

i=0

|XA
f | − |X

A
f ∩X

h
f | − i

2n − i− |Xh
f |

≤

(

|XA
f |

2n − nc − |Xh
f |

)|H|

=

(

nc

2n − 2n2c

)|h|

.

By taking the union bound over all oracle circuits h, |h| ≤ nc we can now upper
bound the probability that there exists an h satisfying conditions 2 and 3 and
where Af knows all xi satisfying condition 1 as

nc

∑

|h|=1

2|h|
(

nc

2n − 2n2c

)|h|

≤

(

2nc

2n − 2n2c

)

= negl(n)

where in the first step we assumed that the sum takes it maximum for |h| = 1
which holds for all sufficiently large n. ♦ ¤

15 It can easily be upper bounded by 1/(2n − nc − n2c): given the nc oracle queries
(not containing the query xi) made by Af and additionally the ≤ n2c oracle queries
made by hf on inputs 1, . . . , |h| (which will not contain the query xi because of
condition 3), xi is a random variable with the uniform distribution over a set of size
≥ 2n − nc − n2c.



4 Hard Games with Inversions

In the last section we have seen that a TDP which is secure for all hard games
(and thus has the one-wayness and claw-freeness security property) cannot be
black-box reduced to a FDH signature scheme. In this section we will see that
even a stronger notion of hard games does not allow for such a reduction. We
extend the definition of a hard-game and allow (a limited number of) inversion
queries.16 To motivate this let us define one more security property for TDPs
which can be modelled as such a game.

– A TDP has the one-way with q(.)-inversions security property if it is one-
way, even with an oracle for f−1

pk that can be used at most q(n) times on any

input except the challenge fpk(x), i.e.
17

PrKeyGen(1n)→(pk,td),x∈R{0,1}n [Af−1

pk
(.)(fpk(x), pk) = x] = negl(n).

Hard game with q(.) inversions. An opptTM C defines a hard game with
q(.) inversions if for a random permutation π and all opptTM A

Pr[〈Aπ(.)(1n), Cπ(.),π−1(.)(1n)〉 → 1] = negl(n) (5)

where C may query the π−1(.) oracle at most q(n) times. A TDP (KeyGen, F )
is secure for a hard game C with q(.) inversions if

PrKeyGen(n)→(pk,td)[〈A(pk), C
F (pk,.),F (td,.)(1n)〉 → 1] = negl(n).

The one-way with q(.) inversions property is captured by such a game as follows:

– Cf(.),f−1(.)(1n) samples x ∈R {0, 1}
n and sends f(x) to A. Now C answers

at most q(n) queries z ∈ {0, 1}n where z 6= f(x) with f−1(z). C accepts and
outputs 1 if it receives x as the (q(n) + 1)’th message.

Lemma 2 is easily seen not to extend to hard games with q(.) inversions already
for q(n) = O(n).18 But if in the definition of the breaking oracle G we increase the
number of requested signatures from |h| to |h|+ q(n), then it is again impossible
to find an accepting input for G and Lemma 2 can be shown to hold even for
hard games with q(.) inversions (using a similar strengthening of Lemma 3).

16 For clarity of exposition we will consider the case where C expects only one permu-
tation oracle, i.e. t = 1.

17 This property directly implies some others like security for the known-target inver-

sion problem introduced in [4]. Here one gets q(n) + 1 random challenges to invert
and may use an inversion oracle on arbitrary inputs q(n) times, i.e. once less than
the number of challenges.

18 For example A could win the one-way with cn inversions game (for some constant
c) as follows. On challenge y = fpk(x) let h(x) = x⊕ y (the c must satisfy |h| ≤ cn).
Now use the cn inversion queries to C to find an accepting input for the breaking
oracle G, which will then provide the forgery s = f−1

pk (h(0) = y). Send s = x to C
and win the game.



Theorem 2. For any polynomially bounded function q(.), there is no black-
box reduction from a TDP family which is secure for all hard games with q(.)
inversions to a FDH signature scheme secure against chosen-message attacks.19

As corollaries we get that any assumption on TDPs which can be formulated as
such a game will not be enough to get a reduction to FDH, e.g.

Corollary 2. For any polynomially bounded function q(.), there is no black-
box reduction from a TDP satisfying the one-way with q(.) inversions security
property to a FDH signature scheme secure against chosen-message attacks.

Finally, let us remark that in Theorem 2 it is necessary to have q(.) bounded
by some fixed polynomial. As if one allows a superpolynomial q(n) ∈ nω(1) then
a TDP which is secure for all hard games with q(.) inversions can be black-
box reduced to a secure FDH signature scheme (note that this has a priori no
practical consequences as such TDPs do not exist in the standard model). The
main observation here is that the “existential forgery in a chosen message attack”
(1) can be seen as a game where the challenger plays the role of the signing oracle
sign(m, td, i)→ f−1

pk (hi(m)) and finally accepts if it receives a forgery from the
prover A. We have not yet defined which FDH signature scheme to use in the
above game. This scheme can not be arbitrary as we must make sure that this
game is actually a hard game (i.e. no efficient A can win it when the oracles
are instantiated with random permutations), but it is not difficult to construct
a secure FDH scheme from random permutations π1, π2, . . . with only the signer
having access to inversion oracles. For example, for a message space restricted
to {0, 1}n, sign(m) = π−1

1 (π2(m)) will already do it.

5 No Reduction from Trapdoor Permutations

We conclude the paper by observing that “the plain TDP assumption” implies
an extreme black-box security limitation for FDH: not even security against a
one-chosen-message attack can be achieved.20

Theorem 3. There is no black-box reduction from trapdoor permutation fami-
lies to a full-domain hash scheme secure against one-chosen-message attacks.

For space reasons, we leave the proof of this theorem to a full version of the
paper, here only discussing the key choice in the proof: that of the oracle G that
breaks FDH but not TDP (cf. the proof of Theorem 1; F is the same as before).

G is partly based on the collision-finding oracle of Simon [27]. However, his
“collision-finding” oracle only works for length-decreasing hash functions. To deal

19 Moreover, if we let s(n) = max{|hi| : i ∈ Range(Index(1n))} denote an upper bound
on the size of a description of the hash function used, then the theorem even holds
if we restrict the number of chosen message queries to s(n) + q(n) and the size of
the message-space of the signature scheme to s(n) + q(n) + 1.

20 A one-chosen-message attack is precisely an attack where at most one query to the
signing oracle is allowed.



with arbitrary (potentially length-increasing) hash functions, we extend Simon’s
oracle to forge the FDH signature of a special input when no “good collision”
to h was found: But we have to make sure that the inversion of fpk,n resulting
from this forgery will not allow the attacker to invert fpk,n on its own challenge.
More specifically, G takes inputs of the form (1L, 1t, 〈h〉, pk), where 〈h〉 is

the description of a deterministic oracle TM. Such a query can be seen as a
request for a forgery to signature scheme sign(m) = f−1

pk,n(h(m)), here n = |pk|.

G first checks if the running time of hF0(x) is > bt/2c for some x ∈ {0, 1}L

and all potential choices F = F0 for the oracle F; if so, it outputs ⊥ and stops.
Otherwise, u ∈R {0, 1}

L is chosen and w ≡ hF(u) is computed; then v ∈R {0, 1}
L

is sampled conditioned on hF(v) = w. If u = v, |w| = n and L ≥ µ(n), where
µ(n) = log2(n), F outputs (u, v, y, f−1

pk,n(w), s, inversion), where s describes the

computations hF(u) and hF(v) (including all F-queries). Else, the output of G is
(u, v, w, s, collision), with s as above.
It is easy to see that with this oracle G one can forge sign(m) = f−1

pk,n(h(m))

for any efficient h: Just query G(1L, 1t, 〈h〉, pk) (for appropriate L, t) to obtain
u and v with h(u) = h(v). If u 6= v, we can forge a signature for v by asking the
signing oracle to sign u, which will also give a signature of v. If u = v, then G

also outputs f−1
pk,n(h(u)), which is a direct forgery (with no queries to its signing

oracle).
More subtleties arise when showing that G does not help the adversary to

invert F. In particular, they motivate the need for t and the “µ-test” in G. The
former avoids that an adversary A = AF,G receives the result of more oracle
queries than she would have time to compute. As for the µ-test, it avoids that
the TDP is inverted on specific inputs, for it makes negligible the probability
that A could use G to invert some specific y of interest (e.g., the challenge in
the one-wayness game). Indeed, for this to happen (1) a random u should map
to y; and (2) a random preimage v of y (v ∈ h−1(y)) should be u again. Now, it
is easy to see that the probability of this happening is negligible indeed:

Pr[u ∈ h−1(y)]Pr[v = u | v ∈ h−1(y)] =
|h−1(y)|

2L
1

|h−1(y)|
= 2−L ≤ 2−µ(n).

(6)
This simple fact turns out to be ultimately responsible for G not breaking the
TDP property. More details will be given in the full version.
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