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Abstract. Assuming an insecure quantum channel and an authenti-
cated classical channel, we propose an unconditionally secure scheme
for encrypting classical messages under a shared key, where attempts
to eavesdrop the ciphertext can be detected. If no eavesdropping is de-
tected, we can securely re-use the entire key for encrypting new messages.
If eavesdropping is detected, we must discard a number of key bits cor-
responding to the length of the message, but can re-use almost all of the
rest. We show this is essentially optimal. Thus, provided the adversary
does not interfere (too much) with the quantum channel, we can securely
send an arbitrary number of message bits, independently of the length
of the initial key. Moreover, the key-recycling mechanism only requires
one-bit feedback. While ordinary quantum key distribution with a classi-
cal one time pad could be used instead to obtain a similar functionality,
this would need more rounds of interaction and more communication.

Key-words: quantum cryptography, key-recycling, unconditional security, pri-
vate-key encryption.

1 Introduction

It is well known that only assuming a quantum channel and an authenticated
classical channel, Quantum Key Distribution (qkd) can be used to generate an
unconditionally secure shared key between two parties. If we want to use this
key for encrypting classical messages, the simplest way is to use it as a one-time
pad. This way, an m-bit key can be used to encrypt no more than m message
bits, since re-using the key would not be secure (without extra assumptions like
in the bounded storage model[19,10,13]).

However, if we allow the same communication model for message transmission
as for key exchange — which seems quite natural — an obvious question is
whether we might gain something by using the quantum channel to transmit
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ciphertexts. The reason why this might be a good idea is that the ciphertext is
now a quantum state, and so by the laws of quantum mechanics, the adversary
cannot avoid affecting the ciphertext when trying to eavesdrop. We may therefore
hope being able to detect — at least with some probability — whether the
adversary has interacted with the ciphertext. Clearly, if we know he has not,
we can re-use the entire key. Even if he has, we may still be able to bound the
amount of information he can obtain on the key, and hence we can still re-use
part of the key. Note that the authenticated classical channel is needed in such a
scheme, in order for the receiver to tell the sender whether the ciphertext arrived
safely, and possibly also to exchange information needed to extract the part of
the key that can be re-used. Such a system is called a Quantum Key-Recycling
Scheme (qkrs).

A possible objection against qkrs is that since it requires interaction, we
might as well use qkd to generate new key bits whenever needed. However, in the
model where the authenticated classical channel is given as a black-box (i.e., not
implemented via a shared key) qkd requires at least three messages: the quantum
channel must be used, and the authenticated channel must be used in both
directions, since otherwise the adversary could impersonate one of the honest
parties. Further, each move requires a substantial amount of communication (if
N qubits were transmitted then the two classical moves require more than N
classical bits each). Finally, N is typically larger than the length of the secret-key
produced. Hence, if we can build a qkrs scheme that is efficient, particularly in
terms of how much key material can be re-used, this may be an advantage over
straightforward use of qkd.

From a more theoretical point of view, our work can be seen as a study of the
recycling capabilities of quantum ciphers in general. In particular, how many key
bits can be recycled, and how much feedback information must go from receiver
to sender in order to guarantee the security of the recycled key? How do these
capabilities differ from those of classical ciphers? In this paper we give precise
answers to these questions.

The idea behind a qkrs originates from Bennett and Brassard during the
early days of quantum cryptography[4]. Although they did not provide any fully
satisfying solution or security proof, their approach to the problem is similar to
our. More recently Leung studied recycling of quantum keys in a model where
Alice and Bob are allowed three moves of interaction[12]. In this model, however,
quantum key distribution can be applied. Leung also suggested that classical keys
can be recycled when no eavesdropping is detected. In [16], a qkrs was proposed
based on quantum authentication codes[2]. The key-recycling capabilities of their
scheme can be described in terms of 2 parameters: the message length m and
the security parameter `. The scheme uses 2m + 2` bits of key, and is based
on quantum authentication schemes that, as shown in [2], must always encrypt
the message. The receiver first checks the authenticity of the received quantum
state and then sends the result to the sender on the authenticated channel. Even
when the receiver accepts, the adversary may still have obtained a small amount
of information on the key. The receiver therefore also sends a universal hash



function, and privacy amplification is used to extract from the original key a
secure key of length 2m + `. If the receiver rejects then a secure key of length
m+ ` can be extracted.

In this paper, we propose a qkrs for encrypting classical messages. Our qkrs

is based on a new technique where we append a k-bit classical authentication
tag to the message, and then encrypt the n = m + `-bit plaintext using the
Wn-quantum cipher introduced in [8]. The authentication is based on universal
hashing using an m-bit key. The cipher uses 2n = 2(m + `) bits of key, where
m+ ` bits are used as a one-time pad, and m+ ` bits are used to select in which
basis to send the result, out of a set of 2m+` so called mutually unbiased bases.
Thus, the entire key of the qkrs consists of 3m+2` bits. The receiver decrypts
and checks the authentication tag. If the tag is correct, we can show that the
adversary has exponentially small information about the key, and the entire key
can therefore be recycled. If the tag is incorrect, we can still identify 2m+ ` bits
of the key, about which the adversary has no information, and they can therefore
be re-used. Since this subset of bits is always the same, the receiver only needs
to tell the sender whether he accepts or not.

Being able to recycle the entire key in case the receiver accepts is of course
optimal. On the other hand, we can show that any qkrs must discard at least
m− 1 bits of key in case the receiver rejects. Since m can be chosen to be much
larger than `, discarding m+ ` bits, as we do, is almost optimal.

In comparison with earlier works, our technique completely eliminates the
use of privacy amplification, and hence reduces the communication on the au-
thenticated channel to a single bit. Moreover, we can recycle the entire key when
the receiver accepts the authentication tag. Hence, in scenarios where interfer-
ence from the adversary is not too frequent, our keys can last much longer than
with previous schemes, even though we initially start with a longer key.

Our results differ from those of [16], since quantum authentication based
qkrs do not guarantee the privacy of the authentication tag. Therefore, part
of the key must be discarded even if the receiver accepts. Instead of quantum
authentication, we use classical Wegman and Carter authentication codes[6] and
a quantum encryption of classical messages[8] applied to both the message and
the tag. This construction allows to recycle the entire authentication key securely.

The scheme we introduce can also be used as an authentication code for
quantum messages. However, it requires a longer secret-key than the scheme in
[2], but allows for recycling the authentication key entirely upon acceptance.

Our qkrs is composable since the security is expressed in terms of distance
from uniform. The secret-keys and plaintexts are private when, from the adver-
sary’s point of view, they look like uniformly distributed random variables. This
has been shown to provide universal composability in the quantum world[17].

We end this introduction with some remarks on the authenticated classical
channel. Having such a channel given for free as a black-box may not be a
realistic assumption, but it is well known that it can be implemented assuming



the players initially have a (short) shared key.1 In this model, the distinction
between qkd and qkrs is not as clear as before, since we now assume an initial
shared key for both primitives. Indeed, our qkrs can be seen as an alternative
way to do qkd: we can form a message as the concatenation of new random
key bits to be output and a short key for implementing the next usage of the
authenticated channel. Having sent enough messages of this form successfully,
we can generate a much larger number of secure key bits than we started from.
Note that this is harder to achieve when using the earlier qkrs scheme since
bits of the original key are lost even in successful transmissions.

2 Preliminaries

2.1 Density Operators and Distance Measures

We denote by S(H) the set of density operators on Hilbert space H (i.e. positive
operators σ such that tr(σ) = 1). In the following,Hn denotes the 2

n-dimensional
Hilbert space over C, 11n denotes the 2n× 2n identity operator, and In = 2−n11n
denotes the completely mixed state. The trace-norm distance between two quan-
tum states ρ, σ ∈ S(H) is defined as:

D(ρ, σ) =
1

2
tr (|ρ− σ|) ,

where the right-hand side denotes half the sum over the absolute value of all
eigenvalues of ρ− σ. The trace-norm distance is a metric over the set of density
operators in S(H). In the following, we use the same notation as [17]. Let (Ω,P )
be a discrete probability space. A random state ρ is a function from Ω to S(H).
This means that to ω ∈ Ω corresponds the mixed state ρ(ω). To an observer
ignorant of the randomness ω ∈ Ω, the density operator described by ρ is given
by

[ρ] =
∑

ω∈Ω

P (ω)ρ(ω).

For any event E, the density operator described by ρ conditioned on E is given
by

[ρ|E] =
1

Pr (E)

∑

ω∈E

P (ω)ρ(ω).

Classical random variables can also be represented as random states. Let X
be a random variable with range X and let H be a #X-dimensional Hilbert
space with orthonormal basis {|x〉}x∈X. The random state corresponding to X
is denoted by {X} = |X〉〈X| and [{X}] =

∑

x∈X
P (x)|x〉〈x| denotes its associated

density operator. Let ρ⊗{X} be a random state with a classical part {X}. The
corresponding density operator is given by

[ρ⊗ {X}] =
∑

x∈X

P (x)[ρ|X = x]⊗ |x〉〈x|.

1 Even in this case, qkd does something that is impossible classically, namely it gen-
erates a shared key that is longer than the initial one.



If X is independent of ρ then [ρ ⊗ {X}] = [ρ] ⊗ [{X}]. Let X be a classical
random variable with range X and let ρ be a random state. The distance to
uniform of X given ρ is defined by

d(X|ρ) = D([{X} ⊗ ρ], [{U}]⊗ [ρ]), (1)

where U is a random variable uniformly distributed over X.

2.2 Quantum Ciphers

A quantum encryption scheme for classical messages is the central part of any
qkrs. Such schemes where introduced in [1], and further studied in [8], where
their performances were analyzed against known-plaintext attacks. We adopt a
similar definition here except that we allow for the encryption to provide only
statistical instead of perfect privacy. As in [1,8], we model encryption under key
k by an appropriate unitary operator Ek acting upon the message and a possible
ancilla of any size initially in state |0〉. Decryption is simply done by applying
the inverse unitary.

For convenience we will use the notation

ρx =
∑

k∈{0,1}n

2−nEk|x〉〈x| ⊗ |0〉〈0|E
†
k,

for the equal mixture of a plaintext x ∈ {0, 1}m encrypted under all possible keys
with uniform probability. A quantum cipher is private if, given a cipherstate,
almost no information can be extracted about the plaintext.

Definition 1. For a non-negative function ε(n), a ε(n)-private (n,m)-quantum
cipher is described by a set of 2n unitary encryption operators {Ek}k∈{0,1}n ,
acting on a set of m-bit plaintexts and an arbitrary ancilla initially in state |0〉
such that,

(∀x, x′ ∈ {0, 1}m)[D(ρx, ρx′) < ε(n)].

If ε(n) is a negligible function of n we say that the scheme is statistically private.

The total mixture of ciphertexts associated with an ε-private (n,m)-quantum
cipher with encryption operators {Ek}k∈{0,1}n is

ξ =
∑

k∈{0,1}n

2−n
∑

x∈{0,1}m

2−mEk|x〉〈x| ⊗ |0〉〈0|E
†
k. (2)

The next technical Lemma states that the total mixture of any ε-private quantum
cipher is ε-close to any plaintext encryption under a random and private key.

Lemma 1. Any ε-private (n,m)-quantum cipher satisfy that for all x ∈ {0, 1}m,
D(ξ, ρx) < ε.

Proof. Simply observe that,

D(ξ, ρx) = D



2−m
∑

y∈{0,1}m

ρy, ρx



 ≤
∑

y∈{0,1}m

2−mD(ρy, ρx) < ε,

from the convexity of D(·, ·) and the ε-privacy of the quantum cipher. ut



2.3 Mutually Unbiased Bases

A set Bn = {B1, . . . , B2t} of 2
t orthonormal bases in a Hilbert space of dimension

2n is said to be mutually unbiased (we abbreviate mutually unbiased bases set
as mubs) if for all |u〉 ∈ Bi and |v〉 ∈ Bj for i 6= j, we have |〈u|v〉| = 2−n/2.
Wootters and Fields[20] have shown that there are mubss of up to 2n + 1 bases
in a Hilbert space of dimension 2n, and such sets are maximum. They also give a
construction for a maximal mubs in Hilbert spaces of prime-power dimensions.

For Bn = {Bb}b∈{0,1}t a mubs, w ∈ {0, 1}n, and b ∈ {0, 1}t, we denote by |v
(b)
w 〉

the w-th state in basis Bb ∈ Bn.
Lawrence, Brukner, and Zeilinger[11] introduced an alternative construction

for maximal mubss based on algebra in the Pauli group. Their construction
plays an important role in the security analysis of our qkrs. The method for
constructing a maximal mubs in Hn relies on a special partitioning of all Pauli
operators in Hn. These operators live in a vector space of dimension 4

n. Let
Σ = {σx, σy, σz, σ11} (where σ11 = 111) be the set of Pauli operators in H1. This
set forms a basis for all one-qubit operators. A basis for operators on n qubits
is constructed as follows for i ∈ {0, . . . , 4n − 1}:

Oi = σ1
µ(1,i)σ

2
µ(2,i) . . . σ

n
µ(n,i) =

n
∏

k=1

σkµ(k,i), (3)

such that σkµ(k,i) is an operator in Σ acting only on the k-th qubit. We use
the convention O0 = 11n. The action of Oi on the k-th qubit is σµ(k,i) where
µ(k, i) ∈ {x, y, z, 11}. The basis described in (3) is orthogonal, tr(OiOj) = 2

nδi,j
where i = j means that µ(k, i) = µ(k, j) for any qubit k. Every Pauli operator
Oi is such that O

2
i = 11n. Apart from the identity 11n, all Oi’s are traceless and

have eigenvalues ±1.
In [11], it is first shown how to partition the set of 4n − 1 non-trivial Pauli

operators {Oi}
4n−1
i=1 into 2n+1 subsets, each containing 2n−1 commuting mem-

bers. Second, each such partitioning is shown to define a maximal mubs. Let us

denote by P b
β = |v

(b)
β 〉〈v

(b)
β | the projector on the β-th vector in basis Bb. Say-

ing that Bn = {Bi}i is a mubs means that tr(P a
αP

b
β) = 2−n when a 6= b and

tr(P b
βP

b
β′) = δβ,β′ . Let (εb,β)b,β be a 2

n × 2n matrix consisting of orthogonal
rows, one of which is all +1, and the remaining ones all contain as many +1 as
−1. The b-th partition contains Pauli operators {Ob

β}
2n−1
β=1 such that

Ob
β =

2n
∑

α=1

εβ,αP
b
α. (4)

In the following, (εβ,α)β,α will always denote the operator 2
n/2H⊗n where H⊗n

is the n-qubit Hadamard transform (i.e. εβ,α = (−1)
β·α).

The number of partitions {Ob
β}β defined by (4) is 2

n + 1 when constructed
from a maximal mubs. Each partition contains 2n− 1 operators after discarding
the identity (they all contain the identity). Each of these operators is traceless



and has ±1 eigenvalues as for the Pauli operators. It is easy to verify that for
a 6= b,

tr
(

Oa
αO

b
β

)

=
∑

µ,ν

εα,µεβ,ν tr
(

P a
µP

b
ν

)

= 0. (5)

Moreover,

tr
(

Ob
βO

b
β′
)

=
∑

µ,ν

εβ,µεβ′,ν tr
(

P b
µP

b
ν

)

=
∑

µ

εβ,µεβ′,µ = 2
nδβ,β′ . (6)

It follows from (5) and (6) that all operators in (4) are unitarily equivalent to
Pauli operators. This essentially shows that partitioning the Pauli operators the
way we want is always possible.

It remains to argue that any such partitioning defines a maximal mubs.
Notice that partition {Ob

1, . . . , O
b
2n−1} (i.e. without the identity Ob

0) defines a
unique basis {P b

β}β where

P b
β = 2

−n
∑

µ

εµ,βO
b
µ. (7)

It is not difficult to verify that tr(P b
βP

b
β′) = δβ,β′ and for a 6= b, tr(P b

βP
a
α) = 2

−n

thus leading to a maximal mubs.
In other words, there is a one-to-one correspondence between maximal mubss

and the partitionings {{Ob
β}β}b of the 4

n − 1 Pauli operators (except the iden-

tity), acting on n qubits, into 2n + 1 partitions {Ob
β}β of 2

n − 1 commuting
members. Each partition is a subgroup of the n-qubit Pauli group and is gen-
erated by n of these operators. Any Pauli operator commutes with all other
operators in the partition in which it is, and anti-commutes with exactly half
of the operators, including the identity, in all other partitions. See [11] for more
details.

2.4 The Wn-Cipher

In [8], quantum ciphers based on mubss were introduced and studied with re-
spect to their secret-key uncertainty against known-plaintext attacks. Our qkrs,
presented in Sect. 5.1, uses one of these ciphers, theWn-cipher, as its main build-
ing block. The Wn-cipher is a (2n, n)-quantum cipher, that is, it encrypts n-bit
classical messages with the help of a 2n-bit secret-key. The Wn-cipher enjoys
perfect privacy when the secret-key is perfectly private. It is easy to verify that
the cipher is ε-private if the secret-key is only ε-close to uniform[17].

Let Bn = {Bb}b∈{0,1}n be a mubs of cardinality 2n for Hn. Remember that

|v
(b)
w 〉 denotes the w-th basis state in basis Bb ∈ B. The secret-key k for the Wn-

cipher is conveniently written as k = (z, b) where z, b ∈R {0, 1}n. Encryption
according secret-key k = (z, b) of message x ∈ {0, 1}n consists in preparing the
following state:

Ek|x〉 = E(z,b)|x〉 =
∣

∣

∣v
(b)
x⊕z

〉

∈ Bb.



In other words, the encryption process first one-time pad message x with key z
before mapping the resulting state to basis Bb. Encryption and decryption can
be performed efficiently on a quantum computer[20,8].

3 Key-Recycling Schemes

A qkrs is an encryption scheme with authentication. In addition, there are
two key-recycling mechanisms, R

n,s
ok and Rn,t

no , allowing one to recycle part of
the secret-key shared between Alice and Bob in case where the authentication
succeeds and fails respectively. We model the recycling mechanism by privacy
amplification. That is, R

n,s
ok and Rn,t

no are classes of hashing functions mapping

the current key k ∈ {0, 1}n into a recycled key k̂ of length s and t respectively.
In order to apply privacy amplification, an authentic classical feedback chan-
nel is necessary for announcing Bob’s random recycling function R ∈R R

n,s
ok or

R ∈R Rn,t
no depending on the outcome of authentication. Alice and Bob then

compute k̂ = R(k) as their recycled secret-key. We do not allow further inter-
action between Alice and Bob since otherwise quantum key distribution could
take place between them allowing not only to recycle their secret-key but even
to increase its length. Key-recycling should be inherently non-interactive from
Bob to Alice since the authentication outcome should anyway be made available
to Alice. For simplicity, we assume that the classical feedback channel between
Bob and Alice is authenticated. In general, a small secret key could be used for
providing classical message-authentication on the feedback channel.

Definition 2. A (n,m, s, t)-qkrs is defined by a pair (Cm,n, (Rn,s
ok ,R

n,t
no )) where

– C
m,n is a (m,n)-quantum cipher, and

– (Rn,s
ok ,R

n,t
no ) is a key-recycling mechanism.

In this paper, the privacy of the recycled key is characterized by its distance
from uniform. In [17], it is shown that when the distance is negligible, the key
behaves as a perfectly private key except with negligible probability. It follows
that the application is composable provided the adversary is static[14,17,3].

For a qkrs to be secure, we require that even knowing the plaintext, the
function R, and the authentication outcome, the adversary’s view about the
recycled key is at negligible distance from uniform. This should hold except for a
negligible number of functions in R

n,s
ok and Rn,t

no . Security against known plaintext
attacks is an important property of good key-recycling mechanisms. Otherwise,
extra conditions on the a posteriori probability distribution over plaintexts have
to be enforced. In particular a recycled key could be compromised if a previous
plaintext gets revealed to the adversary.

The adversary’s view typically changes depending on whether the authentica-
tion succeeds or fails. Let Aok (resp. Ano) be the event consisting in a successful
(resp. unsuccessful) authentication. Conditioned on Aok, the adversary should
have access only to very limited amount of information about the secret-key.
The better the authentication scheme is, the more key material the recycling



mechanism can handle. When Ano occurs, however, the adversary may hold the
entire cipherstate. Let K be the random variable for the secret-key. Let ρ(x)
be the random state corresponding to the adversary’s view on an encryption of
classical message x using a random key. We denote by [ρok(x)] = [ρ(x)|Aok] and
[ρno(x)] = [ρ(x)|Ano] the random state ρ(x) conditioned on the event Aok and
Ano respectively.

Definition 3. A key-recycling mechanism (Rn,s
ok ,R

n,t
no ) is (δok, δno)-indistinguish-

able if for all x ∈ {0, 1}m:

1. d(R(K)|ρok(x)⊗ {R}) ≤ δok (where R ∈R R
n,s
ok ), and

2. d(R(K)|ρno(x)⊗ {R}) ≤ δno (where R ∈R Rn,t
no ).

For δok,δno negligible functions of n, we say that the key-recycling mechanism is
statistically indistinguishable. The class of key-recycling functions R

n,s
ok or Rn,t

no

is said to be δ-indistinguishable if condition 1 or 2 respectively holds relative to
δ.

Finally, a qkrs is secure if it is a private encryption scheme together with a
statistically indistinguishable key-recycling mechanism. In general,

Definition 4. A (n,m, s, t)-qkrs defined by (Cm,n, (Rn,s
ok ,R

n,t
no )) is (ε, δok, δno)-

secure if

1. C
m,n is ε-private,

2. when no eavesdropping occurs the key-recycling mechanism R
n,s
ok is used, and

3. (Rn,s
ok ,R

n,t
no ) is a (δok, δno)-indistinguishable key-recycling mechanism.

If the scheme is such that ε, δok, and δno are all negligible functions of n then we
say that the scheme is statistically secure.

The efficiency of a qkrs is characterized by n, s and t. When authentication
succeeds n−s bits of secret-key must be thrown away while, when authentication
fails, n−t have to be discarded. Clearly, any purely classical key-recycling scheme
must have s, t ≤ n − m. This does not have to hold for quantum schemes.
However, we show next that quantum schemes suffer the same restrictions as
classical ciphers when authentication fails.

4 Upper Bound on Key-Recycling

In this section, we show that any statistically secure qkrs must discard as many
key-bits as the length of the plaintext (minus one bit) when the authentication
fails. In other words, when authentication fails no qkrs does better than the
classical one-time-pad.

When authentication fails, the adversary may have kept the entire ciphertext
and may know the plaintext x ∈ {0, 1}m. On the other hand, condition 2 in
Definition 3 requires that the key-recycling mechanism satisfies d(R(K)|ρno(x)⊗
{R}) ≤ δ(n) where δ(n) is negligible and R ∈R Rn,t

no . Using (1), it follows that

D([{R(K)} ⊗ ρno(x)⊗ {R}], [{U}]⊗ [ρno(x)⊗ {R}]) ≤ δ(n). (8)



The density operator ρno(k̂, x, R) = [ρno(x)|R(K) = k̂] corresponds to the ad-

versary’s view when the plaintext is x, the recycled key is k̂ ∈ {0, 1}t, and the
privacy amplification function is R ∈ Rn,t

no . We have that,

ρno(k̂, x, R) =
∑

k:R(k)=k̂

1

#R−1(k̂)
Ek|x〉〈x| ⊗ |0〉〈0|E

†
k. (9)

For convenience, we define ρno(k̂, x) =
1

#R
n,t
no

∑

R∈R
n,t
no

ρno(k̂, x, R)⊗ |R〉〈R|. If a

key-recycling scheme is statistically indistinguishable then for a negligible func-
tion δ(n),

δ(n) ≥ d(R(K)|ρno(x)⊗ {R}) (10)

= D





∑

k̂

pK̂(k̂)
∣

∣

∣
k̂
〉〈

k̂
∣

∣

∣
⊗ ρno(k̂, x), It ⊗

∑

k̂

pK̂(k̂)ρno(k̂, x)



 (11)

≥
1

#R
n,t
no

∑

R

∑

k̂

2−n#R−1(k̂)D(ρno(k̂, x, R), ρx), (12)

where (10) follows by definition of statistical indistinguishability, and (11) is
obtained using (8) and (9). The last step follows from the fact that D(ρ, σ) =
max{Em}m D(p(m), q(m)) where the maximum is computed over all POVMs
{Em}m and p(m) = tr(ρEm), q(m) = tr(σEm) are probability distributions for
the outcomes of {Em}m when applied to ρ and σ respectively (see for example
Theorem 9.1 in [15]). In order to get (12) from (11) one only has to consider

a POVM that first measures R and k̂ before performing the POVM {E ′m}m
(depending on R and k̂) on the residual state that satisfies D(ρno(k̂, x, R), ρx) =
d(p′(m), q′(m)).

It can be shown that for t ≥ n−m+2, (12) implies the existence of R ∈ Rn,t
no

and k̂0 ∈ {0, 1}
t such that #R−1(k̂0) ≤ 2m−1 and D(ρno(k̂0, x,R), ρx) ≤ c for

any constant 0 < c ≤ 1. Moreover, since the cipher is statistically private, there
exists a negligible function ε(n) such that,

D(ρno(k̂0, x,R), ξ) ≤ D(ξ, ρx) +D(ρx, ρno(k̂0, x,R)) ≤ ε(n) + c. (13)

On the other hand, an argument along the lines of the proof of Lemma IV.3.2
in [5] allows us to conclude that when #R−1(k̂0) ≤ 2

m−1, D(ρno(k̂0, x,R), ξ) ≥
1/2 which contradicts (13) when c < 1/2 and ε(n) is negligible (see Lemma 3 in
[9]). Next Theorem, proven in [9], follows:

Theorem 1 (Key-Recycling Bound). Any statistically secure (n,m, s, t)-
qkrs is such that t ≤ n−m+ 1.

We believe that a more careful analysis would show that statistically secure
(n,m, s, t)-qkrs must satisfy t ≤ n − m. Theorem 1 implies that in order to
recycle more secret-key bits than any classical scheme, quantum ciphers must
provide authentication. It is only when the authentication succeeds that a qkrs

may perform better than classical ones.



5 A Near Optimal Quantum Key-Recycling Scheme

We introduce a qkrs, called WnCm, that recycles an almost optimal amount
of key material. Moreover, the key-recycling mechanism does not use privacy
amplification. Deterministic functions are sufficient to guarantee the statistical
indistinguishability of the recycled key. The scheme is introduced in Sect. 5.1.
In Sect. 5.2 we present an EPR-version of the scheme and we prove it secure. In
Sect. 5.3 we reduce the security of WnCm to that of the EPR-version.

5.1 The Scheme

TheWnCm-cipher encrypts a message together with its Wegman-Carter one-time
authentication tag[6] using the Wn-cipher[8]. We need an authentication code
constructed from xor-universal classes of hash-functions:

Definition 5 ([6]). An xor-universal family of hash-functions is a set of func-
tions Hm,µ = {hu : {0, 1}

m → {0, 1}µ}u such that for all a 6= b ∈ {0, 1}m and

all x ∈ {0, 1}µ, #{h ∈ Hm,µ|h(a)⊕ h(b) = x} =
#Hm,µ

2µ .

There exists an xor-universal class of hash-functions H⊕
m,µ (for any m ≥ µ) that

requires only m bits to specify and such that picking a function at random can
be done efficiently.

For the transmission of m-bit messages, WnCm requires Alice and Bob to
share a secret-key of size N = 2n +m bits where n = m + `(m), and `(m) ∈
Ω(m) is the size of the Wegman-Carter authentication tag. We denote secret-
key k by the triplet: k = (z, b, u) where z, b ∈ {0, 1}n is the key for the Wn-
cipher and u ∈ {0, 1}m is the description of a random function hu ∈ H⊕m,`(m).

Encrypting message x ∈ {0, 1}m is performed by first computing the Wegman-
Carter one-time authentication tag hu(x). The message (x, hu(x)) ∈ {0, 1}

n is
then encrypted using the Wn-cipher with secret-key (z, b). Bob decrypts the
Wn-cipher and verifies that a message of the form (x, hu(x)) is obtained. Bob
announces to Alice the outcome of the authentication using the authenticated
feedback channel. When it is successful, Alice and Bob recycle the whole secret-
key. If the authentication fails then Alice and Bob throw away the one-time-pad
z. The remaining part (b, u) is entirely recycled. In other words, R

N,s
ok is the

identity with s = N and RN,t
no is deterministic with t = N −n = N −m− `(m).

It is almost straightforward to show that our key-recycling function is per-
fectly indistinguishable when authentication fails.

Lemma 2. Let N = 2n +m where n = m + `(m),`(m) > 0 be the key-length
used in WnCm and let R(z, b, u) = (b, u) for z, b ∈ {0, 1}

n and u ∈ {0, 1}m. The
key-recycling mechanism RN,N−n

no = {R} is 0-indistinguishable.

Proof. Since ρno((b, u), x,R) = In = ρno((b
′, u′), x,R) for all (b, u),(b′, u′), and

x, it easily follows that d(R(K)|ρno(x)⊗ {R}) = 0. ut

Since WnCm encrypts m-bit messages and recycles N −n bits of key, the scheme
is sub-optimal according Theorem 1. In the next sections, we see that WnCm

remains statistically secure for any `(m) ∈ Ω(m). It follows that although sub-
optimal, WnCm is nearly optimal.



Private-Key: (z, b, u) ∈R {0, 1}
2n+m where n = m+ `(m).

1. Alice creates the message c = (x, hu(x)) where hu ∈ H⊕
m,`(m). She then

encrypts this message with key (z, b) according to the Wn-cipher.
2. Bob decodes the received Wn-cipher with key (z, b) and gets c′ = (x′, t′).

He then verifies the authentication tag t′ = hu(x
′). Bob sends the result

of the test to Alice through a classical authentic channel.
3. [Key-Recycling] If Bob accepts then Alice and Bob recycle the entire

key (b, z, u). If Bob rejects then Alice and Bob recycle (b, u) and throw
away z ∈ {0, 1}n.

Fig. 1. The WnCm.

5.2 An EPR variant of WnCm

We establish the security of the key-recycling mechanism in WnCm when the au-
thentication is successful. We prove this case using a Shor-Preskill argument[18]
similar to the ones invoked in [16] and [2] for key-recycling and quantum au-
thentication respectively.

We first define a variant of WnCm, called epr-WnCm, using EPR-pairs and
having access to an additional authenticated and private classical channel. The
key-recycling mechanism of epr-WnCm can be proven secure more easily since
it has access to more powerful resources. Second, we show that the security of
WnCm follows from the security of epr-WnCm.

In epr-WnCm, Alice and Bob initially share an n-bit key b, and an m-bit
key u. They agree on 2n mutually unbiased bases in Hn, and a family of xor-
universal hash-functions H⊕

m,µ = {hu}u∈{0,1}m . As for WnCm, the key b is used
to select in which of the bases of the mubs the encryption will take place. The
key u indicates the selection of the hash-function for authentication. The key
z in epr-WnCm is not shared beforehand but will be implicitly generated by
measuring the shared EPR-pairs. This corresponds to refreshing z before each
round of epr-WnCm.

In order for Alice to send classical message x ∈ {0, 1}m to Bob, Alice and
Bob proceeds as described in Fig. 2. The key-recycling mechanism of epr-WnCm

only takes place when authentication succeeds. The quantum transmission in
WnCm is replaced by transmitting half of a maximally entangled state consisting
of n EPR-pairs.

|Ψ〉 =
∑

x∈{0,1}n

2−n/2|x〉
A
|x〉

B
=

∑

x∈{0,1}n

2−n/2
∣

∣

∣ξ(b)
x

〉A∣
∣

∣v(b)
x

〉B

, (14)

for some orthonormal basis {|ξ
(b)
x 〉}x.



Private-Key: (b, u) ∈R {0, 1}
n+m.

1. Alice prepares the n EPR-pairs in state |Ψ〉AB .
2. Alice sends the B-register to Bob.
3. Bob acknowledges receiving the state using the classical authentic feedback

channel.
4. Alice measures her A-register in basis {|ξ

(b)
c 〉}c∈{0,1}n (See (14)). On clas-

sical outcome c, she computes z := c⊕ (x, hu(x)).
5. Alice sends z to Bob through the additional private and authenticated

classical channel.
6. Bob measures his B-register in the b-th basis of the mubs, gets outcome c′,

and computes (x′, t′) = c′⊕ z. Bob verifies that t′ = hu(x
′) and announces

the result to Alice through the classical authenticated feedback channel.
7. If Bob accepts, Alice and Bob recycle the whole key (b, u).

Fig. 2. The epr-WnCm-cipher using an extra private and authentic classical channel.

Any trace-preserving operator the adversary can apply to Bob’s half EPR-
pairs can be described in terms of the 4n Pauli operators,

ρ̂ = E(|Ψ〉〈Ψ |) =

4n−1
∑

i=0

4n−1
∑

j=0

cicj(11n ⊗Oi)|Ψ〉〈Ψ |(11n ⊗Oj)
†, (15)

where O0 = 11n. We can split (15) into the case where the error leaves the state
untouched, and the case where the state is changed

ρ̂ = |c0|
2|Ψ〉〈Ψ |+ (1− |c0|

2)ρb,uE , (16)

where ρb,uE =
∑

(i,j)6=(0,0)
cicj

(1−|c0|2)
(11n ⊗ Oi)|Ψ〉〈Ψ |(11n ⊗ Oj)

†, and |c0|
2 is the

probability that the state is left unchanged by E.
The idea behind the security of the key-recycling mechanism is that an eaves-

dropper, performing any non-trivial action upon Bob’s system, will fail authen-
tication with high probability. Any eavesdropping strategy that remains unde-
tected with a not too small probability is such that |c0|

2 is at negligible distance
from 1. This means that the ciphertext will be left untouched with probability
essentially 1. In other words the probability of being detected is closely related
to 1− |c0|

2.
The probability that Bob will accept the authentication tag, when Alice and

Bob share key (b, u) can be expressed by the observable projecting onto the space
of states where Alice has her untouched EPR-halves, and Bob has anything that
passes the authentication test:

Πb,u
Acc =

∑

z∈{0,1}n

∑

x̂∈{0,1}m

∣

∣

∣ξ
(b)
ez,u(x)

〉〈

ξ
(b)
ez,u(x)

∣

∣

∣⊗
∣

∣

∣v
(b)
ez,u(x̂)

〉〈

v
(b)
ez,u(x̂)

∣

∣

∣, (17)

where ez,u(x) = z⊕ (x, hu(x)). The probability that Bob will accept the authen-

tication, when using key (b, u), is pb,uAcc = tr(Π
b,u
Accρ̂).



As mentioned in Sect. 2.3, all 4n− 1 Pauli operators (excluding the identity)
are partitioned into 2n + 1 sets, each containing 2n − 1 commuting members.
Each operator, Oi, appearing in (15), will be in one of the 2

n + 1 partitions
(i.e. which each forms a subgroup). In the partition or basis where an error
operator Oi belongs, its action will leave all cipherstates unchanged. For each
other 2n basis b, Oi will anti-commute with exactly half the operators (including
the identity). This means that in basis b, the action of Oi permutes the basis
vectors. Since this permutation is independent of the authentication code, we
can show that the probability for Oi to remain undetected is negligible when the
class of Wegman-Carter authentication functions is xor-universal. Let ρ̂b,uAcc be
the normalized state conditioned on Aok defined as,

ρ̂b,uAcc =
Πb,u

Accρ̂Π
b,u
Acc

tr
(

Πb,u
Accρ̂

) . (18)

We are going to estimate the average fidelity2 of ρ̂b,uAcc to the ideal state |Ψ〉〈Ψ |.
To do so we split ρ̂ according to (16) and use the concavity of the fidelity,

F (ρ̂b,uAcc, |Ψ〉〈Ψ |) ≥
|c0|

2

pb,uAcc

. Applying (16) to pb,uAcc, gives us

F (ρ̂b,uAcc, |Ψ〉〈Ψ |) ≥
|c0|

2

|c0|2 + (1− |c0|2) tr
(

Πb,u
Accρ

b,u
E

) .

To lower bound the average fidelity,
∑

b,u 2
−n−mF (ρ̂b,uAcc, |Ψ〉〈Ψ |). We split the

sum into keys (bases and authentication keys) for which tr(Π b,u
Accρ

b,u
E ) is small,

and keys for which this probability is large. We know from the previous argument,
that the probability of accepting a non-trivial error will be small in most bases,
and indeed the terms with tr(Πb,u

Accρ
b,u
E ) negligible compared to |c0|

2 give the
main contribution to the fidelity.

In summary, an undetected attack is almost always trivial since it corresponds
to the case where no eavesdropping occurred. Next Theorem, proven in [9], gives
the desired result.

Theorem 2. For all adversary strategies for which pAcc ≥ 2
−(n−m−2)/2+1,

∑

b∈{0,1}n

∑

u∈{0,1}m

2−n−mF
(

ρ̂b,u
Acc

, |Ψ〉〈Ψ |
)

≥ 1− 2−
n−m−2

4 +1,

provided n is sufficiently large.

Let ρepr
ok (x) be the random state corresponding to the adversary’s view in

epr-WnCm given Aok. Let K = (B,U,Z) be the random variable describing the
key (b, u) ∈ {0, 1}n × {0, 1}m, and z ∈ {0, 1}n computed from the measurement
outcome. Using the same line of arguments as [3] (for completeness, the proof
can be found in [9]), Theorem 2 implies that:

2 Where the fidelity F (ρ̂b,u
Acc, |Ψ〉〈Ψ |) = 〈Ψ |ρ̂

b,u
Acc|Ψ〉.



Theorem 3. For all adversary strategies for which pAcc ≥ 2
−(n−m−2)/2+1,

d(K|ρepr
ok (x)⊗ {R}) ≤ 2

−
(n−m−2)

8 +1,

provided n is sufficiently large.

5.3 Back to WnCm

We now show that Theorem 3 also applies to WnCm. Similarly to other Shor-
Preskill arguments[18,2,16], we transform epr-WnCm intoWnCm by simple mod-
ifications leaving the adversary’s view unchanged.

In Step 4 of epr-WnCm, Alice measures her part of the entangled pair in
order to extract c ∈ {0, 1}n. Instead, she could have measured already in Step 1
since the measurement commutes with everything the adversary and Bob do
up to Step 4. Measuring half the EPR-pairs immediately after creating them is

equivalent to Alice preparing c ∈R {0, 1}
n before sending |v

(b)
c 〉 in Step 2.

Instead of picking c ∈R {0, 1}
n in Step 1, Alice could choose z ∈R {0, 1}

n

at random before sending |v
(b)
z⊕(x,hu(x))〉 to Bob. All these modifications change

nothing to the adversary’s view.
Now, sending z through the private and authenticated classical channel in

Step 5 becomes unnecessary if Alice and Bob share z before the start of the
protocol (thus making z part of the key). We have now removed the need for the
private and authenticated classical channel.

The resulting protocol is such that Bob first acknowledges receiving the ci-
pher, then measures it, and finally replies with either accept or reject. The ac-
knowledgment of Step 3 is unnecessary and can safely be postponed to Bob’s
announcement in Step 6. The epr-WnCm-cipher has now been fully converted
into theWnCm-cipher without interfering with the eavesdropper’s view. It follows
directly that Theorem 3 also applies to WnCm.

Theorem 3 shows that one use of the WnCm-cipher leaves the secret-key at
negligible distance from uniform when it was initially 0-indistinguishable. In
general, if a random variable K is at distance no more than ε from uniform then
K behaves exactly like a uniform random variable except with probability at
most ε[17]. Our main result follows:

Theorem 4 (Main Result). Let n = m + `(m). For all adversary strategies
the WnCm-cipher used with an initial ε-indistinguishable private-key satisfies,

1. either d(K|ρok(x)⊗ {R}) ≤ ε+ 2−
`(m)−2

8 +1 or pAcc ≤ 2
−(`(m)−2)/2+1,

2. d(K|ρno(x)⊗ {R}) ≤ ε,

provided n is sufficiently large.

In other words, the key-recycling mechanism is statistically indistinguishable
when `(m) ∈ Ω(m). It follows that, when starting from a statistically indis-
tinguishable secret-key, key-recycling can take place exponentially many times
without compromising the statistical indistinguishability of the resulting key.
As mentioned in Sect. 3, Theorem 4 and the discussion in [17] imply that the
WnCm-cipher is universally composable against static adversaries.



6 Conclusion and Open Questions

We have shown that the WnCm-cipher is an almost optimal key-recycling cipher
with one-bit feedback. There are many possible improvements of our scheme.
In this paper, we assume noiseless quantum communication. This is of course
an unrealistic assumption. Our scheme can easily be made resistant to noise by
encoding the quantum cipher using a quantum error-correcting code. Since a
quantum error-correcting code is also a secret-sharing[7], it can be shown that
when authentication succeeds almost no information about the cipherstate is
available to the eavesdropper. On the other hand, if the eavesdropper gains
information about the cipherstate then authentication will fail similarly to the
case where no error-correction is used.

It would be interesting to show that the key recycling bound(i.e. Theorem
1) can be improved to t ≤ n−m (instead of n−m+1) as for classical schemes.
It is an open question whether there exists a qkrs achieving this upper bound.

It is also possible to allow for more key-recycling mechanisms associated to
different output values for the authentication process. Such a generalized scheme
would allow to recycle key-material as a function of the adversary’s available
information but would require more than one-bit feedback.

It is easy to see that the WnCm-cipher can be used as a re-usable quantum
authentication scheme when authentication succeeds. Our construction (using
mubss) is different than the ones based on purity testing codes[2] and may be
of independent interest.
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