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Abstract. In a traditional signature scheme, a signature σ on a message
m is issued under a public key PK, and can be interpreted as follows:
“The owner of the public key PK and its corresponding secret key has
signed message m.” In this paper we consider schemes that allow one to
issue signatures on behalf of any NP statement, that can be interpreted
as follows: “A person in possession of a witness w to the statement that
x ∈ L has signed message m.” We refer to such schemes as signatures of

knowledge.
We formally define the notion of a signature of knowledge. We begin
by extending the traditional definition of digital signature schemes, cap-
tured by Canetti’s ideal signing functionality, to the case of signatures
of knowledge. We then give an alternative definition in terms of games
that also seems to capture the necessary properties one may expect from
a signature of knowledge. We then gain additional confidence in our two
definitions by proving them equivalent.
We construct signatures of knowledge under standard complexity as-
sumptions in the common-random-string model.
We then extend our definition to allow signatures of knowledge to be
nested i.e., a signature of knowledge (or another accepting input to a
UC-realizable ideal functionality) can itself serve as a witness for an-
other signature of knowledge. Thus, as a corollary, we obtain the first
delegatable anonymous credential system, i.e., a system in which one can
use one’s anonymous credentials as a secret key for issuing anonymous
credentials to others.

1 Introduction

Digital signature schemes constitute a cryptographic primitive of central impor-
tance. In a traditional digital signature scheme, there are three algorithms: (1)
the key generation algorithm KeyGen through which a signer sets up his public
and secret keys; (2) the signing algorithm Sign; and (3) the verification algorithm
Verify. A signature in a traditional signature scheme can be thought of as an as-
sertion on behalf of a particular public key. One way to interpret (m, σ) where
Verify(PK, m, σ) = Accept , is as follows: “the person who generated public key
PK and its corresponding secret key SK has signed message m.”

We ask ourselves the following question: Can we have a signature scheme in
which a signer can speak on behalf of any NP statement to which he knows a
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witness? For example, let φ be a Boolean formula. Then we want anyone who
knows a satisfying assignment w to be able to issue tuples of the form (m, σ),
where Verify(φ, m, σ) = Accept , that can be interpreted as follows: “a person who
knows a satisfying assignment to formula φ has signed message m.” Further, we
ask whether we can have a signature that just reveals that statement but nothing
else; in particular, it reveals nothing about the witness. Finally, what if we want
to use a signature issued this way as a witness for issuing another signature?

Online, you are what you know, and access to data is what empowers a user
to authenticate her outgoing messages. The question is: what data? Previously, it
was believed that a user needed a public signing key associated with her identity,
and knowledge of the corresponding secret key is what gave her the power to
sign. Surprisingly, existence of signatures of knowledge means that if there is
any NP statement x ∈ L is associated with a user’s identity, the knowledge of
a corresponding and hard-to-find witness w for this statement is sufficient to
empower the user to sign.

Why We Need Signatures of Knowledge as a New Primitive. Suppose
that a message m is signed under some public key PK, and σ is the resulting
signature. This alone is not sufficient for any application to trust the message
m, unless this application has reason to trust the public key PK. Thus, in addi-
tion to (m, σ,PK), such an application will also request some proof that PK is
trustworthy, e.g., a certification chain rooted at some trusted PK0. In order to
convince others to accept her signature, the owner of the public key PK has to
reveal a lot of information about herself, namely, her entire certification chain.
Yet, all she was trying to communicate was that the message m comes from
someone trusted by the owner of PK0. Indeed, this is all the information that
the application needs to accept the message m. If instead the user could issue
a signature of knowledge of her SK, PK, and the entire certification chain, she
would accomplish the same goal without revealing all the irrelevant information.

More generally, for any polynomial-time Turing machine ML, we want to be
able to sign using knowledge of a witness w such that ML(x, w) = Accept . We
think of ML as a procedure that decides whether w is a valid witness for x ∈ L

for the NP language L. We call the resulting signature a signature of knowledge
of w that is a witness to x ∈ L, on message m, or sometimes just a signature of
knowledge of w on message m, or sometimes a signature of knowledge on behalf
of x ∈ L on message m.

Other Applications Our simplest example is a ring signature [20]. In a ring
signature, a signer wishes to sign a message m in such a way that the signature
cannot be traced to her specifically, but instead to a group of N potential signers,
chosen at signing time. A ring signature can be realized by issuing a signature of
knowledge of one of the secret keys corresponding to N public keys. Moreover,
following Dodis et al. [16] using cryptographic accumulators [4], the size of this
ring signature need not be proportional to N : simply accumulate all public keys
into one accumulator A using a public accumulation function, and then issue a
signature of knowledge of a secret key corresponding to a public key in A.
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Next, let us show how signatures of knowledge give rise to a simple group
signature scheme [11, 7, 1, 2, 5]. In a group signature scheme, we have group mem-
bers, a group manager, and an anonymity revocation manager. Each member can
sign on behalf of the group, and a signature reveals no information about who
signed it, unless the anonymity revocation manager gets involved. The anonymity
revocation manager can trace the signature to the group member who issued it;
moreover it is impossible, even if the group manager and the revocation manager
collude, to create a signature that will be traced to a group member who did
not issue it.

Consider the following simple construction. The group’s public key consists
of (PKs,PKE , f), where PKs is a signature verification key for which the group
manager knows the corresponding secret key; PKE is an encryption public key
for which the anonymity revocation manager knows the corresponding decryp-
tion key; and f is a one-way function. To become a group member, a user picks
a secret x, gives f(x) to the group manager and obtains a group membership
certificate g = σPKs

(f(x)). To issue a group signature, the user picks a random
string R, encrypts his identity using randomness R: c = Enc(PKE , f(x); R) and
produces a signature of knowledge σ of (x, g, R) such that c is an encryption
of f(x) using randomness R, and g is a signature on f(x). The resulting group
signature consists of (c, σ). To trace a group signature, the revocation manager
decrypts c. It is not hard to see (only intuitively, since we haven’t given any for-
mal definitions) that this construction is a group signature scheme. Indeed, at
a high level, this is how existing practical and provably secure group signatures
work [1, 5].

Unlike the two applications above that have already been studied and where
signatures of knowledge offer just a conceptual simplification, our last application
was not known to be realizable prior to this work.

Consider the problem of delegatable anonymous credentials. The problem
can be explained using the following example. Suppose that, as Brown Uni-
versity employees, we have credentials attesting to that fact, and we can use
these credentials to open doors to campus facilities. We wish to be able do so
anonymously because we do not want the janitors to monitor our individual
whereabouts. Now suppose that we have guests visiting us. We want to be able
to issue them a guest pass using our existing credential as a secret key, and with-
out revealing any additional information about ourselves, even to our guests. In
turn, our visitors should be able to use their guest passes in order to issue creden-
tials to their taxi drivers, so these drivers can be allowed to drive on the Brown
campus. So we have a credential delegation chain, from the Brown University
certification authority (CA) that issues us the employee credential, to us, to our
visitors, to the visitors’ taxi drivers, and each participant in the chain does not
know who gave him/her the credential, but (1) knows the length of his credential
chain and knows that this credential chain is rooted at the Brown CA; and (2)
can extend the chain and issue a credential to the next person.

Although it may seem obvious how to solve this problem once we cast every-
thing in terms of signatures of knowledge and show how to realize signatures of
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knowledge, we must stress that this fact eluded researchers for a very long time,
dating back to Chaum’s original vision of the world with anonymous creden-
tials [10]. More recently this problem was raised in the anonymous credentials
literature [19, 6, 18]. And it is still elusive when it comes to practical protocols:
our solution is not efficient enough to be used in practice.

On Defining Signatures of Knowledge. The first definition of any new
primitive is an attempt to formalize intuition. We see from the history of cryp-
tographic definitions (from defining security for encryption, signatures, multi-
party computation) that it requires a lot of effort and care. Our approach is to
give two definitions, each capturing our intuition in its own way, and then prove
that they are equivalent.

One definitional approach is to give an ideal functionality that captures our
intuition for a signature of knowledge. Our ideal functionality will guarantee that
a signature will only be accepted if the functionality sees the witness w either
when generating the signature or when verifying it; and, moreover, signatures
issued by signers through this functionality will always be accepted. At the
same time, the signatures that our functionality will generate will contain no
information about the witness. This seems to capture the intuitive properties
we require of a signature of knowledge, although there are additional subtleties
we will discuss in Section 2.1. For example, this guarantees that an adversary
cannot issue a signature of knowledge of w on some new message m unless he
knows w, even with access to another party who does know w. This is because
the signatures issued by other parties do not reveal any information about w,
while in order to obtain a valid signature, the adversary must reveal w to our
ideal functionality. Although this definition seems to capture the intuition, it
does not necessarily give us any hints as to how a signature of knowledge can be
constructed. Our second definition helps with that.

Our second definition is a game-style one [22, 3]. This definition requires that
a signature of knowledge scheme be in the public parameter model (where the
parameters are generated by some trusted process called Setup) and consist of
two algorithms, Sign and Verify. Besides the usual correctness property that
requires that Verify accept all signatures issued by Sign, we also require that
(1) signatures do not reveal anything about the witness; this is captured by
requiring that there exist a simulator who can undetectably forge signatures of
knowledge without seeing the witness using some trapdoor information about
the common parameters; and (2) valid signatures can only be generated by
parties who know corresponding witnesses; this is captured by requiring that
there exist an extractor who can, using some trapdoor information about the
common parameters, extract the witness from any signature of knowledge, even
one generated by an adversary with access to the oracle producing simulated
signatures. This definition is presented in Section 2.2. (We call this definition
SimExt-security, for simulation and extraction.)

We prove that the two definitions are equivalent: namely, a scheme UC-
realizes our ideal functionality if and only if it is SimExt-secure.
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Our ideal signature of knowledge functionality can be naturally extended to
a signature of knowledge of an accepting input to another ideal functionality.
For example, suppose that FΣ is the (regular) signature functionality. Suppose
w is a signature on the value x under public key PK, issued by the ideal FΣ

functionality. Then our functionality FSOK can issue a signature σ on message m,
whose meaning is as follows: “The message m is signed by someone who knows
w, where w is a signature produced by FΣ under public key PK on message
x.” In other words, a signature w on message x under public key PK that
causes the verification algorithm for FΣ to accept, can be used as a witness for
a signature of knowledge. A complication in defining the signature of knowledge
functionality this way is that, to be meaningful, the corresponding instance of the
FΣ functionality must also be accessible somehow, so that parties can actually
obtain signatures under public key PK. Further, for FSOK to be UC-realizable,
we must require that the functionality that decides that w is a witness for x, also
be UC-realizable. See Section 4 to see how we tackled these definitional issues.
As far as we know, this is the first time that an ideal functionality is defined as
a function of other ideal functionalities, which may be of independent interest
to the study of the UC framework.

Our Constructions. In Section 3, we show how to construct signatures of
knowledge for any polynomial-time Turing machine ML deciding whether w is
a valid witness for x ∈ L. We use the fact (proved in Section 2.3) that SimExt-
security is a necessary and sufficient notion of security, and give a construction of
a SimExt-secure signature of knowledge. Our construction is based on standard
assumptions. In the common random string model, it requires a dense cryp-
tosystem [15, 14] and a simulation-sound non-interactive zero-knowledge proof
scheme with efficient provers[21,13] (which can be realized assuming trapdoor
permutations for example).

We then show in Section 4 that, given any UC-realizable functionality F
that responds to verification queries and is willing to publish its verification
algorithm, the functionality which generates signatures of knowledge of an ac-
cepting input to F is also UC-realizable. We then explain why this yields a
delegatable anonymous credential scheme.

The History of the Terminology. The term “signature of knowledge” was
introduced by Camenisch and Stadler [7], who use this term to mean a proof of
knowledge (more specifically, a Σ-protocol [12]) turned into a signature using
the Fiat-Shamir heuristic. Many subsequent papers on group signatures and
anonymous credentials used this terminology as well. However, existing literature
does not contain definitions of security for the term. Every time a particular
construction uses a signature of knowledge as defined by Camenisch and Stadler,
the security of the construction is analyzed from scratch, and the term “signature
of knowledge” is used more for ease of exposition than as a cryptographic building
block whose security properties are well-defined. This frequent informal use of
signatures of knowledge indicates their importance in practical constructions and
therefore serves as additional motivation of our formal study.
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2 Signatures of Knowledge of a Witness for x ∈ L

A signature of knowledge scheme must have two main algorithms, Sign and
Verify. The Sign algorithm takes a message and allows anyone holding a witness
to a statement x ∈ L to issue signatures on behalf of that statement. The Verify

algorithm takes a message, a statement x ∈ L, and a signature σ, and verifies
that the signature was generated by someone holding a witness to the statement.

Signatures of knowledge are essentially a specialized version of noninteractive
zero knowledge proofs of knowledge: If a party P can generate a valid signature of
knowledge on any message m for a statement x ∈ L, that should mean that, first
of all, the statement is true, and secondly, P knows a witness for that statement.
This intuitively corresponds to the soundness and extraction properties of a
non-interactive proof of knowledge system. On the other hand, just as in a zero-
knowledge proof, the signature should reveal nothing about the witness w. We
know that general NIZK proof systems are impossible without some common
parameters. Thus, our signatures of knowledge will require a setup procedure
which outputs shared parameters for our scheme.

Thus, we can define the algorithms in a signature of knowledge schemes as
follows: Let {Mesk} be a set of message spaces, and for any language L ∈ NP ,
let ML denoted a polynomial time Turing machine which accepts input (x, w)
iff w is a witness showing that x ∈ L. Let Setup be an algorithm that outputs
public parameters p ∈ {0, 1}k for some parameter k. Let Sign(p, ML, x, w, m)
be an algorithm that takes as input some public parameters p, a TM ML for
a language L in NP, a value x ∈ L, a valid witness w for x, and m ∈ Mesk, a
message to be signed. Sign outputs a signature of knowledge for instance x ∈ L

on the message m. Let Verify(p, ML, x, m, σ) be an algorithm that takes as input
the values p, ML, x, the message m, and a purported signature σ, and either
accepts or rejects.

2.1 An Ideal Functionality for a Signature of Knowledge

Canetti’s Universal Composability framework gives a simple way to specify the
desired functionality of a protocol. Furthermore, the UC Theorem guarantees
that protocols will work as desired, no matter what larger system they may be
operating within. We begin by giving a UC definition of signatures of knowledge.

We begin by recalling Canetti’s signature functionality. For a detailed dis-
cussion and justification for Canetti’s modelling choices see [9].

Note that this functionality is allowed to produce an error message and halt,
or quit, if things go wrong. That means that it is trivially realizable by a protocol
that always halts. We will therefore only worry about protocols that realize our
functionalities non-trivially, i.e. never output an error message.

The session id(sid) of FSIG captures the identity P of the signer; all par-
ticipants in the protocol with this session id agree that P is the signer. In a
signature of knowledge, we do not have one specific signer, so P should not be
included in the session id. But all participants in the protocol should agree on
the language that they are talking about. Thus, we have a language L ∈ NP
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and a polynomial-time Turing machine ML and a polynomial p, such that x ∈ L

iff there exists a witness w such that |w| = p(|x|) ∧ML(x, w) = 1. Let us cap-
ture the fact that everyone is talking about the same L by requiring that the
session id begin with the description of ML. As mentioned above, signatures of

FSIG : Canetti’s signature functionality

Key Generation Upon receiving a value (KeyGen,sid ) from some party P , verify
that sid = (P, sid ′) for some sid ′. If not, then ignore the request. Else, hand
(KeyGen,sid) to the adversary. Upon receiving (Algorithms, sid , Verify, Sign) from
the adversary, where Sign is a description of a PPT ITM, and Verify is a description
of a deterministic polytime ITM, output (VerificationAlgorithm, sid , Verify) to
P .

Signature Generation Upon receiving a value (Sign,sid , m) from P , let σ ←
Sign(m), and verify that Verify(m, σ) = 1. If so, then output (Signature,
sid , m, σ) to P and record the entry (m, σ). Else, output an error message
(Completeness error) to P and halt.

Signature Verification Upon receiving a value (Verify, sid , m, σ, Verify′) from some
party V , do: If Verify′ = Verify, the signer is not corrupted, Verify(m, σ′) = 1,
and no entry (m,σ′) for any σ′ is recorded, then output an error message
(Unforgeability error) to V and halt. Else, output (Verified,sid , m, Verify′(m,σ))
to V .

knowledge inherently require some setup. Just as in the key generation interface
of FSIG above, a signature of knowledge functionality (FSOK) setup procedure
will determine the algorithm Sign that computes signatures and the algorithm
Verify for verifying signatures. However, since anyone who knows a valid witness
w can issue a signature of knowledge on behalf of x ∈ L, both Sign and Verify

will have to be available to any party who asks for them. In addition, the setup
procedure will output algorithms Simsign and Extract that we will explain later.

There are three things that the signature generation part of the FSOK func-
tionality must capture. The first is that in order to issue a signature, the party
who calls the functionality must supply (m, x, w) where w is a valid witness
to the statement that x ∈ L. This is accomplished by having the functionality
check that it is supplied a valid w. The second is that a signature reveals nothing
about the witness that is used. This is captured by issuing the formal signature
σ via a procedure that does not take w as an input. We will call this procedure
Simsign and require that the adversary provide it in the setup step. Finally, the
signature generation step must ensure that the verification algorithm Verify is
complete, i.e., that it will accept the resulting signature σ. If it find that Verify is
incomplete, FSOK will output and error message (Completeness error) and halt,
just as FSIG does.

The signature verification part of FSOK should, of course, accept signatures
(m, x, σ) if m was previously signed on behalf of x ∈ L, and σ is the resulting
signature (or another signature such that Verify(m, x, σ) = 1). However, unlike
FSIG , just because m was not signed on behalf of x through the signing interface,
that does not mean that σ should be rejected, even if the signer is uncorrupted.
Recall that anyone who knows a valid witness should be able to generate ac-
ceptable signatures! Therefore, the verification algorithm must somehow check
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that whoever generated σ knew the witness w. Recall that in the setup stage,
the adversary provided the algorithm Extract. This algorithm is used to try to
extract a witness from a signature σ that was not produced via a call to FSOK .
If Extract(m, x, σ) produces a valid witness w, then FSOK will output the out-
come of Verify(m, x, σ). If Extract(m, x, σ) fails to produce a valid witness, and
Verify(m, x, σ) rejects, then FSOK will reject. What happens if Extract(m, x, σ)
fails to produce a valid witness, but Verify(m, x, σ) accepts? This corresponds
to the case when a signature σ on m on behalf of x was produced without a
valid witness w, and yet σ is accepted by Verify. If this is ever the case, then
there is an unforgeability error, and so FSOK should output (Unforgeabilityerror)
and halt. Unlike FSIG , here we need not worry about whether the requesting
party supplied a correct verification algorithm, since here everyone is on the
same page and is always using the same verification algorithm (determined in
the setup phase).

FSOK (L): signature of knowledge of a witness for x ∈ L

Setup Upon receiving a value (Setup,sid) from any party P , verify that sid =
(ML, sid ′) for some sid ′. If not, then ignore the request. Else, if this is the
first time that (Setup,sid) was received, hand (Setup,sid) to the adversary;
upon receiving (Algorithms, sid , Verify, Sign, Simsign, Extract) from the adversary,
where Sign, Simsign, Extract are descriptions of PPT TMs, and Verify is a descrip-
tion of a deterministic polytime TM, store these algorithms. Output the stored
(Algorithms, sid , Sign, Verify) to P .

Signature Generation Upon receiving a value (Sign,sid , m, x, w) from P , check that
ML(x, w) = 1. If not, ignore the request. Else, compute σ ← Simsign(m,x), and
check that Verify(m,x, σ) = 1. If so, then output (Signature,sid , m, x, σ) to P and
record the entry (m,x, σ). Else, output an error message (Completeness error) to
P and halt.

Signature Verification Upon receiving a value (Verify, sid , m, x, σ) from
some party V , do: If (m,x, σ′) is stored for some σ′, then output
(Verified,sid , m, x, σ, Verify(m,x, σ)) to V . Else let w ← Extract(m, x, σ); if
ML(x, w) = 1, output (Verified,sid , m, x, σ, Verify(m, x, σ)) to V . Else if
Verify(m,x, σ) = 0, output (Verified,sid , m, x, σ, 0) to V . Else output an error
message (Unforgeability error) to V and halt.

In the UC framework, each instance of the ideal functionality is associated
with a unique sid, and it ignores all queries which are not addressed to this sid.
Since our FSOK functionalities require that sid = ML ◦ sid′, this means that
each FSOK functionality handles queries for exactly one language.

Now consider the following language U .

Definition 1 (Universal language). For polynomial p, define universal lan-
guage Up s.t. x would contain a description of a Turing machine M and an
instance x′ such that x ∈ Up iff there exists w s.t. M(x′, w) halts and accepts in
time at most p(|x|).

Notice that FSOK (Up) allows parties to sign messages on behalf of any instance
x of any language L which can be decided in non-deterministic p(|x|) time.
Thus, if we have Setup, Sign, and Verify algorithms which realize FSOK (Up) , we
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can use the same algorithms to generate signatures of knowledge for all such
instances and languages. In particular, this means we do not need a separate
setup algorithm (in implementation, a separate CRS or set of shared parameters)
for each language. Readers familiar with UC composability may notice that any
protocol which realizes FSOK(Up) for all polynomials p will also realize the
multisession extension of FSOK . For more information, see full version.

2.2 A Definition in Terms of Games

We now give a second, games style definition for signatures of knowledge. We
will show that this definition is equivalent to (necessary and sufficient for) the
UC definition given in the previous section. Informally, a signature of knowledge
is SimExt-secure if it is correct, simulatable and extractable.

The correctness property is similar to that of a traditional signature scheme.
It requires that any signature issued by the algorithm Sign should be accepted
by Verify.

The simulatability property requires that there exist a simulator which,
given some trapdoor information on the parameters, can create valid signatures
without knowing any witnesses. This captures the idea that signatures should
reveal nothing about the witness used to create them. Since the trapdoor must
come from somewhere, the simulator is divided into Simsetup that generates
the public parameters (possibly from some different but indistinguishable dis-
tribution) together with the trapdoor, and Simsign which then signs using these
public parameters. We require that no adversary can tell that he is interacting
with Simsetup and Simsign rather than Setup and Sign.

The extraction property requires that there exist an extractor, which given
a signature of knowledge for an x ∈ L, and appropriate trapdoor information,
can produce a valid witness showing x ∈ L. This captures the idea that it should
be impossible to create a valid signature of knowledge without knowing a witness.
In defining the extraction property, we require that any adversary that interacts
with the simulator Simsetup and Simsign (rather than the Setup and Sign) not be
able to produce a signature from which the extractor cannot extract a witness.
The reason that in the definition, the adversary interacts with Simsetup instead
of Setup is because the extractor needs a trapdoor to be able to extract. Note
that it also interacts with Simsign instead of Sign. The adversary could run Sign

itself, so access to Simsign gives it a little bit of extra power.

Definition 2 (SimExt-security). Let L be the language defined by a polynomial-
time Turing machine ML as explained above, such that all witnesses for x ∈ L are
of known polynomial length p(|x|). Then (Setup, Sign, Verify) constitute a SimExt-
secure signature of knowledge of a witness for L, for message space {Mesk} if
the following properties hold:

Correctness There exists a negligible function ν such that for all x ∈ L, valid
witnesses w for x(i.e. witnesses w such that ML(x, w) = 1), and m ∈ Mesk
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Pr[p← Setup(1k); σ ← Sign(p, ML, x, w, m) :
Verify(p, ML, x, m, σ) = Accept] = 1− ν(k)

Simulatability There exists a polynomial time simulator consisting of algo-
rithms Simsetup and Simsign such that for all probabilistic polynomial-time
adversaries A there exists a negligible functions ν such that for all polyno-
mials f , for all k, for all auxiliary input s ∈ {0, 1}f(k)

∣

∣

∣

∣

Pr[(p, τ)← Simsetup(1k); b← ASim(p,τ,·,·,·,·)(s, p) : b = 1]

− Pr[p← Setup(1k); b← ASign(p,·,·,·,·)(s, p) : b = 1]

∣

∣

∣

∣

= ν(k)

where the oracle Sim receives the values (ML, x, w, m) as inputs, checks that
the witness w given to it was correct and returns σ ← Simsign(p, τ, ML, x, m).
τ is the additional trapdoor value that the simulator needs in order to simu-
late the signatures without knowing a witness.

Extraction In addition to (Simsetup, Simsign), there exists an extractor algo-
rithm Extract such that for all probabilistic polynomial time adversaries A
there exists a negligible function ν such that for all polynomials f , for all k,
for all auxiliary input s ∈ {0, 1}f(k)

Pr [(p, τ)← Simsetup(1k); (ML, x, m, σ)← ASim(p,τ,·,·,·,·)(s, p);
w ← Extract(p, τ, ML, x, m, σ) :

ML(x, w) ∨ (ML, x, m, w) ∈ Q ∨ ¬Verify(p, ML, x, m, σ)] = 1− ν(k)
where Q denotes the query tape which lists all previous queries (ML, x, m, w)
A has sent to the oracle Sim.

Note that the above definition captures, for example, the following intuition:
suppose that Alice is the only one in the world who knows the witness w for
x ∈ L, and it is infeasible to compute w. Then Alice can use x as her signing
public key, and her signature σ on a message m can be formed using a signature
of knowledge w. We want to make sure that the resulting signature should be
existentially unforgeable against chosen message attacks [17]. Suppose it is not.
Then there is a forger who can output (m, σ), such that σ is accepted by the
verification algorithm without a query m to Alice. Very informally, consider the
following four games:

Adversary vs. Alice: The parameters are generated by Setup. Alice chooses
a random x, w pair and publishes x. The adversary sends Alice messages to be
signed and Alice responds to each using x, w and Sign. Adversary outputs a
purported forgery. Let p0 be the probability that the forgery is successful.

Adversary vs. Simulator: The simulator generates parameters using Simsetup.
The simulator chooses a random x, w pair and publishes x. The adversary sends
the simulator messages to be signed, and he responds using x, w and Sim. The
adversary outputs a purported forgery. Let p1 be the probability that the forgery
is successful.

Adversary vs. Extractor: The extractor generates parameters using Simsetup.
He then chooses a random x, w pair and publishes x. The adversary sends the
simulator messages to be signed, and he responds using x, w and Sim. The ad-
versary outputs a purported forgery. The extractor runs Extract to obtain a
potential witness w. Let p2 be the probability that w is a valid witness.

Adversary vs. Reduction: The reduction is given and instance x, which it
publishes. It then generates parameters using Simsetup. The adversary sends
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messages to be signed, and the reduction responds using x and Simsign. The
adversary outputs a purported forgery. The reduction runs Extract to obtain w.
Let p3 be the probability that w is a valid witness.

By the simulatability property, the difference between p0 and p1 must be
negligible. By the extraction property, the difference between p1 and p2 must be
negligible. Since Sim ignores w and runs Simsign, p2 and p3 must be identical.
Thus, generating forgeries is at least as hard as deriving a witness w for a random
instance x. If the algorithm used to sample (x, w) samples hard instances with
their witnesses, then we know that the probability of forgery is negligible. For a
formal proof see full version.

2.3 Equivalence of the Definitions

As was mentioned above, signatures of knowledge cannot exist without some
trusted setup procedure which generates shared parameters. In the UC model,
shared parameters are captured by the FD

CRS
functionality [8]. This functionality

generates values from a given distribution D (the desired distribution of shared
parameters), and makes them available for all parties in the protocol. Thus,
protocols requiring shared parameters can be defined in the FCRS -hybrid model,
where real protocols are given access to the ideal shared parameter functionality.

Formally, the FD
CRS

functionality receives queries of the form (CRS,sid) from
a party P . If a value v for this sid has not been stored, it chooses a random
value v from distribution D and stores it. It returns (CRS, sid , v) to P and also
sends (CRS,sid , v) to the adversary.

Let Σ = (Setup, Sign, Verify) be a signature of knowledge scheme. Let k be the
security parameter. We define a FD

CRS
-hybrid signature of knowledge protocol

πΣ , where D is the distribution of Setup(1k).
When a party P running πΣ receives an input (Setup,sid) from the environ-

ment, it checks that sid = (ML, sid ′) for some sid ′. If not it ignores the request.
It then queries the FCRS functionality, receives (CRS,v), and stores v. It returns
(Algorithms,sid, Sign(v, ML, ·, ·, ·), Verify(v, ML, ·, ·)) to the environment.

When P receives a request (Sign, sid , m, x, w) from the environment, it re-
trieves the stored v. It checks that ML(x, w) = 1. If not, it ignores the request,
otherwise it returns (Signature, sid , m, x, Sign(v, ML, x, w, m)). When P re-
ceives a request (Verify, sid , m, x, σ) from the environment, it again retrieves
the stored v, and then returns (Verified, sid , m, x, σ, Verify(v, ML, x, m, σ)).

Theorem 1. For any polynomial p, πΣ UC-realizes FSOK (Up) in the FD
CRS

-
hybrid model if and only if Σ is SimExt-secure.

Proof. (Sketch: See the full version for the full proof.) Suppose that Σ is SimExt-
secure. Then let us show that πΣ UC-realizes FSOK (Up). Consider the ideal ad-
versary (simulator) S that works as follows: Upon receiving (Setup,sid) from
FSOK , S will parse sid = (MU , sid ′). It obtains (p, τ) ← Simsetup(1k) and sets
Sign = Sign(p, ·, ·, ·, ·) (so Sign will have four inputs: the language ML — note
that since we are realizing FSOK (Up), any instance will start with ML,— the in-
stance x ∈ L, the witness w, and the message m), Verify = Verify(p, ·, ·, ·, ·),
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Simsign = Simsign(p, τ, ·, ·, ·, ·), and Extract = Extract(p, τ, ·, ·, ·, ·). Finally, it
sends (Algorithms,sid, Sign, Verify, Simsign, Extract) back to FSOK . When the
adversary A queries the FD

CRS
functionality, S outputs p.

Let Z be any environment and A be an adversary. We wish to show that
Z cannot distinguish interactions with A and πΣ from interactions with S and
FSOK . Let us do that in two steps. First, we show that the event E that FSOK

halts with an error message has negligible probability. Next, we will show that,
conditioned on E not happening, Z’s view in its interaction with S and FSOK

is indistinguishable from its view in interactions with A and πΣ .
There are two types of errors that lead to event E: FSOK halts with

Completeness error or Unforgeability error. The only way to induce a completeness
error is to cause Verify to reject a signature issued by Simsign, which contradicts
either the simulatability or the correctness requirement. The only way to induce
an unforgeability error is to cause Verify to accept a signature which was not
issued by Simsign and from which no witness can be extracted. This contradicts
the extractability requirement.

We have shown that the probability of event E is negligible. Conditioned on
Ē, Z’s view when interacting with FSOK and S is indistinguishable from its view
when interacting with a real adversary A and the real protocol πΣ , because if it
were distinguishable, then this would contradict the simulatability requirement.

The converse is fairly straightforward and appears in the full version. ut

3 Construction

Here we present Σ, a construction of a SimExt-secure signature of knowledge.
By Theorem 1, this also implies a protocol πΣ that UC-realizes the FSOK func-
tionality presented in Section 2.1.

Our construction has two main building blocks: CPA secure dense cryptosys-
tems [15, 14] and simulation-sound non-interactive zero knowledge proofs [21,
13]. Let (G, Enc, Dec) be a dense cryptosystem, and let (NIZKProve, NIZKSimsetup,

NIZKSim, NIZKVerify) be a simulation-sound non-
interactive zero-knowledge proof system.

Setup Let p be a common random string. Parse p as follows: p = PK ◦ρ, where
PK is a k-bit public key of our cryptosystem.

Signature Generation In order to sign a message m ∈Mesk using knowledge
of witness w for x ∈ L, let c = Enc(PK, (m, w), R), where R is the random-
ness needed for the encryption process; let π ← NIZKProve(ρ,

(m, ML, x, c,PK), (∃(w, R) : c = Enc(PK, (m, w), R) ∧ML(x, w)), (w, R)).
Output σ = (c, π).

Verification In order to verify a signature of knowledge of witness w for x ∈ L,
σ = (c, π), run NIZKVerify(ρ, π, (m, ML, x, c,PK), (∃(w, R) :
c = Enc(PK, (m, w), R) ∧ML(x, w))).

Intuitively, the semantic security of the cryptosystem together with the zero
knowledge property of the proof system ensure that the signature reveals no
information about the witness. The simulation soundness property of the proof



On Signatures of Knowledge 13

system means that the adversary cannot prove false statements. Thus any signa-
ture that verifies must include a ciphertext which is an encryption of the given
message and of a valid witness. Clearly, if he is interacting only with a simulator
who does not know any witnesses, this implies that the adversary should know
the witness. Further, by simulatability, the adversary cannot gain any advantage
by communicating with valid signers. The key is that the witness and message
are encrypted together, and there is a single proof that the encryption is correct.
Thus it is not possible to simply replace the message with a different one.

Theorem 2. The construction above is a SimExt-secure signature of knowledge.

Proof. (Sketch: See full version for full proof) First we argue simulatability.
In the Simsetup phase, our simulator will choose a key pair (PK,SK) of the
dense cryptosystem, and will obtain the string ρ together with trapdoor τ ′ by
running NIZKSimsetup. In the Simsign phase, the simulator will always let c be
the encryption of 0|m|+lL, and will create (fake) proof π by invoking NIZKSim.

We show that the resulting simulation is successful using a two-tier hybrid
argument. First, by the unbounded zero-knowledge property of the underlying
NIZK proof system, signatures obtained by replacing calls to NIZKProve by calls
to NIZKSim will be distributed indistinguishably from real signatures. Second,
by semantic security of the dense cryptosystem used, using c← Enc(PK, (m, w))
versus c← Enc(PK, (0|m|+lL)) results in indistinguishable distributions.

Second, let us argue extraction. Recall that, as part of the trapdoor τ ,
Simsetup above retains SK, the secret key for the cryptosystem. The extrac-
tor simply decrypts the c part of the signature σ to obtain the witness w. By
the simulation-soundness property of the underlying NIZK proof system, no
adversary can produce a signature acceptable to the Verify algorithm without
providing c that decrypts to a correct witness w. 1 ut

4 FSOK for Generalized Languages, and Applications

Recall from the introduction that a signature of knowledge may be used in order
to construct a group signature scheme. Let PKs be the public signing key of the
group manager, and suppose that the group manager can sign under this public
key (using the corresponding secret key SKs). Let PKE be a public encryption
key such that the anonymity revocation manager knows the corresponding secret
key SKE . A user must pick a secret key x and a public key p = f(x) where
f is some one-way function. She then obtains a group membership certificate
g = σPKs

(p), the group manager’s signature on her public key. In order to sign
on behalf of the group, the user encrypts her public key and obtains a ciphertext

1 Note that a CPA secure cryptosystem is sufficient: We only need the security of
the encryption scheme to guarantee that the encryptions of 0|m|+lL generated by
the simulator are indistinguishable from encryptions of valid witness/message pairs.
This is only necessary in the proof of simulatability, in a scenario where pairs are
encrypted but never decrypted.
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c = Enc(PKE , p; R), where R is the randomness used for encryption. Finally,
her group signature on message m is a signature of knowledge of (x, p, g, R) such
that c = Enc(PKE , p, R), p = f(x), and g is a valid signature on p under PKs.

Now let us consider more closely the language L used in the signature of
knowledge. In the example above, c ∈ L and (x, p, g, R) is the witness. This
language is determined by the parameters of the system, (f,PKs,PKE). This
is not a general language, but instead it depends on the system parameters,
which in turn depend on three other building blocks, a one-way function, an
encryption scheme and a signature scheme. We want to show that even in this
context, the use of a signature of knowledge has well-understood consequences
for the security of the rest of the system.

To that end, we consider signatures of knowledge for languages that are de-
fined by secure functionalities realizing particular tasks. In this example, this
corresponds to the one-way function, encryption and signing functionalities. En-
cryption is used to incorporate the encrypted identity, c, of the signer into her
group signature. A signing functionality is used to issue group membership cer-
tificates, g, to individual group members. Finally, we have a one-way function f

that takes a user’s secret x and maps it to her public p.
We could choose a specific realization of each of these primitives, combine

these realizations, and use the resulting TM to define our language L for a
signature of knowledge as described in Section 2. However, we would like to be
able to define an abstract signature of knowledge functionality whose language
is defined by ideal functionalities and not dependent on any specific realizations.

In this section, we wish to create a framework where, given ideal functional-
ities Ff , FEnc and FΣ for these three primitives, we can define a signature of
knowledge functionality FSOK for the language L, where L is defined in terms
of the outputs of functionalities Ff , FEnc, and FΣ . Such FSOK can be used to
realize group signatures as above, as well as other cryptographic protocols.

First, in Section 4.1, we will characterize functionalities that define such
generalized languages L. These are functionalities which, when they receive an
input (x, w), verify that this is indeed an accepting input, i.e. that w constitutes
a witness for x ∈ L. In Section 4.2, we will define FSOK (F0), a signature of
knowledge of an accepting input to one ideal functionality, F0. Then, we prove
Theorem 3: given a SimExt-secure scheme, FSOK (F0) is UC-realizable in the
CRS model if and only if F0 is UC-realizable. In the full version we explain several
generalizations of this ideal functionality which allow us to apply Theorem 3 to
group signatures, delegatable credentials, and other similar scenarios.

As far as we know, prior literature on the UC framework did not address
the issues of defining an ideal functionality as an extension of another ideal
functionality or of a set of other functionalities. (In contrast, it addressed the
case when a real protocol used an ideal functionality as a sub-routine.)

4.1 Explicit Verification Functionalities

Only certain functionalities make sense as a language for a signature of knowl-
edge. In particular, they need to allow us to determine whether a given element
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is in the language given a potential witness: we call this “verification.” We also
assume that everyone knows how language membership is determined. Thus,
we also require that the functionality be willing to output code which realizes
its verification procedure. In this section, we formally define the functionalities
which can be used to define the language for a signature of knowledge.

Consider Canetti’s signature functionality FSIG . Once the key generation al-
gorithm has been run, this functionality defines a language: namely, the language
of messages that have been signed. A witness for membership in such a language
is the signature σ. In a Verify query this functionality will receive (m, σ) and
will accept if m has been signed and Verify(m, σ) = Accept , where Verify is the
verification algorithm supplied to FSIG by the ideal adversary S. Moreover, if
it so happens that Verify(m, σ) accepts while m has not been signed, or if it is
the case that Verify(m, σ) rejects a signature generated by FSIG , FSIG will halt
with an error. FSIG is an example of a verification functionality, defined below:

Definition 3 ((Explicit) Verification functionality). A functionality F is
a verification functionality if (1) there exists some start(F) query such that F
ignores all queries until it receives a start query; (2) during the start query F
obtains from the ideal adversary S a deterministic polynomial-time verification
algorithm Verify; (3) in response to (Verify,sid, input ,witness) queries, F either
responds with the output of Verify(input ,witness) or halts with an error. F is
an explicit verification functionality if, once a start(F)(sid ) query has taken
place, it responds to a query (VerificationAlgorithm,sid) from any party P

by returning the algorithm Verify.

Note that start(F) is a specific command that depends on the functionality F .
For example, if F is a signature functionality, start(F) =Keygen. If F is another
signature of knowledge functionality, start(F) =Setup.

An explicit verification functionality not only defines a language L, but also
makes available a Turing machine ML deciding whether w is a witness for x ∈ L.

4.2 Signatures of Knowledge of an Accepting Input to F0

Let F0 be any explicit verification functionality. (Our running example is Canetti’s
signature functionality, or our own FSOK functionality, augmented so that it re-
sponds to VerificationAlgorithm queries with the Verify algorithm obtained
from the ideal adversary.) We want to build a signature of knowledge function-
ality FSOK (F0) that incorporates F0. It creates an instance of F0 and responds
to all the queries directed to that instance. So, if F0 is a signature functionality,
then FSOK (F0) will allow some party P to run key generation and signing, and
will also allow anyone to verify signatures. In addition, any party in possession of
(x, w) such that F0’s verification interface will accept (x, w), can sign on behalf
of the statement “There exists a value w such that F0(sid0) accepts (x, w).” For
example, if F0 is a signing functionality, m is a message, and σ0 is a signature
on m created by P with session id sid0, then through FSOK (F0), any party
knowing (m, σ0) can issue a signature σ1, which is a signature of knowledge of a



16 Melissa Chase and Anna Lysyanskaya

signature σ0 on m, where σ0 was created by signer P . Moreover, any party can
verify the validity of σ1.

To define FSOK (F0), we start with our definition of FSOK (L) and modify it
in a few places. In the protocol description below, these places are underlined.

The main difference in the setup, signature generation, and signature verifi-
cation interfaces is that the TM ML that decides whether w is a valid witness
for x ∈ L, is no longer passed to the functionality FSOK . Instead, language
membership is determined by queries to the verification procedure of F0, as well
as by an algorithm ML that F0 returns when asked to provide its verification
algorithm. (Sign, Verify, Simsign, Extract) returned by the adversary now take ML

as input. ML is supposed to be an algorithm that UC-realizes the verification
procedure of F0. Note, however, that just because ML(x, w) accepts, does not
mean that F0’s verification procedure necessarily accepts. Instead FSOK expects
that ML(x, w) accepts iff F0 accepts, and should FSOK be given (x, w) where
this is not the case, FSOK will output an error message (Error with F0) and halt.

The setup procedure of FSOK (F0) differs from that of FSOK (L) in two places.
First, it used to check that the session id contains the description ML of the lan-
guage L; instead now it checks that it contains a description of the functionality
F0 and a session id sid0 with which F0 should be invoked. Second, it must now
invoke F0 to determine the language L and the Turing machine ML (see below).

The signing and verification procedures of FSOK (F0) differs from that of
FSOK (L) only in that, instead of just checking that ML(x, w) = 1, they check
that F0 accepts (x, w) and that ML faithfully reflects what F0 does.

Let us explain how the language L is determined. During the first setup
query, FSOK must somehow determine the set of accepted (x, w), i.e., get the
language L. To that end, it creates an instance of F0, and runs the start query
for F0. It also queries F0 to obtain its verification algorithm ML. We describe
how this is done separately by giving a procedure we call GetLanguage(F0, sid0),
as a subroutine of the setup phase of FSOK .

Note that this instance of F0 is created inside of FSOK , and outside parties
cannot access it directly. Instead, if they want to use F0 and send a query to
it of the form (query , sid0, data), they should instead query FSOK with a query
of the form (F0-query , sid , data), where sid = (sid0, sid1) is the session id of
FSOK . We specify this more rigorously in the actual description of FSOK (F0).
Note that FSOK will ignore any queries until the first setup query — this is done
so that one cannot query F0 before it is actually created.

Also note that F0 may require input from the adversary. Whenever this is
the case, the messages that F0 wants to send to the adversary are forwarded to
the adversary, and the adversary’s responses are forwarded back to F0.

Finally, we want FSOK (F0) itself to be a explicit verification functionality
(as explained in Section 4.1), and so it must be able to respond to queries asking
it to provide its verification algorithm.

Theorem 3. Let F0 be an explicit verification functionality. Assuming SimExt-
secure signatures of knowledge, FSOK (F0) is nontrivially UC-realizable in the
FD

CRS
hybrid model iff F0 is nontrivially UC-realizable in the FD

CRS
hybrid model,
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where we consider a realization to be nontrivial if it never halts with an error
message. For the proof see the full version.

FSOK (F0): signature of knowledge of an accepting input to F0

For any sid , ignore any message received prior to (Setup, sid).

Setup Upon receiving a value (Setup,sid ) from any party P , verify that
sid = (F0, sid0, sid1) for some sid0, sid1. If not, then ignore the re-
quest. Else, if this is the first time that (Setup,sid) was received,
let ML = GetLanguage(F0, sid0), store ML, and hand (Setup,sid) to the adver-
sary; upon receiving (Algorithms, sid , Verify, Sign, Simsign, Extract) from the ad-
versary, where Sign, Simsign, Extract are descriptions of PPT ITMs, and Verify is a
description of a deterministic polytime ITM, store these algorithms. Output the
(Algorithms, sid , Sign(ML, ·, ·, ·),Verify(ML, ·, ·, ·)) to P .

Signature Generation Upon receiving a value (Sign,sid , m, x, w) from P , check
that F0 accepts (Verify,sid0, x, w) when invoked by P . If not, ignore the request.
Else, if ML(x,w) = 0, output an error message (Error with F0) to P and halt.
Else, compute σ ← Simsign(ML, m, x), and verify that Verify(ML, m, x, σ) = 1. If
so, then output (Signature,sid , m, x, σ) to P and record the entry (m,x, σ). Else,
output an error message (Completeness error) to P and halt.

Signature Verification Upon receiving a value (Verify,sid , m, x, σ)
from some party V , do: If (m,x, σ′) is stored for some
σ′, then output (Verified,sid , m, x, σ, Verify(m, x, σ)) to V .
Else let w ← Extract(ML, m, x, σ). If ML(x, w) = 1:
if F0 does not accept (Verify,sid 0, x, w), output and error message (Error with F0)
to P and halt; else output (Verified,sid , m, x, σ, Verify(ML, m, x, σ)) to V . Else
if Verify(ML, m, x, σ) = 0, output (Verified,sid , m, x, σ, 0) to V . Else output an
error message (Unforgeability error) to V and halt.

Additional routines:

GetLanguage(F0, sid0) Create an instance of F0 with session id sid0. Send to F0

the message (start(F0), sid0) on behalf of P , the calling party. Send to F0 the
message (VerificationAlgorithm,sid0). In response, receive from F0 the message
(VerificationAlgorithm,sid0, M). Output M .

Queries to F0 Upon receiving a message (F0-query , sid0, sid1, data) from a party P ,
send (query , sid0, data) to F0 on behalf of P . Upon receiving (response , sid0, data)
from F0, forward (F0-response , sid , data) to P .

F0’s interactions with the adversary When F0 wants to send
(command , sid0, data) to the adversary, give to the adversary the message
(F0-command , sid , sid0, data). When receive a message (F0-header , sid , sid0, data)
from the adversary, give (header , sid0, data) to F0 on behalf of the adversary.

Providing the verification algorithm Upon receiving a mes-
sage (VerificationAlgorithm,sid) from any party P , output
(VerificationAlgorithm,sid , Verify(ML, ·, ·, ·) to P .
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