
Construction of a Non-Malleable Encryption
Scheme from Any Semantically Secure One

Rafael Pass1, abhi shelat2, and Vinod Vaikuntanathan3

1 Cornell University
2 IBM ZRL

3 MIT

Abstract. There are several candidate semantically secure encryption
schemes, yet in many applications non-malleability of encryptions is
crucial. We show how to transform any semantically secure encryption
scheme into one that is non-malleable for arbitrarily many messages.

Keywords. Public-key Encryption, Semantic Security, Non-malleability, Non-
interactive Zero-knowledge Proofs.

1 Introduction

The most basic goal of an encryption scheme is to guarantee the privacy of data.
In the case of public-key encryption, the most universally accepted formalization
of such privacy is the notion of semantic security as defined by Goldwasser
and Micali [GM84]. Intuitively, semantic security guarantees that whatever a
polynomial-time machine can learn about a message given its encryption, it can
learn even without the encryption.

Non-malleability, as defined by Dolev, Dwork and Naor [DDN00], is a stronger
notion of security for encryption schemes. In addition to the privacy guaran-
tee, non-malleability of an encryption scheme guarantees that it is infeasible to
modify ciphertexts α1, . . . , αn into one, or many, other ciphertexts of messages
related to the decryption of α1, . . . , αn. At first one might wonder whether it
is possible to violate non-malleability, i.e., modify ciphertexts into ciphertexts
of related messages, without violating semantic security, i.e. without learning
anything about the original message.

It turns out, however, that many semantically secure encryption schemes,
including the original one proposed in [GM84], are easily malleable. Thus, non-
malleability is a strictly stronger requirement than semantic security. Moreover,
non-malleability is often times indispensable in practical applications. For exam-
ple, no one would consider secure an electronic “sealed-bid” auction in which an
adversary can consistently bid exactly one more dollar than the previous bidders.
The importance of non-malleability raises an important question:

Is it possible to immunize any semantically secure encryption scheme
against malleability attacks?

The work of Dolev, Dwork and Naor partially answers this question affirma-
tively. They show how to perform such an immunization (for the even stronger
chosen-ciphertext attack) assuming the existence of enhanced trapdoor permu-
tations. Subsequently, several other constructions of non-malleable encryption
schemes have been presented under various number-theoretic assumptions such
as decisional Diffie-Hellman [CS98] and quadratic-residuosity [CS02]. Neverthe-
less, there exist some notable computational assumptions, such as computational
Diffie-Hellman, and the worst-case hardness of various lattice-problems [AD97,
Reg05], under which semantically secure encryption schemes exist, yet no non-
malleable encryption schemes are known.

Another partial answer comes from a single-message non-malleable encryp-
tion scheme based on any semantically secure scheme called DDNLite [Nao04,
Dwo99]. By single-message, we mean that the DDNLite scheme is secure only
when the adversary receives one ciphertext.4 As was stated in [DDN00], many-
message security is a sine qua non of non-malleable encryption, and indeed the
classic motivating examples for non-malleability (such as auctions) require it.

In this paper, our main result is to fully address the posed question. We
show how to immunize any semantically secure encryption scheme into one that
is non-malleable for any number of messages without any further computational
assumptions.

Main Theorem 1 (Informal) Assume the existence of an encryption scheme
that is semantically secure against chosen-plaintext attacks (CPA). Then there
exists an encryption scheme that is many-message non-malleable against CPA.

As an additional contribution, we show that even in the case of single-message
security, the previous definitions of non-malleability and also the DDN-Lite
scheme allow a subtle class of malleability attacks. We address this issue by
presenting a stronger definition of non-malleability and emphasize that our con-
struction meets this stronger notion.

1.1 Definitional Contributions

Our main conceptual contribution is to strengthen the definition of non-malleable
encryption. Our definition has the advantage of being both technically simple
and providing a natural explanation of non-malleability. In one sentence, our
definition technically captures the following requirement:

“No matter what encryptions the adversary receives, the decryption of
his output will be indistinguishable.”

Recall the indistinguishability-based definition of secrecy: an adversary can-
not distinguish between the ciphertexts of any two messages of his choosing.
Another way of phrasing this definition is to say that no matter which encryp-
tion an adversary receives, his output will be indistinguishable.
4 As pointed out by Genaro and Lindell [GL03], the DDNLite scheme is in fact mal-

leable when the adversary receives multiple ciphertexts.

By requiring the even the decryption of his output be indistinguishable, we
capture the property that also the plaintexts corresponding to the ciphertexts
output by the adversary are (computationally) independent of the messages he
receives encryptions of.

Notice how in the context of auctions this requirement directly implies that
an adversary’s bid is independent of the previous one. In general, it naturally
captures that an adversary cannot maul a given encryption into another one
that is related—otherwise, the decryption of his output could be distinguished.
Except for some simplifications, our definition is very similar to the formal de-
scription of IND-PA0 from [BS99]. However, there is some ambiguity regarding
whether or not the IND-PA0 definition allows the adversary to succeed by out-
putting an invalid ciphertext.5 As we discuss in the next section, this issue of
invalid ciphertext can become a serious one.

The Problem of Invalid Ciphertexts Our definition highlights a subtle
technical weakness in previous definitions of non-malleability relating to how
one treats an adversary who produces invalid ciphertexts as part of its output.

In the original definition from [DDN00], and in subsequent equivalent defi-
nitions [BDPR98, BS99], an adversary who produces any invalid ciphertexts as
part of its output is considered to have lost the non-malleability game.

The Devil is in the Details While seemingly harmless, this small detail
unleashes a subtle but devastating class of attacks against encryption schemes
which only meet the [DDN00] definition.

For example, consider a “quorum voting application” in which participants
encrypt their vote, either yes or no, under the pollmaster’s public key. The
pollmaster decrypts all votes, counts those which decrypt to either yes or no
as valid votes, ignores all others (e.g., discards the “hanging chads”), and an-
nounces whether (a) there was as a quorum of valid votes, and if so (b) whether
the “yeahs” have a majority of the valid votes. (This voting process roughly
resembles how voting works in shareholder meetings of a corporation or condo
association meetings.)

Now suppose a “swing voter” Alice submits an encryption of her vote x, and
Bob is able to produce a ciphertext for the vote no if x =no and ⊥ otherwise
(in Appendix A, we show exactly such an attack against the DDNLite cryp-
tosystem). In a tight election, such an attack enhances Bob’s ability to cause
the measure to fail since his vote is either no when the swing vote is no, or his
vote undermines the legitimacy of the election by preventing the establishment
of the necessary quorum. This attack is better than simply voting no, because
a no vote by itself might be the one which establishes quorum and allows the
measure to pass.

5 Specifically, the formal IND-PA0 definition states one thing but the motivating dis-
cussion states another. It also appears that the main result in [BS99] is sensitive to
this issue. We further discuss these issues in a forthcoming note.

Under the original definition, one can verify that Bob does not formally win
the non-malleability game, and thus an encryption scheme which allows such an
attack would still be considered non-malleable under CPA.6

Many messages More interestingly, we also show that this small detail is the key
factor which allows one to prove composability of the non-malleable encryption
scheme, i.e., that a single-message secure scheme will also be non-malleable when
the adversary receives many messages. Indeed, Gennaro and Lindell [GL03, p.17]
point out that one-message non-malleability does not imply many-message non-
malleability under the [DDN00] definition. As mentioned above, this feature is
very important in practice, since an adversary may receive several encryptions
and we still want to guarantee non-malleability.

To understand the problem, many-message non-malleability is usually proven
through a reduction of the following form: an adversary that can break the
many-message non-malleability can be used to break the single-message non-
malleability. Such a proof requires a hybrid argument in which one feeds the
adversary one of two specially-constructed distribution of ciphertexts, on which
it is possible to distinguish the adversary’s output. However, since the input
to the adversary is hybrid, the adversary may produce invalid ciphertexts—and
such may be the basis upon which the adversary’s output is distinguishable.
If, in the single-message definition, the experiment unconditionally outputs 0 if
the adversary produces any invalid ciphertexts, then we do not even have the
chance to use the distinguisher which breaks the many-message case to break
the single-message one.

Many Keys There is one final issue which arises in practice. The adversary may
receive encryptions under different public keys. Here too, we define a notion of
non-malleability. Although this scenario is also usually handled by a standard
hybrid argument, there are a few definitional issues to consider.

1.2 Overview of our Construction

The immunization paradigm introduced by Dolev, Dwork and Naor is elegant
and conceptually simple. To encrypt a message, one (a) generates several en-
cryptions of the same message under independent public keys, (b) gives a non-
interactive zero-knowledge proof that all resulting ciphertexts are encryptions of
the same message, and (c) signs the entire bundle with a one-time signature.

Because one-time signatures can be constructed from one-way functions, only
step (b) in the DDN construction requires an extra computational assumption—
namely the existence of trapdoor permutations. Indeed, non-interactive zero-
knowledge proofs have been well-studied, and it remains a pressing open ques-

6 A similar attack applies to the classic auction example presented in [DDN00]. Here,
if Bob knows Alice’s bid is in the range [x, y] and Bob can submit y − x bids, the
same attack allows Bob to generate a set of bids such that exactly one bid matches
Alice’s bid and all the rest decrypt to invalid ciphertexts.

tion whether they can be constructed without using trapdoor permutations or
assumptions of comparable magnitude.7

In the context of non-malleable encryption, however, our main observation is
that standard non-interactive zero-knowledge proofs are not necessary. Instead,
we use designated verifier proofs in which only a verifier with some special se-
cret information related to the common random string can verify the proof.
(In contrast, standard non-interactive proofs can be verified by any third party
with access to the proof and the common random string.) For example, the
non-malleable encryption constructions of Cramer and Shoup [CS98, CS02] can
be interpreted as using some form of designated verifier proofs based on spe-
cific number-theoretic assumptions. This was further generalized by Elkind and
Sahai [ES02] through the notion of simulation-sound designated verifier NIZK
proofs. Our main technical result is to show that

† Plain designated verifier NIZK proofs are sufficient to obtain non-malleable
encryption schemes, and

†† Plain designated-verifier NIZK proofs can be constructed from any seman-
tically secure encryption scheme.

The first of these results follows by an argument essentially similar to the
one employed in [DDN00].

At a high-level, our approach to constructing a plain designated verifier NIZK
proof is to crush a Σ-protocol for NP (such as Blum’s Hamiltonicity proto-
col [Blu86]) into a non-interactive proof with only the help of a semantically-
secure encryption scheme.

Towards CCA2 Security The main results in this paper relate to non-malleability
under a chosen plaintext attack. In the stronger chosen ciphertext attack (of
which there are two varieties, CCA1 and CCA2), the adversary also has access
to a decryption oracle at various stages of the attack. A natural question is
whether our same techniques can be used to immunize against a malleability
attack in these stronger CCA attack models.

Unfortunately, when designated-verifier NIZK proofs are sequentially com-
posed, it is possible for the verifier’s secret information to leak. In particular, a
malicious prover who can interactively submit proofs and learn whether they are
accepted or not might be able to learn about the verifier’s secret information.
Because a CCA1 or CCA2 attack provides precisely such an opportunity, the
soundness of the designated verifier proof system will no longer hold. Thus, our
technique does not provide a method to achieve full CCA security.

Organization Our paper is organized into three sections. In §2, we present our
new definition of non-malleable encryption. In §3, we define and construct des-
ignated verifier NIZK proof systems from any semantically-secure encryption
scheme. Finally, in §4, we show that the DDN scheme when implemented with
7 The work of [PS05] begins to address this question by presenting certain models of

NIZK proofs that are either unconditional or only require one-way functions.

designated verifier NIZK proofs is non-malleable with respect to our stronger
definition from §2.

2 Definitions

Preliminaries. If A is a probabilistic polynomial time (p.p.t) algorithm that runs
on input x, A(x) denotes the random variable corresponding to the output of
A on input x and uniformly random coins. Sometimes, we want to make the
randomness used by A explicit, in which case, we let A(x; r) denote the output
of A on input x and random coins r. We denote computational indistinguisha-
bility [GM84] of ensembles A and B by A

c
≈ B.

2.1 Semantically Secure Encryption

Definition 1 (Encryption Scheme). A triple (Gen,Enc,Dec) is an encryp-
tion scheme, if Gen and Enc are p.p.t. algorithms and Dec is a deterministic
polynomial-time algorithm which satisfies the following property:
Perfect Correctness. There exists a polynomial p(k) and a negligible function
µ(k) such that for every message m, and every random tape re,

Pr[rg
R← {0, 1}p(k) ; (pk, sk)← Gen(1k; rg); Decsk(Encpk(m; re)) 6= m] ≤ µ(k).

Definition 2 (Indistinguishability of Encryptions). Let Π = (Gen,Enc,Dec)
be an encryption scheme and let the random variable INDb(Π,A, k), where b ∈
{0, 1}, A is a p.p.t. algorithm and k ∈ N, denote the result of the following
probabilistic experiment:

INDb(Π,A, k) :
(pk, sk)← Gen(1k)
(m0,m1, stateA)← A(pk) s.t. |m0| = |m1|
y ← Encpk(mb)
D ← A2(y, stateA)
Output D

(Gen,Enc,Dec) is indistinguishable under a chosen-plaintext attack if ∀ p.p.t.
algorithms A the following two ensembles are computationally indistinguishable:{

IND0(Π,A, k)
}

k∈N

c
≈

{
IND1(Π,A, k)

}
k∈N

2.2 Our Definition of Non-malleable Encryption

Definition 3 (Non-Malleable Encryption). Let Π = (Gen,Enc,Dec) be an
encryption scheme and let the random variable NMEb(Π,A, k, `) where b ∈
{0, 1}, A = (A1, A2) and k, ` ∈ N denote the result of the following probabilistic
experiment:

NMEb(Π,A, k, `) :
(pk, sk)← Gen(1k)
(m0,m1, stateA)← A1(pk) s.t. |m0| = |m1|
y ← Encpk(mb)
(c1, . . . , c`)← A2(y, stateA)

Output (d1, . . . , d`) where di =

{
⊥ if ci = y

Decsk(ci) otherwise

(Gen,Enc,Dec) is non-malleable under a chosen-plaintext attack if ∀ p.p.t. algo-
rithms A = (A1, A2) and for any polynomial p(k), the following two ensembles
are computationally indistinguishable:{

NME0(Π,A, k, p(k))
}

k∈N

c
≈

{
NME1(Π,A, k, p(k))

}
k∈N

Let us remark on the natural similarity of the above definition with the de-
finition of indistinguishable security of an encryption scheme. Indeed, the first
few lines of the experiment are exactly the same. In the last step, we add the
requirement that the decryptions (modulo copying) of the output of A2 are in-
distinguishable in the two experiments. This captures the requirement that even
the decryption of the adversary’s output must be computationally independent
of the values (even when if they are encrypted) received as inputs.

This definition both highlights the essence of non-malleability for encryption
schemes and, similar to the original notion of indistinguishable security, provides
the most technically convenient formalization to use in larger proofs.

Syntactic Differences with the IND-PA0 definition As we discussed in the In-
troduction, there is ambiguity as to how the IND-PA0 [BS99] definition treats
invalid ciphertexts. Aside from this semantic difference, one can see that our
definition is a simplification of IND-PA0. We simply eliminate the guess stage
of the experiment.

2.3 Many Message Non-malleability

Notice that Definition 3 only applies when the adversary A2 receives one encryp-
tion as an input. In practice, an adversary may receive several encryptions under
many different public keys, and we would still like to guarantee non-malleability.

Definition 4 (Many Message Non-Malleability). Let Π = (Gen,Enc,Dec)
be an encryption scheme and let the random variable mNMb(Π,A, k, `) where
b ∈ {0, 1}, A = (A1, A2) and k, `, J ∈ N denote the result of the following
probabilistic experiment :

mNMb(Π,A, k, `, J):
For i = 0, . . . , J , (pki, ski)← Gen(1k)
((m0

1,m
1
1, t1), . . . , (m

0
` ,m

1
` , t`), state)← A1(pk1, . . . ,pkJ) s.t. |m0

i | = |m1
i |

For j = 0, . . . , ` yj ← Encpktj
(mb

j)
((c1, s1), . . . , (c`, s`))← A2(y1, . . . , y`, state)

Output (d1, . . . , d`) where di =

⊥ if si 6∈ [1, J]
⊥ if ci = yj and si = tj , j ∈ [1, J]

Decsksi
(ci) otherwise

We say that (Gen,Enc,Dec) is non-malleable under a chosen-plaintext attack
if for all p.p.t. algorithms A = (A1, A2) and for all polynomials `(·), J(·), the
following two ensembles are computationally indistinguishable:{

mNM0(Π,A, k, `(k), J(k))
}

k∈N

c
≈

{
mNM1(Π,A, k, `(k), J(k))

}
k∈N

Theorem 1. An encryption scheme is non-malleable iff it is many message
non-malleable.

Sketch: To prove the forward implication, we use an adversary (A1, A2) and
a distinguisher D which breaks the many-message non-malleability of Π with
advantage η to to break the non-malleability of Π with advantage η/`2.

Define a new experiment mNM(b1,...,b`)(Π,A, k, `, J) indexed by an `-bit string
(b1, . . . , b`) which is the same as mNM0(Π,A, k, `, J) except in the fifth line

(change is underlined): yj ← Encpktj
(mbj

j). Define B(i) = (

i︷ ︸︸ ︷
0, . . . , 0,

`−i︷ ︸︸ ︷
1, . . . , 1)

and note that mNM0 = mNMB(0) and mNM1 = mNMB(`). Because D distin-
guishes mNM0 from mNM1, there exists some g∗ ∈ [1, `] such thatD distinguishes
mNMB(g∗) from mNMB(g∗+1) with advantage η/`. This suggests the following ad-
versary: A′

1(pk) guesses value g ∈ [1, `], generates J − 1 public keys (pki, ski),
and feeds (pk1, . . . ,pkg−1,pk,pkg+1, . . . ,pkJ) to A1 to get a vector of triples
((m0

1,m
1
1, t1), . . . , (m

0
` ,m

1
` , t`)). Finally, A′ outputs (m0

g,m
1
g) as its challenge pair

and outputs state information with g, all public keys, etc.
Adversary A′

2(y, state′), on input an encryption y, simulates the replaced
line 5 of experiment mNMB(g) with the exception that it uses y for the gth
encryption: yg ← y. It then feeds vector y to A2 to produce ((c1, s1), . . . , (c`, s`)).
A′

2 must produce ciphertexts only for pk, and can do so by simply decrypting and
re-encrypting8 appropriately. The rest of the argument concludes by conditioning
on the event that g = g∗. �

One can see here the importance of removing the invalid ciphertext restriction
for the hybrid argument to work. Because the reduction feeds a hybrid distrib-
ution to A2, A2 may produce invalid ciphertexts, and these ⊥ values may form

8 There is one technicality concerning how A′
2 can form invalid ciphertexts; we defer

it to the full version.

the basis for distinguishability in the NME experiments. If one simply forces the
single-message experiment to return 0 when invalid ciphertexts are produced,
then the value of both experiments (b = 0, 1) will be 0 and the weaker definition
will thus be met even though there might still be a distinguisher which could
have distinguished the output of A′

2.

3 Designated Verifier NIZK

In this section, we define and construct a designated verifier NIZK proof system.
The overall approach to our construction is to crush a 3-round Σ protocol into a
one-round proof by having the prover encrypt all possible third-round responses
to the verifier’s challenge. Because we use a Σ-protocol in which the verifier’s
challenge is a single bit, this approach is feasible and results in short proofs. The
notable benefit of this approach is that our only complexity assumption is the
existence of a semantically-secure encryption scheme.

3.1 Defining Designated Verifier NIZK Proof Systems

In the designated verifier model, a non-interactive proof system has an associ-
ated polynomial-time sampleable distribution D over binary strings of the form
(pp, sp). During a setup phase, a trusted party samples from D, publishes pp and
privately hands the Verifier sp. The Prover and Verifier then use their respective
values during the proof phase.

This definition is very similar to the definition of NIZK proofs in the secret
parameter model (as in [PS05]). The difference between the secret parameter
model and the designated verifier model is that in the former case, the prover
might be given some secret information, whereas this is strictly not the case in
the latter. Also note that in the standard notion of NIZK proofs, the common
random (resp. reference) string model can be derived as special cases of this
definition by setting sp to the empty string.

Definition 5 (Designated Verifier NIZK Proof System). A triple of al-
gorithms, (D, P, V), is called a designated verifier non-interactive zero-knowledge
proof system for an NP-language L with witness relation RL, if the algorithms
D and P are probabilistic polynomial-time, the algorithm V is deterministic
polynomial-time and there exists a negligible function µ such that the following
three conditions hold:

– completeness: For every (x,w) ∈ RL

Pr
[
(pp, sp)← D(1|x|); π ← P (pp, x, w) : V (pp, sp, x, π) = 1

]
≥ 1−µ(|x|)

– soundness: For every prover algorithm B

Pr

[
(pp, sp)← D(1|x|) ; (x′, π′)← B(pp) : x′ 6∈ L and

V (pp, sp, x′, π′) = 1

]
≤ µ(|x|)

– adaptive zero-knowledge: For every p.p.t. theorem chooser A, there
exists a p.p.t. simulator S = (S1, S2) such that the outputs of the following
experiments are indistinguishable.

ZKA(k) ZKS
A(k)

(pp, sp)← D(1k) (pp′, sp′, state)← S1(1k)
(x,w, stateA)← A(pp) (x,w, stateA)← A(pp′)
π ← P (pp, x, w) π′ ← S2(pp′, sp′, x, state)
If (x,w) /∈ RL, output ⊥ If (x,w) /∈ RL, output ⊥
Else output (pp, sp, x, π, stateA) Else output (pp′, sp′, x, π′, stateA)

Note that the Verifier V is a deterministic machine. This extra restriction is
only used to simplify the exposition of our constructions.

3.2 Constructions

Before giving a high-level view of our protocol, let us briefly recall the structure
of a 3-round honest-verifier zero-knowledge proof of knowledge for NP , also
referred to as a Σ-protocol [CDS94].

Σ-protocols A Σ-protocol consists of four algorithms P1, V1, P2, V2. On input, a
statement x and a witness w, the first algorithm P1(x,w) produces a pair (a, s)
which represent a “commitment” and related state information. The Prover then
sends a to the Verifier. The verifier runs V1(x, a) to produce a random challenge
b and sends b to the Prover. The prover runs P2(s, b) to produce a response cb
and sends it to the Verifier. Finally, the verifier runs V2(x, a, b, cb) to determine
whether to accept the proof. An example of such a protocol is Blum’s Hamil-
tonicity protocol. The properties of Σ-protocols, namely completeness, special
soundness, and special honest-verifier zero-knowledge, are presented in [CDS94].

Construction summary. In our construction, the prover receives k pairs of public
encryption keys as the public parameter. The verifier receives the same k pairs,
and also receives a secret parameter consisting of the secret key for exactly
one key in each pair. A proof consists of k triples. To generate the ith triple
of a proof, the prover runs the Σ-protocol prover algorithm on (x,w) using
both 0 and 1 as the verifier’s challenge to produce a triple (ai, c0,i, c1,i). The
prover encrypts this triple as (ai,Encpk0,i

(c0,i),Encpk1,i
(c1,i)). (We note that

Camenisch and Damg̊ard use a similar idea in [CD00] to construct an interactive
verifiable encryption scheme. The roots of this idea begin to appear much earlier
in [KMO89].)

To verify the proof, V considers each triple (ai, α0,i, α1,i) and decrypts either
the second or third component using the secret key given in sp. He then runs the
Σ-protocol verifier on (ai, fi,Dec(αfi,i)), and accepts if all k triples are accepting
proofs.

There is one additional detail to consider. The Σ-protocol for Blum Hamil-
tonicity requires a commitment scheme. Normally, a one-round commitment

scheme requires trapdoor permutations. To get around this problem, we use a
two-round commitment scheme (such as Naor [Nao91]) which can be constructed
from one-way functions, which are in turn implied by the semantically-secure en-
cryption scheme. The first round message of the commitment scheme is placed
in the public parameter.

Theorem 2. Assume there exists a semantically secure encryption scheme. Then
there exists a designated verifier NIZK proof system for any language L ∈ NP.

Sampling Algorithm D(1k). For i = 1, . . . , k and b = 0, 1, run Gen(1k) 2k
times with independent random coins, to get k key-pairs (pkb

i , sk
b
i) . For i =

1, . . . , k, flip coin fi
R← {0, 1}. Generate the receiver message σ for a two-round

commitment scheme.
Let ppdv

def
= [(pk0

i , pk
1
i , σ)]ki=1 and spdv

def
= [fi, sk

fi
i]ki=1. Output (ppdv, spdv).

Prover P (ppdv, x, w). For i = 0, . . . , k, generate triples as follows:

(ai, si)← P1(x, w)

cb,i ← P2(s, b) for both b = 0, 1

αb,i ← Encpkb,i
(cb,i) for b = 0, 1.

and output π
def
= [(ai, α0,i, α1,i)]

k
i=1.

Verifier V (ppdv, spdv, x, π). Parse π into k triples of the form (ai, α0,i, α1,i). For

i = 1, . . . , k, compute mi
def
= Decskfi

i

(αfi,i) and run the verifier V2(ai, fi, mi).

If all k proofs are accepted, output accept, else output reject.

Fig. 1. Designated Verifier NIZK Protocol

The proof that the scheme in Fig. 1 is a designated verifier NIZK proof system
is standard and omitted for lack of space. �

4 Constructing a Non-malleable Encryption Scheme

In this section, we construct an encryption scheme that is non-malleable under
CPA attacks. Our construction is exactly the DDN construction [DDN00] in
which the standard NIZK proof is replaced with a designated-verifier NIZK
proof. By the results from the previous section, our construction only relies on
the assumption of the existence of a semantically secure encryption scheme.

Theorem 3 (Main Theorem, restated). Assume there exists an encryption
scheme that is semantically-secure under a CPA attack. Then, there exists an
encryption scheme that is non-malleable for many messages under a CPA attack.

Proof. (of Theorem 3) Let (Gen,Enc,Dec) be any semantically secure encryption
scheme. Let (GenSig,Sign,Ver) be any existentially unforgeable strong one-time
signature scheme.9 Without loss of generality, assume that GenSig produces ver-
ification keys of length k.10 Define the NP-language L as follows:[

(c1, . . . , ck), (p1, . . . , pk)
]
∈ L if and only if

∃
[
m, (r1, . . . , rn)

]
such that ci = Encpi

(m; ri) for i = 1, . . . , n.

In words, the language L contains pairs consisting of a k-tuple of ciphertexts and
a k-tuple of public keys such that the ciphertexts are encryptions of the same
message m under the k public keys.

Let (D, P, V) be a designated verifier NIZK proof system for L. We show
that the encryption scheme Π = (NMGen,NMEnc,NMDec) defined in Figure 4
is a non-malleable encryption scheme. The proof has two parts.

Just as in [DDN00], we define an encryption scheme E′ = (Gen′,Enc′,Dec′)
in which one simply encrypts a message k times with k independently chosen
public keys, and we show that E′ is a semantically secure encryption scheme
under the assumption that (Gen,Enc,Dec) is one. This is done in Lemma 1.

Then in Lemma 2, we show that Π is a non-malleable encryption scheme if
E′ is a semantically secure encryption scheme. The proof is concluded by noting
that both designated verifier NIZK proofs and strong one-time signatures can
be constructed given any semantically secure encryption scheme (The former
is true by virtue of Theorem 2. The latter follows by combining the observa-
tion that encryption implies one-way functions, Rompel’s result showing that
one-way functions imply universal one-way hash functions [Rom90], and the
result that universal one-way hash functions imply strong one-time signature
schemes [Gol04, Lam79]). �

The definition of the encryption scheme E′ = (Gen′,Enc′,Dec′) below and the
proof of Lemma 1 are exactly as in DDN, reproduced below for the sake of
completeness.

– Gen′(1k): For i = 1, . . . , k, run (pki, ski) ← Gen(1k) with independent ran-
dom coins. Set pk

def= (pk1, . . . ,pkk) and sk
def= (sk1, . . . , skk).

– Enc′pk(m): Output [Encpk1(m; r1), . . . ,Encpkk
(m; rk)].

– Dec′sk([c1, c2, . . . , ck]): Computem′
i = Decski

(ci). If all them′
i are not equal,

output ⊥, else output m′
1.

Lemma 1. If (Gen,Enc,Dec) is semantically secure, then (Gen′,Enc′,Dec′) is
semantically secure.

Proof. Via a standard hybrid argument. Omitted for space. �

9 A strong signature is one in which, given a signature σ of a message m, it is infeasible
to produce a message m′ and a valid signature σ′ of m′, such that (σ, m) 6= (σ′, m′).
i.e, it is infeasible also to produce a different signature for the same message.

10 This is without loss of generality since we can set k to be an upperbound on the
length of verification keys that GenSig produces.

NMGen(1k) :
1. For i ∈ [1, k], b ∈ {0, 1}, run Gen(1k) to generate key-pairs (pkb

i , sk
b
i).

2. Run D(1k) to generate (pp, sp).

Set pk
def
=
n

(〈pk0
i , pk

1
i 〉)k

i=1, pp
o

and sk
def
=
n

(〈sk0
i , sk

1
i 〉)k

i=1, sp
o

.

NMEncpk(m) :
1. Run the signature algorithm GenSig(1k) to generate (sksig,vksig).

Let (v1, . . . , vk) be the binary representation of vksig.

2. Compute the ciphertexts ci ← Encpkvi
i

(m). Let c
def
= (c1, c2, . . . , ck).

3. Run the designated verifier NIZK Prover to generate a proof π that
[(c1, . . . , ck), (pkv1

1 , . . . , pk
vk
k)] ∈ L.

4. Compute the signature σ ← Signsksig(〈c, π〉).
Output the tuple [c, π,vksig, σ].

NMDecsk(c) :
1. Verify the signature with Vervksig[〈c, π〉, σ]; output ⊥ upon failure.
2. Verify the proof with V (pp, sp, (c, pk), π); output ⊥ upon failure.
3. Let vksig = (v1, . . . , vk). Compute m1 = Decskvi

1
(c1) and output the

result.

Fig. 2. The Non-malleable Encryption Scheme Π

Lemma 2. If E′ = (Gen′,Enc′,Dec′) is a semantically secure encryption scheme,
then Π is a non-malleable encryption scheme.

Proof. To prove that Π is a non-malleable encryption scheme, we need to show
that for any p.p.t. adversary A and for all polynomials p(k),{

NME0(Π,A, k, p(k))
}

k∈N

c
≈

{
NME1(Π,A, k, p(k))

}
k∈N

We show this by a hybrid argument. Consider the following experiments:

Experiment NME
(1)
b (Π,A, k, p(k)) – Using a Simulated NIZK Proof: proceeds

exactly like NMEb except that the simulator for the designated verifier NIZK
proof system is used to generate the public parameters and to compute the
challenge ciphertext (as opposed to generating an honest proof by running the
prover algorithm P). Let S = (S1, S2) denote the simulator guaranteed by the
adaptive zero-knowledge of (D, P, V). More formally, NME

(1)
b proceeds exactly

like NMEb except for the following differences:

1. The encryption key (pk, sk) is generated by (1) honestly running the key-
generation algorithm Gen to generate the 2k encryption keys (pkb

i , sk
b
i), but

(2) running the simulator S1(1k) to generate the key-pair (pp, sp) for the
designated verifier NIZK (instead of running D(1k) as in NMGen).

2. Generate k encryptions of mb (just as in Steps 1 and 2 of NMEnc). But,
instead of using the designated verifier prover, generate a “simulated proof”

by running S2. (Note that S2 does not use the witness—namely, mb and the
randomness used for encryption—in order to generate the simulated proof).

Experiment NME
(2)
b (Π,A, k, p(k)) – Semantic Security of E′: proceeds exactly

like NME
(1)
b except for the following differences:

1. Run Gen′ to get two sets of public keys PK = {pki}ki=1 and PK ′ =
{pk′

i}ki=1, along with the corresponding secret-keys SK = {ski}ki=1 and
SK ′ = {sk′

i}ki=1. Generate a verification key and signing key for the sig-
nature scheme (vksig∗, sksig∗). Construct a public-key for Π as follows:
Let vi be the ith bit of vksig∗. Set pkvi

i = pki, skvi
i = ⊥, pk1−vi

i = pk′
i and

sk1−vi
i = sk′

i. (NME
(2)
b will use the secret-keys corresponding to each pk′

i,
but not pki, later in the experiment).

2. After receiving the tuple (ψ1, . . . , ψ`) of ciphertexts from A2, decrypt each
ψj =

[
cj , πj ,vksigj , σj

]
as follows: If the signature σj in ψj does not verify,

output ⊥. If vksigj = vksig∗, output ⊥. If the NIZK proof πj fails ver-
ification, output ⊥. Else, decrypt one of the components of ψj , for which
the secret-key is known (such a component is guaranteed to exist, since
vksigj 6= vksig∗) and output the result.

We now show that these experiments are indistinguishable. The following
claim follows from the adaptive zero-knowledge property of the NIZK system.

Claim 1
{

NMEb(Π,A, k, p(k))
}

k∈N

c
≈

{
NME

(1)
b (Π,A, k, p(k))

}
k∈N

Proof. Assume, for contradiction, that there exists a p.p.t. algorithm D which
distinguishes NMEb(Π,A, k, p(k)) from NME

(1)
b (Π,A, k, p(k)). Then, we con-

struct a theorem-chooser Azk and a ZK distinguisher Dzk that violate the adap-
tive zero-knowledge of the proof system (D, P, V) for the language L. That is,
Dzk distinguishes between the experiments ZKAzk

and ZKS
Azk

, where S is the
zero-knowledge simulator.

On input pp, the theorem-chooser Azk works as follows:

1. Run Gen(1k) 2k times, to generate 2k key-pairs (pkb
i , sk

b
i)i∈[k],b∈{0,1}. Run

the adversary A1 on input
[
(pkb

i)i∈[k],b∈{0,1},pp
]
. A1 returns a pair of plain-

texts m0 and m1 and a string state.
2. Produce the challenge ciphertext c as follows:

– Generate a key-pair (sksig,vksig) for the signature scheme.
– Pick a random b ∈ {0, 1}, and for 1 ≤ i ≤ k, let ci ← Encpkvi

i
(mb; ri),

where ri is the randomness used for encryption.
Let c denote (c1, c2, . . . , ck) and pk denote (pkv1

1 , . . . ,pk
vk

k), and r de-
note (r1, r2, . . . , rk).

3. Let x = (c,pk) and w = (mb, r). Output the theorem-witness pair (x,w).
Also output the contents of the work-tape as stateA.

The ZK distinguisher Dzk, on input (pp, sp), the theorem (c,pk), the proof π
and the state stateA, does the following:

1. Run A2 on input the ciphertext
[
c, π,vksig,Signsksig(〈c, π〉)

]
to produce

a sequence of ciphertexts (ψ1, ψ2, . . . , ψp(k)). Run the decryption algorithm
Decsk(ψi) on each of these ciphertexts to get plaintexts (µ1, µ2, . . . , µp(k)).

2. Run distinguisher D on the sequence of plaintexts (µ1, µ2, . . . , µp(k)) and
output whatever D outputs.

The experiment ZKAzk
(that is, when Dzk is given as input the real proof),

perfectly simulates the experiment NMEb(Π,A, k, p(k)), whereas the experiment
ZKS

Azk
(that is, when Dzk is run with a simulated proof) perfectly simulates

NME
(1)
b (Π,A, k, p(k)). If the outputs of D in the experiments are different, then

Dzk distinguishes between a real proof and a simulated proof, contradicting the
adaptive zero-knowledge of the NIZK proof system (D, P, V). �

Next, we show that experiments NME
(1)
0 (· · ·) and NME

(2)
0 (· · ·) are statis-

tically indistinguishable. To this end, we define three events, badNIZK(Expt),
badSig(Expt) and badKey(Expt), corresponding to the experiment Expt. We show
that the experiments NME

(1)
b and NME

(2)
b are identical, under the assumption

that the events badNIZK, badSig and badKey never happen in these experiments.
Then, we show that the bad events happen with negligible probability in both the
experiments. Taken together, these two statements let us conclude that NME

(1)
b

and NME
(2)
b are statistically indistinguishable. Details follow.

Claim 2
{

NME
(1)
0 (Π,A, k, p(k))

}
k∈N

s
≈

{
NME

(2)
0 (Π,A, k, p(k))

}
k∈N

Proof. Define the event badNIZK(Expt), to capture the event that the adversary
A violates the soundness of the NIZK proof system in experiment Expt (i.e,
the adversary produces an accepting proof of a false statement). More precisely,
let (ψ1, ψ2, . . . , ψp(k)) denote the tuple of ciphertexts that A2 returns in the
experiment Expt. Let badNIZK(Expt) denote the following event: In experiment
Expt, there exists an index j such that the NIZK proof in ψj is accepted by the
verifier V , but all the k ciphertexts that are part of ψj do not decrypt to the
same value (in other words, ψj contains an accepting proof of a false statement).

In the subclaims below, we show that badNIZK(NME
(j)
b) happens only with

negligible probability.

SubClaim. For b ∈ {0, 1}, Pr[badNIZK(NMEb)] = negl(k)

Proof. Suppose, for contradiction, that this is not true. That is, there is a poly-
nomial q(k) such that Pr[badNIZK(NMEb)] ≥ 1

q(k) . Then, we construct a machine
As that violates the soundness of the proof system (D, P, V) with probability at
least 1

p(k)q(k) . On input a public parameter pp, As works as follows:

1. Simulate the experiment NMEb using pp, until A2 outputs p(k) ciphertexts.
Note that As does not need to know the secret parameter sp to perform
these steps. This is because by the definition of NMEb, sp is used only after
A2 outputs the ciphertexts.

2. As picks one of the ciphertexts at random, say
[
c, π,vksig, σ

]
and outputs

the pair (c, π).

The probability that As outputs a false statement and an accepting proof pair
is, by our assumption, at least 1

p(k)q(k) , which is a contradiction to the soundness
of (D, P, V). �

SubClaim. For b ∈ {0, 1}, Pr[badNIZK(NME
(1)
b)] = Pr[badNIZK(NME

(2)
b)] =

negl(k).

Proof. We start by noting that Pr[badNIZK(NME
(1)
b)] = Pr[badNIZK(NME

(2)
b)].

This follows because the adversary’s view in experiments NME
(1)
b and NME

(2)
b

are identical until the point when the adversary A2 outputs the ciphertexts.
We proceed to show that for b ∈ {0, 1}, Pr[badNIZK(NME

(1)
b)] is negligible in k.

This is shown by an argument similar to the one used in the proof of Claim 1.
Assume, for contradiction, that Pr[badNIZK(NME

(1)
b)] is non-negligible. Then, we

construct a pair of machines (Azk, Dzk) that violate the adaptive zero-knowledge
of the proof system (D, P, V).

On input a public parameter pp for the NIZK proof system, Azk and Dzk

work exactly as in the proof of Claim 1, except that in Step 3, when A2 returns
a sequence of ciphertexts (ψ1, . . . , ψp(k)), Dzk looks for a ciphertext ψi such that
not all the components of ψi decrypt to the same message, and the NIZK proof
in ψi is accepting. If there exists such an i, then Dzk returns “Fail” and otherwise
returns “OK”.

Note that by definition, when Dzk receives a real proof, it outputs “Fail” with
probability Pr[badNIZK(NMEb)]. On the other hand, when run on a simulated
proof, it outputs “Fail” with probability Pr[badNIZK(NME

(1)
b)]. However, in Step

1a, we showed that the former probability is negligible. If the latter probability
is non-negligible, then Dzk distinguishes between a simulated proof and a real
proof, contradicting the adaptive zero-knowledge property of the proof system
(D, P, V). �

Let ψi =
[
ci, πi,vksigi, σi

]
denote the ith ciphertext returned by A2. Define

badSig(NME
(j)
b) to be the event that, in experiment NME

(j)
b (Π,A, k, p(k)), there

exists an index i such that vksigi = vksig and Ver(vksigi, ci, πi) = accept.
Since the signature scheme is (strongly) existentially unforgeable, it follows that,
for b ∈ {0, 1} and j ∈ {1, 2}, Pr[badSig(NME

(j)
b)] = negl(k).

Let badKey(NME
(j)
b) denote the event that for one of the public keys, say p̂k,

generated in the experiment NME
(j)
b , there exists a pair of messages m,m′ and

random coins r, r′ such that m 6= m′ and Enc(p̂k,m, r) = Enc(p̂k,m′, r′). Since
the encryption scheme used is perfectly correct, by the union bound, we have
Pr[badKey(NME

(j)
b)] = negl(k).

Let failb(·) denote the event badNIZK(·) ∨ badSig(·) ∨ badKey(·). It follows,
by a union bound, that Pr[failb(NME

(j)
b)] = negl(k), for j ∈ {1, 2}.

We show that conditioned on the event failb(NME
(j)
b) (for j ∈ {1, 2}) not

happening, NME
(1)
b and NME

(2)
b are identical. Note that the view of A in both

the experiments is (syntactically) the same. Since badSig(NME
(j)
b) does not hap-

pen, A uses a different verification key in all the ciphertexts ψi it returns. This
means that NME

(j)
b can decrypt at least one of the components of each ψi, using

a secret-key it knows, to get a message mi. Since badNIZK(NME
(j)
b) does not hap-

pen, mi must be the message that is encrypted in all the other components of ψi

too. Thus, ψi is a valid encryption of mi. Also, since badKey(NME
(j)
b) does not

happen, mi is the unique such message. Thus the tuple of messages returned in
both NME

(1)
b and NME

(2)
b are exactly the same, and thus the outputs of NME

(1)
b

and NME
(2)
b are identical.

Combining the above with the fact that the events failb(·) occur with a negli-
gible probability, we have NME

(1)
b (Π,A, k, p(k))

s
≈ NME

(2)
b (Π,A, k, p(k)). �

Claim 3 For every p.p.t. machine A, there exists a p.p.t. machine B such that
for b ∈ {0, 1},{

NME
(2)
b (Π,A, k, p(k))

}
k∈N
≡

{
INDb(E′, B, k)

}
k∈N

Proof. The machine B is constructed as follows. B simply simulates the ex-
periment NME

(2)
b , except that instead of generating pk by itself, it uses pk =

{pki}ki=1 received from the outside. Let (m0,m1) be the pair of messages the ad-
versary A1 returns. B then outputs (m0,m1) and receives a challenge ciphertext
cb from the outside. B performs the same operations as the experiment NME

(2)
b

to generate the challenge ciphertext Cb for A2. Finally, A2 returns a sequence of
ciphertexts (ψ1, ψ2, . . . , ψp(k)). B decrypts these ciphertexts just as in NME

(2)
b

and outputs the plaintexts. (Note that NME
(2)
b uses only sk′ and not sk in order

to decrypt the messages).
It is easy to see that B simulates the experiment NME

(2)
b perfectly using the

public-keys and ciphertexts received from the outside, and thus{
NME

(2)
b (Π,A, k, p(k))

}
k∈N
≡

{
INDb(E′, B, k)

}
k∈N

�

To conclude the proof, we combine the last three claims to conclude that for
every p.p.t. adversary A, there is a p.p.t. adversary B such that

NMEb(Π,A, k, p(k))
c
≈ NME

(1)
b (Π,A, k, p(k))

s
≈ NME

(2)
b (Π,A, k, p(k))

≡ INDb(E′, B, k)

Since by the semantic security of E′, IND0(E′, B, k)
c
≈ IND1(E′, B, k), it holds

that NME0(Π,A, k, p(k))
c
≈ NME1(Π,A, k, p(k)). �

Acknowledgments We thank Cynthia Dwork, Shafi Goldwasser, Yehuda Lindell,
and Silvio Micali for delicious comments. We are especially grateful to Yehuda
Lindell for his diligent help.

References

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In STOC, pages 284–293, 1997.

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among
notions of security for public-key encryption schemes. In CRYPTO, 1998.

[Blu86] Manuel Blum. How to prove a theorem so no one can claim it. In Proc. of
The International Congress of Mathematicians, pages 1444–1451, 1986.

[BS99] Mihir Bellare and Amit Sahai. Non-malleable encryption: Equivalence
between two notions, and an indistinguishability-based characterization.
In CRYPTO, pages 519–536, 1999.

[CD00] Jan Camenisch and Ivan B. Damg̊ard. Verifiable encryption, group en-
cryption, and their applications to group signatures and signature sharing
schemes. In ASIACRYPT, pages 331–345, 2000.

[CDS94] Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In CRYPTO,
pages 174–187, 1994.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack. In CRYPTO,
pages 13–25, 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In EURO-
CRYPT, pages 45–64, 2002.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptogra-
phy. SIAM J. Comput., 30(2):391–437, 2000.

[Dwo99] Cynthia Dwork. The non-malleability lectures. Course notes for Stanford
CS 359, 1999. http://theory.stanford.edu/g̃durf/cs359-s99/.

[ES02] Edith Elkind and Amit Sahai. A unified methodology for constructing
public-key encryption schemes secure against adaptive chosen-ciphertext
attack. ePrint Archive 2002/042, 2002.

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based
authenticated key exchange. In EUROCRYPT, pages 524–543, 2003.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[Gol04] Oded Goldreich. Foundations of Cryptography, Volume 2. Cambridge
University Press, 2004.

[KMO89] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-
knowledge proofs. In FOCS, pages 474–479, 1989.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function.
Technical Report CSL-98, SRI International, October 1979.

[Nao91] Naor. Bit commitment using pseudorandomness. J. of Cryptology, 4, 1991.

[Nao04] Moni Naor. A taxonomy of encryption scheme security. 2004.

[PS05] Rafael Pass and Abhi Shelat. Unconditional characterizations of non-
interactive zero-knowledge. In CRYPTO, pages 118–134, 2005.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93, 2005.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure sig-
natures. In STOC, pages 387–394, 1990.

A DDN-Lite Does Not Achieve Definition 3

DDN-Lite is a candidate single-message non-malleable encryption scheme based
on any semantically secure scheme which has been informally discussed in [Nao04,
Dwo99]. In this section, we show that DDNLite does not meet our stronger defin-
ition of non-malleability (Definition 3). We remark that DDNLite can, however,
be proven secure under the DDN and equivalent [BDPR98, BS99]) definitions of
non-malleability because in weaker notions, the adversary is considered to have
lost the game if she produces invalid ciphertexts in the experiment.

Let us briefly summarize the DDN-Lite scheme. The public key consists of
k pairs of encryption keys (just as in our scheme) and a universal one-way hash
function h. To encrypt a message m, generate a key pair (sksig,vksig) for a
one-time signature scheme, hash the verification key vksig to get (b1, . . . , bk)←
h(vksig), compute the ciphertexts ci = Epkbi

i

(m), compute the signature σ =
Signsksig(c1, . . . , ck) and output the tuple [(c1, c2, . . . , ck),vksig, σ]. To decrypt
a ciphertext c parsed as [(c1, c2, . . . , ck),vksig, σ], first verify the signature σ and
output ⊥ if Ver rejects. Otherwise, decrypt the ci’s with the corresponding secret-
keys to get corresponding messages mi. If all the mi’s are equal, then output
one of the mi’s, else output ⊥.

Claim 4 The DDN-lite encryption scheme does not satisfy Definition 3.

Proof. We specify an adversary A = (A1, A2) such that the two experiments
{NME0(Π,A, k, p(k))}k∈N and {NME1(Π,A, k, p(k))}k∈N are distinguishable. A
works as follows:

1. A1 outputs two arbitrary messages (m0,m1) and no state information.
2. On input ciphertext c =

[
(e1, . . . , ek),vksig, σ

]
, let (b1, . . . , bk)← h(vksig).

A2 produces a new ciphertext c′ as follows. Generate a new signing key
(sksig′,vksig′). Compute (b′1, . . . , b

′
k) ← h(vksig′). Output ciphertexts

c′ = ((x1, . . . , xk),vksig′, σ′) where

xi =

{
ei if b′i = bi

E
pkb′

i
i

(m0) otherwise

and σ′ is the signature of (x1, . . . , xk) under the signing key sksig′.

Now, notice that NME0(Π,A, k, `) = m0 and NME1(Π,A, k, `) = ⊥ which
can be easily distinguished. �

