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Abstract. In the last ten years, multivariate cryptography has emerged
as a possible alternative to public key cryptosystems based on hard com-
putational problems from number theory. Notably, the HFE scheme [17]
appears to combine efficiency and resistance to attacks, as expected from
any public key scheme. However, its security is not yet completely un-
derstood. On one hand, since the security is related to the hardness
of solving quadratic systems of multivariate binary equations, an NP
complete problem, there were hopes that the system could be immune
to subexponential attacks. On the other hand, several lines of attacks
have been explored, based on so-called relinearization techniques [12, 5],
or on the use of Gröbner basis algorithms [7]. The latter approach was
used to break the first HFE Challenge 1 in 96 hours on a 833 MHz Al-
pha workstation with 4 Gbytes of memory. At a more abstract level,
Faugère and Joux discovered an algebraic invariant that explains why
the computation finishes earlier than expected. In the present paper, we
pursue this line and study the asymptotic behavior of these Gröbner
basis based attacks. More precisely, we consider the complexity of the
decryption attack which uses Gröbner bases to recover the plaintext and
the complexity of a related distinguisher. We show that the decryption
attack has a quasipolynomial complexity, where quasipolynomial denotes
an subexponential expression much smaller than the classical subexpo-
nential expressions encountered in factoring or discrete logarithm com-
putations. The same analysis shows that the related distinguisher has
provable quasipolynomial complexity.

1 Introduction

In the last ten years, multivariate cryptography has emerged as a possi-
ble alternative to public key cryptosystems based on hard computational
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problems from number theory. The public key of multivariate schemes
is a system of multivariate quadratic (MQ) equations over a finite field,
and the underlying question of finding a solution to such systems, a well
known NP-complete problem, seems to form a basis for the security of
the schemes, the same way RSA-like cryptosystems have their security
based on the hardness of factoring, and ElGamal-like cryptosystems rely
on the discrete logarithm problem.

Although all MQ schemes are more or less built on the same pattern,
mixing the equations and the unknowns coming from a trapdoor internal

MQ function using invertible affine transforms, there exist many such
schemes, each relying on its own specific trapdoor. We refer the reader to
the survey [18] for details. We simply recall that the original proposal of
Matsumoto and Imai [15] could be viewed as a multivariate variation on
RSA and used as its internal MQ function a bijective monomial in some
extension field. The resulting scheme was broken by Patarin in [16]. In
order to repair the scheme, he later proposed the HFE cryptosystem [17],
using a low degree polynomial as internal MQ function. In the same paper,
he also proposed a wide range of variations on the HFE cryptosystem.
We would like to remark that our result focuses on the basic scheme and
that its extension to the variations is an interesting open problem.

As already mentioned, finding a solution of a generic system of MQ
equations is NP-complete. For this reason, there were hopes that MQ
schemes, HFE in particular, might very well be immune to subexponential
attacks, square root attacks or even quantum computers. Indeed, these
attacks are a common drawback of number theoretic cryptosystem and
overcoming them is a worthy goal. To illustrate the possibilities, MQ
schemes could achieve post-quantum computer security or yield extremely
short signatures thanks to the lack of a square root attack. Such signatures
could be, for a comparable security level, twice as short as a pairing based
short signature of [3].

On the other hand, despite these hopes, several lines of attacks have
been explored, such as the so-called relinearization techniques [12, 5], or
the use of Gröbner basis algorithms [7]. The former was of a rather the-
oretical flavor, reducing the cryptanalysis of HFE to the resolution of
an overdefined system of quadratic equations in the extension field with
many excess equations, and describing a technique called relinearization
to solve such overdefined systems in general. However the complexity
of this attack remains unclear: despite the fact that relinearization was
claimed to succeed in polynomial time, a close look at the claim shows
that it only makes sense in a setting where the degree (called d in [17]) of
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the internal HFE polynomial is fixed. The latter approach followed a more
experimental path since it used implementation of very generic Gröbner
basis algorithms to solve the above quadratic system, thus breaking the
first HFE Challenge 1 in 96 hours on a 833 MHz Alpha workstation with 4
Gbytes of memory. At a more abstract level, Faugère and Joux discovered
an algebraic invariant that explains why the computation finishes much
earlier than expected for a quadratic system of this size. Surprisingly, the
authors did not try to derive a complexity bound for the problem of in-
verting HFE. This may be due to the lack of complexity estimates in the
original paper [17] itself. This paper does not fully adhere to the current
trend in cryptography, that defines a key generation algorithm with input
a security parameter. In [17], the two main parameters of the schemes,
the dimension n of the extension field and the degree d of the hidden
polynomial are somehow unrelated. It is clear however that, in order to
allow polynomial time decryption, any instantiation of HFE requires both
n and d to be polynomial in the security parameter. Moreover, inverting
HFE using exhaustive search has complexity 2n. As a consequence, it is
natural to use n itself as the security parameter. Thus d must be polyno-
mial in n and we assume throughout the sequel that d = O(nα), for some
constant α.

This sheds some light on the hope that HFE might be immune to
subexponential attacks. This hope stems from a remark in [17], which
notes that the complexity of the so-called affine multiple attack is O(nO(d)),
thus exponential in the security parameter. Incidentally, this shows that
the existence of polynomial time attacks for fixed d has been known right
from the beginning. Similarly, the affine multiple attack is subexponential
whenever d is small enough, say d = O(log n). In fact, in order to hope
for full exponential security, we clearly need to choose α ≥ 1.

Another approach against MQ schemes uses the rank of the differential
of the public key and has been proven successful to break the PMI scheme
[11]. This technique also allows to build a quasipolynomial distinguisher
for HFE [6], with complexity O(exp(c(log n)2)), which happens to be the
same as for our attack. As far as we know, this approach does not lead
to a decryption attack against the HFE cryptosystem.

1.1 Our results

The main result of this paper is the following: there exists a heuristic
quasipolynomial decryption attack against HFE. In fact, we do not ac-
tually propose a new attack but revisit the method described by Joux
and Faugère in [7], which performs a Gröbner basis computation [4], with
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the efficient algorithms of Lazard and Faugère [14, 8, 9]. The efficiency
of this approach was already shown by experiments from [7], and had
been partly supported by mathematical arguments. Here, we give a more
thorough theoretical analysis that allows to conclude that the attack is
asymptotically efficient for any instantiation of HFE.

More accurately, our estimate yields complexity O(nO(log d)), that is
exp(O(log n)2), for any instantiation of HFE where n is chosen as the
security parameter, and where d = O(nα), for some constant α. This
greatly improves on the exponential estimate from [17]. This heuristic
complexity estimate should also be compared with the complexity of fac-
torization and integer discrete logarithm. In that case, we let n denote the
size of the problem, i.e. n = log(N) to factor N or n = log(p) to compute
discrete logarithm modulo p. The complexity is subexponential and its
expression is exp(O(n1/3(log n)2/3)), which is clearly higher than what we
obtain for HFE. In order to make this distinction clear, we say that the
complexity of our attack is quasipolynomial rather than subexponential.
Another widely used hard problem is the elliptic curve discrete logarithm
problem, where the best attack has exponential complexity O(exp(n/2)).

1.2 Organization of the paper

The paper is organized as follows: we first recall the definition of the HFE
cryptosystem. Next, we survey known facts about Gröbner bases and their
computation, focusing on the so-called degree of regularity of algebraic
systems which is an extremely important parameter during the execution
of Gröbner basis algorithms. Then comes the main contribution of the
paper, where we bound the degree of regularity of the algebraic system
arising from an attempt to directly invert HFE. This is done by showing
that another system with a much smaller number of unknowns is in fact
hidden into this algebraic system. Finally, we use this bound to show
that the distinguishing and decryption attacks, obtained by applying a
Gröbner basis computation to HFE systems, respectively have provable
quasipolynomial and heuristic quasipolynomial complexities.

2 The HFE cryptosystem

Although the HFE cryptosystem was originally defined using any finite
field as a base field, we restrict ourselves to the simpler case, where the
base field is the two elements field.
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2.1 Notations

Fields. We denote by F2 the finite field with two elements and by F2n the
extension field with 2n elements, which is isomorphic (as a vector space)
to (F2)

n. A normal basis of F2n is defined by an element θ such that θ,
θ2, θ4, . . . , θ2n−1

generate F2n . It is well known that such a basis always
exists. Note that the original description of HFE used a polynomial basis,
however, since change of bases are linear and since arbitrary linear trans-
forms are already used during the HFE construction, using a normal basis
involves no loss of generality. Moreover, this approach greatly simplifies
the exposition of our attack.

Monomials. Let f(x) = xd be a monomial over F2n . The binary decom-
position of the exponent reads d =

∑

0≤i<n di2
i. Using the linearity of the

Frobenius operator: x −→ x2, it is easily seen that the Hamming weight
of the di sequence is exactly the degree of the representation of f over
(F2)

n, as a system of multivariate polynomial functions.

Polynomials. For any polynomial P ∈ F2n [X] we denote by d◦P the
degree of P , that is the maximal degree of its monomials. We let w◦P
be the maximal Hamming weight of the exponents of P ’s monomials, as
defined in the previous paragraph, and call w◦P the Hamming weight
of P . It is well known that systems of MQ equations over (F2)

n are in
bijection with polynomials such that w◦P = 2. Also, affine functions over
(F2)

n are in bijection with polynomials such that w◦P = 1.

2.2 The HFE cryptosystem

The cryptosystem HFE is defined from a polynomial f ∈ F2n [X], with
w◦f = 2 and d◦f < d, where n and d are (usually implicitly) defined from
a security parameter. In the sequel, t will denote the smallest number
such that 2t > d. The public key of HFE is obtained by composing f
with two affine invertible functions, S, Y , thus yielding the polynomial
P = T ◦ f ◦ S.

Encrypting with HFE is straightforward, it suffices to evaluate the
public polynomial P on the input to be encrypted. Decryption is harder
and uses the fact that it is easy to compute the inverses of S, T , and also
to solve a polynomial equation of low degree d < 2t in time polynomial
in d and n. Therefore, provided that d = O(nα) and thus t = O(log n), a
polynomial time decryption algorithm is available from the trapdoor.
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3 Gröbner bases computations

Gröbner basis algorithms compute an algebraic basis of an ideal in a mul-
tivariate polynomial ring, given an ordering of the monomials. The output
is such that any element f of the ideal can efficiently be written as an
algebraic combination of the resulting basis f1, · · · , fm by repeating a se-
quence of simple reductions. Each reduction decreases the degree w.r.t.
the ordering by suitably withdrawing from the current polynomial a mul-
tiple of some fi by a monomial, until the zero polynomial is found. The
original algorithm for computing Gröbner bases is due to Buchberger [4]
and is based on maintaining a sequence of polynomials, and repeatedly
using reduction, an operation that reduces the degree, and the so-called
S-polynomial operation, an operation that increases the degree by com-
puting an element of the ideal from a so-called critical pair of elements.
In the early eighties, Lazard [13] realized that Gröbner basis computa-
tions could be achieved by applying Gaussian elimination to a specific
matrix, called the Macaulay matrix, which is obtained by indexing the
columns by all monomials with n variables of degree at most an integer r,
and filling all rows with the coefficients of all multiples by a monomial
of a family of polynomials generating the ideal, provided they remain
of degree at most r. The main problem with this approach, is that the
complete Macaulay matrix contains many “obvious” dependencies, which
arise from generic properties and could be predicted in advance. Later
Faugère [9] gave a simple criterion, that permit the construction of a re-
duced version of the Macaulay matrix that does not contain these obvious
dependencies. This yielded a extremely efficient algorithm, called F5, for
the computation of Gröbner bases. In the sequel, we denote the variant
of the Macaulay matrix containing all the multiples of degree r by the
Macaulay-Faugère matrix of degree r.

The F5 algorithm works by constructing Macaulay-Faugère matrices
of increasing degree and by performing linear algebra on those. Its main
goal is to find a linear combination of rows encoding a polynomial of de-
gree smaller than r. By definition, the degree of regularity of a sequence
f1, · · · , fm of polynomials is the minimal degree where such a linear com-
bination exists. Each such linear combination encodes a new polynomial
which needs to be added to the original sequence to get the Gröbner bases,
except when the polynomial is zero in which case it might be necessary
to remove some polynomial in the current ideal basis, thus simplifying it.

The degree of regularity D is a very important parameter of Gröbner
basis computation using F5, since it leads to a decomposition in two steps.
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During the first step, up to the degree of regularity, the computation
behaves nicely and its complexity can be easily predicted. What happens
during the second step, when non-trivial combinations have appeared is
much harder to predict in general. However, for random systems, the
behavior is quite simple, an extremely large number of new polynomials
appear in the Macaulay-Faugère matrices of degrees D or D+1, and after
that the computation quickly terminates. Moreover, most real-life systems
of equations have a similarly tame behavior and rarely need to construct
Macaulay-Faugère matrices beyond the degree of regularity plus a small
constant. On the other hand, it is possible to cook up wild systems with
a very bad behavior.

For any system of polynomial equations in n unknowns with degree of
regularity D, the first step of F5 involves the construction of Macaulay-
Faugère matrices up to degree D, thus of dimension at most nD. Perform-
ing the linear algebra on these matrices costs at most n3D operations. If
we let D denote the largest degree of Macaulay-Faugère matrices occur-
ring during the rest of the algorithm, the total cost is n3D. For well be-
haved systems of equations, D is not much larger than D and the overall
complexity is nO(D).

3.1 Known bounds on degrees of regularity

Previous work shows that for a quadratic system of equations in n vari-
ables, the degree of regularity cannot become too large. Moreover, for ran-
dom systems of equations, the known bound on the degree of regularity is
reached. The general analysis that we need was done by Bardet, Faugère
and Salvy [2] and is neatly described in Bardet’s thesis [1, chap. 4].

The result given there is that for a system of τn quadratic equations
in n unknowns, the degree of regularity is at most:

Dτ (n) =

(

τ −
1

2
−
√

τ(τ − 1)

)

n +
−a1

2(τ(τ − 1))1/6
n1/3 (1)

−

(

2 −
2τ − 1

4
√

τ(τ − 1)

)

+ O(n−1/3), (2)

where a1 ≈ −2.33811 is the first real zero of the Airy function.
Moreover, for random systems the probability of having a smaller de-

gree of regularity is negligible. Furthermore, experiments show that such
random systems are well behaved in the sense that the F5 computation
do not involve Macaulay-Faugère matrices of much higher degree. To for-
malize this observation, we propose the following conjecture:
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Conjecture 1. For all τ > 1, there exists a constant K such that for a large
enough random system S of dτne quadratic equations in n unknowns, a
Gröbner basis for the ideal generated by S can be computed in time nKn,
with overwhelming probability.

4 Systems of equations arising from HFE instances

In this section, our goal is to study the complexity of a direct Gröbner
basis approach to the resolution of HFE systems. This direct approach
consists in writing down that each public polynomial, belonging to the
encryption key, when evaluated on the (unknown) plaintext yields the
corresponding ciphertext bit. This approach was first described in [7].

4.1 Outline of the strategy

Our strategy is to bound the degree of regularity D of the system of poly-
nomials stemming from directly attempting to invert HFE from the de-
scription of its public key through a Gröbner basis algorithm. From such
a bound, which is smaller than the bound for a random system in the
same number of unknowns, we then derive our main results. First, when
the first simplification in a Macaulay-Faugère matrix is encountered, we
deduce the effective degree of regularity of the polynomial system under
consideration. If this degree is small enough, our distinguisher knows that
the system has no chance to be random and asserts that it is an HFE in-
stance. No heuristic is required for this attack, whose runtime is bounded
by n3D. Second, for the decryption attack, we assume that HFE based
systems of equations behave nicely and that D is not much larger than
D. Under this heuristic assumption, which is supported by the experi-
ments described in [10, 7, 1], where the computations never constructed
Macaulay-Faugère matrices beyond the degree of regularity plus 1, we
claim that the complexity of the decryption attack remains nO(D).

The key idea that allows us to bound D is to apply a sequence of
transformations involving the unknown secret trapdoor, in order to show
that D does not exceed the degree of regularity of a much smaller system.
More precisely, this other system involves l+t+l−2 = (2λ+1)·t−2 equa-
tions in (λ+1) · t unknowns, where 2t is, as defined in section 2.2 a bound
for the degree of the internal HFE polynomial and λ is an appropriate
constant. Since this system has a much smaller number of unknowns, we
obtain a much better bound on D than for generic systems in n unknowns.
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4.2 Reducing the number of unknowns

Let θ, θ2, θ4, . . . , θ2n−1

be our normal basis for the finite field F2n . Let
f(X) be the secret polynomial of an HFE instance over F2n , of degree
d < 2t. The corresponding public key polynomials in n unknowns x0, . . . ,
xn−1 over F2 are P1, P2, . . . , Pn. They are obtained by writing X over
the normal basis as:

X =
∑

0≤i<n

θ2i

xi,

by taking the coordinates of f(X), viewed as polynomials in x0, . . . ,
xn−1, in the normal basis and, finally, by applying two invertible linear
transforms, as explained in section 2.2.

The resulting polynomials P1, P2, . . . , Pn are quadratic. Thus, crypt-
analyzing a message encrypted with the HFE cryptosystem requires solv-
ing a quadratic system of equations over F2 defined by fixing the target
values of the fi polynomials. In order to decrypt an HFE instance using a
generic Gröbner basis approach, this is the system of equations we need
to consider. Thus, following our general strategy, we want to bound its
degree of regularity.

First of all, since the degree of regularity only depends on the high
degree homogeneous parts of each equation in the system, the target value
has no influence on this parameter. Moreover, assuming that the quadratic
parts of the Pi, together with the quadratic parts of the field equations
x2

i − xi = 0, are linearly independent, the degree of regularity remains
the same if we remove the secret linear transformations before and after
f . At this point, we are left with computing (or more precisely bounding)
the degree of regularity of the system of secret internal equations directly
given by the coordinates of f over the normal basis, together with the
field equations x2

i − xi = 0. Let f0, f1, . . . , fn−1 denote these secret
polynomials, which are related to f by means of the equation:

f(
∑

0≤i<n

θ2i

xi) =
∑

0≤i<n

θ2i

fi.

Another system with higher degree of regularity than the in-

ternal system. In order to bound the degree of regularity of the ideal
generated by (f0, · · · , fn−1, x

2
0−x0, · · · , x

2
n−1−xn−1), we first remark that

this degree is left unchanged when solving this system over F2n instead
of F2. Moreover, thanks to the field equations, the solutions are the same
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in both cases. Over F2n , we can transform the system by writing:

Fj(x0, · · · , xn−1) =
∑

0≤i<n

θ2i+j

fi.

In fact, F0 is just a representation of f in terms of x0, . . . , xn−1, F1 is a
representation of f2, F2 a representation of f4 and so on . . .

Clearly, replacing the fi by the Fj is an invertible linear transform,
which for the same reasons as before, does not affect the degree of reg-
ularity. The next step is to make a linear change of variables, replacing
the xi by yj, where:

yj =
∑

0≤i<n

θ2i+j

xi.

This change corresponds to setting y0 = X, y1 = X2, . . . , yn−1 = X2n−1

.
It cleanly expresses each Fi as a quadratic equation in terms of X and
its Frobenius images. However, the field equations are not yet in a nice
form. Luckily, a final linear transform turns them into:

y1 = y2
0 ,

y2 = y2
1 ,

...

yn−1 = y2
n−2,

y0 = y2
n−1.

Finally, in order to bound the degree of regularity, it is enough to
remark that due to the degree bound on f , F0 is a function of y0, . . . ,
yt−1 and that yt, . . . , yn−1 are not used. Likewise, F1 is a function of
y1, . . . , yt and Fj a function of yj, . . . , yt+j−1 (when j is small enough).
Thanks to this observation, we can focus on a subset of the equations and
variables. Assume that we restrict ourselves to F0, F1, . . . , Fl−1 then we
need only use the variables y0 to yt+l−1. Moreover, among these variables,
we keep t+l−2 field equations of the form yj+1 = y2

j . Of course, restricting
ourselves to such a subset can only increase the degree of regularity, since
any non trivial relation among the equations of the smaller system clearly
holds in the larger one. Setting l = λt, for an adequately chosen constant
λ, we now obtain a system of l + t + l − 2 = (2λ + 1) · t − 2 equations in
(λ + 1) · t unknowns.

Note. In the case where d = 2t, we can slightly improve the above de-
scription to reduce the complexity of the attack. This is due to the fact

10



that the variable yt in F0 only appears as a linear term. Thus, the addi-
tional variable yt+l only appears linearly. Since the degree of regularity
only depends on the high order (quadratic) terms, we can safely ignore
this extra variable. This confirms the practical observation made in [7],
in connection with the degree of the polynomial complexity with fixed
degree d. They observed that this degree slowly increased with d and
that the increase steps occurred immediately after increasing d beyond a
power of 2.

4.3 Bound on the degree of regularity of the internal system

To upper bound the degree of regularity arising with HFE systems, it is
now sufficient to apply the generic bound for random systems on the in-
ternal system with a reduced number of variables, expressed as a function
of t = dlog2 de as in section 4.2.

We apply the bound from section 3.1 with τ = (2λ+1)/(λ+1), fixing
λ = 1. This is not the optimal choice and it would be better to let λ grow
with n in order to make τ close to its limit 2, thus finding a tighter bound.
However, the simple choice λ = 1 is sufficient to fulfill our purpose. With
this choice, we find that ignoring low order terms the degree of regularity
of 3t quadratic equations in 2t unknowns is:

D = 2(1 −
√

3/4)t + O(t1/3).

This can be summarized by the following theorem:

Theorem 1. For basic HFE instances, defined by a secret polynomial of

degree d over F2n , the maximum possible degree of regularity D(n, d) is

asymptotically upper bounded by

(2 + ε)(1 −
√

3/4)min(n, log2 d),

for all ε.

4.4 Complexity of the attacks

The above study has shown that the degree of regularity of the HFE
system is an integer D upper bounded by 2(1 −

√

3/4)t + O(t1/3). As
noted in section 3, the complexity of computing a Gröbner basis with F5

is bounded by the cost of linear algebra on a matrix whose columns are
indexed by the monomials of degree D in n unknowns, where D is the
degree of the largest Macaulay-Faugère matrix that is used. Moreover,
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during a first phase the algorithm only builds Macaulay-Faugère matrices
of degree up to D. Moreover, the end of the first phase is easily detected.
As a consequence, we easily measure the effective value of D. Since we
do not know the HFE secret key, we need to perform our Gröbner basis
computation in the public world, using a system with n unknowns. Thus
the respective runtimes of the first phase and of the full algorithm are
bounded by O(n3D) and O(n3D), assuming that all linear algebra is done
using ordinary Gaussian elimination.

An alternative way of viewing this result is to make the heuristic
assumption that the reduced system described in section 4.2 behaves as a
random system in t unknowns. Thus using conjecture 1, a Gröbner basis
for this hidden system can be found in time tKt. Further assuming that
this can be achieved with the F5 algorithm, the Gröbner computation in
the public world requires a running time nKt.

Distinguishing attack At the end of the first phase, we end up with the
effective value of D. We know that for HFE instances, this value is quite
small and that for random systems, it is much larger (with overwhelming
probability). This simple fact yields a simple distinguisher which at the
end of the first phase can tell whether the original system is an HFE
instance or not. Of course, when working on a random system, the dis-
tinguisher should use an early abort strategy and stop as soon as the
current Macaulay-Faugère matrix has degree larger than the expected D.
Thanks to the early abort strategy, replacing D by its bound, we find
the complexity of the distinguisher is 2O(log(n)2) even when the input is a
random system. This distinguisher was first mentioned by Faugère when
describing his HFE challenge experiment. It offers an alternative to the
distinguisher described in [6].

Note that for a random system of quadratic equations, we need a dif-
ferent variant of the theorem of Bardet than described in section 3.1. This
variant, which holds for quadratic systems of n equations in n unknowns
over F2, is also given in [1] gives a formula for the degree of regularity
which is similar to equation 2 for τ = 2, with slightly different constants.
It implies that the degree of regularity of a random system is O(n) and
thus much higher than the O(log n) value we obtained for D in the case
of an HFE instance.

Decryption attack In the case of the decryption attack, we let the Gröbner
basis algorithm terminate and from the result, we find the corresponding
plaintext as in [7]. Here the runtime is n3D. Using our heuristic assump-
tion about the good behavior of the system of equations, n3D is nO(D).
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As a consequence, the overall heuristic runtime is 2O(log(n)2) as announced
previously.

5 Conclusion

In this paper, we analyzed the behavior of the Gröbner basis based at-
tack on HFE systems as proposed in [7]. We showed that this attack
takes quasipolynomial time for any practical instantiation of the basic
HFE cryptosystem. The runtime analysis of the distinguisher part of the
attack gives a provable complexity, while the decryption part of the at-
tack only leads to a heuristic complexity. Comparing the result with the
best existing subexponential algorithms for factoring and computing dis-
crete logarithms, we find that for comparable key and/or ciphertext sizes,
breaking the basic HFE scheme is asymptotically much easier than break-
ing RSA or discrete logarithm based systems.
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13. D. Lazard. Gröbner bases, gaussian elimination and resolution of systems of alge-
braic equations. In Computer algebra (London, 1983), volume 162 of Lecture Notes
in Comput. Sci., pages 146–156, 1983.

14. D. Lazard. Solving systems of algebraic equations. ACM SIGSAM Bulletin,
35(3):11–37, Sept. 2001.

15. T. Matsumoto and H. Imai. Public Quadratic Polynomial-tuples for efficient
signature-verification and message encryption. In Eurocrypt’88, volume 330 of
Lecture Notes in Comput. Sci., pages 419–453. Springer-Verlag, 1988.

16. J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eu-
rocrypt’88. In Crypto’95, volume 963 of Lecture Notes in Comput. Sci., pages
248–261. Springer-Verlag, 1995.

17. J. Patarin. Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP):
two families of asymetric algorithms. In Eurocrypt’96, volume 1070 of Lecture
Notes in Comput. Sci., pages 33–46. Springer-Verlag, 1996.

18. C. Wolf and B. Preneel. Taxonomy of Public Key Schemes based on the problem of
Multivariate Quadratic equations. Cryptology ePrint Archive, Report 2005/077,
2005. http://eprint.iacr.org/.

14


