
One-Time Programs

Shafi Goldwasser1,3?, Yael Tauman Kalai2??, and Guy N. Rothblum3? ? ?

1 Weizmann Institute of Science, Rehovot, Israel
2 Georgia Tech, Atlanta, USA

3 MIT, Cambridge, USA

Abstract. In this work, we introduce one-time programs, a new com-
putational paradigm geared towards security applications. A one-time
program can be executed on a single input, whose value can be specified
at run time. Other than the result of the computation on this input,
nothing else about the program is leaked. Hence, a one-time program
is like a black box function that may be evaluated once and then “self
destructs.” This also extends to k-time programs, which are like black
box functions that can be evaluated k times and then self destruct.
One-time programs serve many of the same purposes of program ob-
fuscation, the obvious one being software protection, but also including
applications such as temporary transfer of cryptographic ability. More-
over, the applications of one-time programs go well beyond those of ob-
fuscation, since one-time programs can only be executed once (or more
generally, a limited number of times) while obfuscated programs have
no such bounds. For example, one-time programs lead naturally to elec-
tronic cash or token schemes: coins are generated by a program that can
only be run once, and thus cannot be double spent.
Most significantly, the new paradigm of one-time computing opens new
avenues for conceptual research. In this work we explore one such avenue,
presenting the new concept of “one-time proofs,” proofs that can only
be verified once and then become useless and unconvincing.
All these tasks are clearly impossible using software alone, as any piece
of software can be copied and run again, enabling the user to execute the
program on more than one input. All our solutions employ a secure mem-
ory device, inspired by the cryptographic notion of interactive oblivious
transfer protocols, that stores two secret keys (k0, k1). The device takes
as input a single bit b ∈ {0, 1}, outputs kb, and then self destructs. Using
such devices, we demonstrate that for every input length, any standard
program (Turing machine) can be efficiently compiled into a functionally
equivalent one-time program. We also show how this memory device can
be used to construct one-time proofs. Specifically, we show how to use
this device to efficiently convert a classical witness for any NP statement,
into “one-time proof” for that statement.

? Supported by NSF Grants CCF-0514167, CCF-0635297, NSF-0729011, the RSA
chair, and by the Weizmann Chais Fellows Program for New Scientists,
shafi@theory.csail.mit.edu.

?? Supported in part by NSF grant CCF-0635297, yael@cc.gatech.edu.
? ? ? Supported by NSF Grants CCF-0635297, NSF-0729011, CNS-0430336 and by a

Symantec Graduate Fellowship, rothblum@csail.mit.edu.

1 Introduction

In our standard computing world (and the standard theoretical comput-
ing models), computer programs can be copied, analyzed, modified, and
executed in an arbitrary manner. However, when we think of security
applications, such complete transfer of code is often undesirable, as it
complicates and inhibits tasks such as revocation of cryptographic abil-
ity, temporary transfer of cryptographic ability, and preventing double-
spending of electronic cash. Other tasks such as general program obfus-
cation [BGI+01,GK05] are downright impossible.

In this paper, we propose to study a new type of computer program,
called a one-time program. Such programs can be executed only once,
where the input can be chosen at any time. This notion extends natu-
rally to k-time programs which can be executed at most k times on inputs
that can be chosen by the user at any time. These programs have imme-
diate applications to software protection, electronic tokens and electronic
cash. Even more interestingly, they open new avenues for conceptual con-
tributions. In particular, in this work they allow us to conceive of, define
and realize the new cryptographic concept of one-time zero-knowledge
proofs: zero-knowledge proofs that can be verified exactly once, by any
verifier, without the prover being present. After the proof is verified once
by any single verifier, it becomes useless and cannot be verified again.

Clearly a one-time program cannot be solely software based, as software
can always be copied and run again, enabling a user to execute the
program more times than specified. Instead, we suggest the use of a
secure memory devices, one-time memory (OTM), as part of the one-
time program. In general, when using a hardware device it is crucial that
the device be as simple as possible, so that it can be scrutinized more
easily. In particular, side-channel attacks have emerged as a devastating
threat to the security of hardware devices.

The memory device used in this work is very simple and withstands even
extremely powerful side-channel attacks. An OTM does not perform any
computation, but its memory contents are assumed to be somewhat pro-
tected, i.e. they cannot be read and written arbitrarily. All we assume is
that memory locations that are never accessed by the device are never
leaked via a side channel (whereas memory that is accessed may be im-
mediately leaked), and that the device has a single tamper-proof bit, see
Section 3 for a fuller discussion. In particular, our device meets the desir-
able property laid out in the work of Gunnar et. al. [GLM+04], and can
be decoupled into two components: the first component is tamper-proof
but readable, and consists of a single bit. The second component is tam-
perable but read-proof. As mentioned above, in our case the read-proof
requirement is only for memory locations that are never accessed by the
device. These assumptions seem minimal if any non-trivial use is to be
made of the secure device (see the illuminating discussions in Micah and
Renin [MR04] and in Gunnar et. al. [GLM+04]). Also, the device is very
inexpensive, low energy and disposable, much like RFID tags used in
clothing. Thus, a one-time program can be realized by a combination of
standard software and such minimally secure memory devices.

We construct a universal one-time compiler that takes any standard
polynomial-time program and memory devices as above, and transforms
it (in polynomial time) into a one-time program which achieves the same
functionality, under the assumption that one-way functions exist. This
compiler uses techniques from secure function evaluation, specifically
Yao’s garbled circuit method [Yao86], as its starting point. These tech-
niques, however, only give solutions for settings in which adversaries
are honest-but-curious, whereas we want the security of one-time pro-
grams to also hold against malicious adversaries. Unlike the setting of
secure function evaluation, we need to overcome this difficulty without
the benefit of interaction. This is accomplished (non-interactively) using
the secure memory devices (see Section 4 for details).
While we cannot show that this compiler is optimal in terms of the
efficiency of the one-time programs it produces, we do argue that sig-
nificant improvements would resolve a central open problem in cryp-
tography. Specifically, significant complexity improvements would imply
significant improvements in the communication complexity of secure-
function-evaluation protocols. See Section 4 for further details.
Continuing in the spirit of one-time computing, we also define and con-
struct one-time proofs. A one-time proof system for an NP language L
allows the owner of a witness for the membership of some input x in
L to transform this witness into a one-time proof token (a device with
the above secure memory components). This proof token can be given
to any efficient prover, who does not know a witness for x. The prover
can use this token exactly once to prove to any verifier that x ∈ L using
an interactive proof. The prover does not learn anything from the proof
token, and in particular cannot prove that x ∈ L a second time. The
witness owner does not need to be involved in the interaction between
the prover and verifier. We show how to construct a one-time proof sys-
tem with negligible soundness for any NP language. Achieving constant
soundness is relatively straightforward, but amplifying the soundness is
not. The technical difficulties are similar to those encountered in parallel
composition of zero-knowledge proofs. We are able to resolve these dif-
ficulties (again, in a non-interactive manner) using the secure memory
devices. See Section 5.2 for an overview.
We proceed to describe our contributions in detail.

2 One-Time Programs and One Time Compilers

Informally, a one-time program for a function f : (1) Can be used to
compute f on a single input x of one’s choice. (2) No efficient adversary,
given the one-time program, can learn more about f than can be learned
from a single pair (x, f(x)), where x is chosen by the adversary. Hence,
it acts like a black-box function that can only be evaluated once.
Several formal definitions can be proposed for condition 2 above. We
chose a definition inspired by Goldreich and Ostrovsky’s [GO96] work
on software protection, and the work of Barak et al. [BGI+01] on pro-
gram obfuscation. Informally, for every probabilistic polynomial time
algorithm A given access to a one-time program for f on inputs of size

n, there exists another probabilistic polynomial time algorithm S(1n)
which can request to see the value f(x) for an x of its choice where
|x| = n, such that (for any f) the output distributions of A and S are
computationally indistinguishable, even to a machine that knows f !
The notion of one-time programs extends naturally to k-time programs
which can be provably executed at most k times on input values that
can be chosen by the user at any time. For simplicity of exposition we
mostly deal with the one-time case throughout this paper.
As previously mentioned, a one-time program cannot be solely software
based, and we propose to use secure hardware devices as building blocks
in the constructions. In general, we model secure hardware devices as
black-boxes with internal memory which can be accessed only via its
I/O interface. A one-time program is a combination of hardware: (one
or many) hardware devices H1, . . . ,Hm; and software: a (possibly non-
uniform) Turing machine M, where the machine M accesses the hard-
ware devices via their I/O interface. It is important to note that the
Turing machine software component is not secure: it can be read and
modified by the user whereas the access to the secure hardware is only
via the I/O interface. Thus, we view one-time programs as software-
hardware packages. An execution of one-time program P = MH1,...,Hm

on input x ∈ {0, 1}n, is a run of MH1,...,Hm(x), where the contents of
M’s output tape is the output. Throughout this work we use a new type
of secure hardware device which we name a one-time memory (OTM),
see the introduction and Section 3 for more details.
One-Time Compiler. To transform a standard computer program into
a one-time program computing the same functionality, we propose the
notion of a one-time compiler. The compiler takes a computer program,
modeled as a (possibly non-uniform) Turing machine T , an input length
n, and a collection of OTM devices (the number of devices may depend
on n). The compiler then creates a one-time program computing the
same functionality as T on inputs of length n by initializing the inter-
nal memory of the OTMs and also outputting (in the clear) a software
component for the program. It is also important that the compiler be
efficient, in the sense that its running time is no worse than polynomial
in T ’s worst-case running time on inputs of length n.
In this work we construct a one-time compiler as above. The compiler
transforms any Turing machine T into a one-time program P that sat-
isfies the two intuitive properties outlined above:
1. Functionality. For any x ∈ {0, 1}n, when the program is run once

on input x it outputs T (x); namely, P(x) = T (x).
2. One-Time Secrecy. For any PPT adversary A, there exists a PPT

simulator S with one-time oracle access to the machine T . The sim-
ulator gets the machine’s output, running time and space usage on
a single input of its choice, and its running time is polynomial in the
machine T ’s worst-case running time (and in n). We require that for
any machine T the following two distributions are indistinguishable:
(a) The output of the adversary A when it is run with arbitrary

access to the one-time program P (i.e. full access to the software
component and black-box access to the hardware component).

(b) The output of the simulator with one-time oracle access to T .

Moreover, the indistinguishability holds even for a distinguisher who
takes T as input. Note that it is crucial that the simulator S only
accesses its oracle once.4 Also note that the simulator cannot access
any part of the actual one-time program, including the hardware,
not even in a black-box manner.

See the full version of this work for a more rigorous treatment.
Remark. Note that in the above definition we only allow the adversary
black-box access to the hardware component. Thus, we implicitly assume
that the hardware devices withstand all side channel attacks. This is
a very strong (and perhaps unreasonable) assumption. However, as we
shall see next, the actual security assumptions we impose on the memory
devices we use are much weaker, and in some sense are minimal.

3 One-Time-Memory Device (OTM)

Informally, a OTM is a memory device initialized with two keys (k0, k1).
It takes as input a single bit b ∈ {0, 1}, outputs kb and “self destructs”.
There are several ways to formalize the concept of self destruction. The
first would be to erase both keys after outputting kb. However, to cir-
cumvent side-channel attacks, we prefer that the device never access the
key not retrieved. Instead, we choose the following formalism.
An OTM is initialized with two keys (k0, k1), and one additional tamper-
proof bit set to 0. The OTM input is a single bit b ∈ {0, 1}. Upon
receiving an input, the OTM verifies that the tamper-proof bit is set to
0, sets it to 1 and outputs kb. If the tamper-proof bit is not 0, the device
outputs an error symbol ⊥. Thus, an OTM outputs one of its two keys,
and the other key is irretrievably lost (and never accessed).
Our security assumptions from the OTM device are quite minimal:
1. The memory locations that are never accessed by the device are never

leaked via a side channel, whereas a memory cell that is accessed may
be immediately leaked.

2. The single bit b is tamper-proof (but is readable).
Intuitively, the above two assumptions imply that the device is as secure
as a black-box. See the full version of this work for details.
OTM’s are inspired by the cryptographic notion of one out of two obliv-
ious transfer [Rab05,EGL85], where a sender holds two keys and lets a
receiver receive one of them. The key not chosen is irrevocably lost, and
the sender does not learn (is oblivious to) which key the receiver received.
Whereas an oblivious transfer is an interactive protocol, an OTM is a
physical device. The important requirement from an OTM is that the
user using the device (analogous to the “receiver” in an oblivious transfer
protocol) learns only the secret of his choice. The requirement that the
key generator (analogous to the “sender”) is oblivious and does not learn
which secret the user received, makes little sense in our setting as the
OTM is at the hands of the “receiver” and the key generator is no longer
present at the time that the OTM is used.

4 This guarantees that the one-time program cannot be duplicated and run more than
once. The simulator certainly cannot duplicate, and thus an adversary who can
obtain two of the program’s outputs cannot be simulated.

3.1 Using OTMs vs. Other Hardware

There are many possible secure hardware devices one could conceive
of using, and it is not a-priori clear whether one device is better or
worse than another. This is a central question in the study of one-time
programs, and secure hardware in general. In this section we compare
the use of OTM devices in one-time programs with alternative solutions
that use different hardware.

Task Specific Hardware. A trivial solution would be to build for each
function f a special-purpose task-specific secure hardware device which
computes f for one input x and then refuses to work any longer. We find
this solution highly unsatisfactory, for several reasons:

- Universality. First, this approach calls for building a different hardware
device for each different function f . This may be worthwhile for some
tasks, but is too costly for most tasks and thus infeasible in practice.
Instead, we advocate that the secure hardware device of choice should
be universal. Namely, that the hardware device be task-independent, and
“programmable” so it can be used to construct a one-time program for
any functionality (one-time programs for different functions will differ in
their software component). In the case of secure hardware (rather than
ordinary hardware), universality is particularly important, as each type
of hardware device needs to be intensely scrutinized to try to guarantee
that it is not susceptible to side channel attacks. This seems impossible
to do on a function by function basis.

- Simplicity. Second, perhaps the most central measure of reasonability
for a secure hardware device is its simplicity, and the trivial solution
suggested above is potentially complex as it requires producing complex
hardware for complex functions. Our search for simple hardware devices,
which are easy to build, analyze and understand, is motivated by several
concerns; (i) The assumption that a hardware device is secure and/or
tamper-proof is a very strong assumption, as one has to consider all
possible physical attacks. The simpler a hardware device is, the easier
it is to scrutinize and analyze its security, and the more reasonable the
assumption that it is secure becomes. (ii) Continuing in this vein, side
channel attacks have emerged as a significant threat to the integrity of
cryptographic algorithms and devices (see e.g. Anderson [And01]). It
seems intuitive that the less computation the hardware preforms, the
less susceptible it will be to potentially devastating side-channel attacks.
Indeed, this is the guiding principle behind the theoretical approach to
defining physically secure devices taken by [MR04,GLM+04]. In the case
of task-specific hardware, ad absurdum the entire the computation can
be done by the hardware. (iii) Finally, and perhaps most obviously, the
simpler a hardware device is, the easier and cheaper to build it will be.

Secure General Purpose CPU. An alternate solution would be to
use the physically shielded full-blown CPU, which was proposed by Best
[Bes79] and Kent [Ken80] and used in the work of Goldreich and Os-
trovsky on software protection [GO96]. This CPU contains a protected
ROM (read only memory) unit in which a secret decryption key is writ-
ten. The I/O access to the shielded CPU is through fetch instructions. In

each computation cycle, the CPU fetches an encrypted instruction, de-
crypts it, and executes it. The hardware security assumption here is that
both the cryptographic operations (decryption, encryption etc.), as well
as the general-purpose computation operations, are perfectly shielded.
Each such shielded CPU was associated with a different decryption key,
and the encrypted software executed on it was to be encrypted with the
matching encryption key. Goldreich-Ostrovsky envisioned protecting a
software program by encrypting it and packaging it with a physically
shielded CPU with a matching decryption key. One-time programs can
be easily built in the same manner (adding a counter to the CPU to limit
the number of executions).
This solution is certainly universal, as the CPU can compute all tasks.
Yet, we do not believe it is suitable for the one-time programs application:

- Simplicity. We consider a full blown protected CPU to be far from the
goal of hardware simplicity, and so complex as to make the Goldreich-
Ostrovsky approach unviable for the design of one-time programs. This
is evidenced by the simple fact that although these devices were first
proposed in the early 1980’s, they still seem beyond the reach of cur-
rent day technology in terms of cost. It seems that in particular for the
application of one-time programs, using a full-blown shielded CPU for
computing one task a limited number of times is an overkill.

- Side Channel Attacks. Secure CPUs perform complex computations
(both cryptographic and otherwise), and are thus susceptible to side-
channel attacks. If we assume, when modeling side channel attacks, that
each computational step may leak information about bits accessed by
the hardware, the [GO96] device becomes especially vulnerable: once the
secret key (which is used in every step of the computation) leaks, the
security of the entire construction falls apart.

Now, we can re-examine OTMs in light of the above alternative sug-
gestions. As we show in Section 4, OTMs areuniversal task-independent
devices that can be used to make any program one-time. Moreover, an
OTM is also a simple device. Most importantly, even if we assume that
side-channel adversaries can capture every bit accessed by the hardware
during a computation step, the OTM construction remains secure, as
long as there is a single (readable) tamper-proof bit! The OTM key that
is not chosen is never accessed, and thus OTM constructions are secure
under the (seemingly minimal, see [MR04]) assumption that untouched
memory bits are not leaked.
So far, the comparison between OTM and other secure hardware was
qualitative. We now present some several quantitative complexity mea-
sures for analyzing secure hardware devices and their use by a one-time
program. In the next section we shall see how our solution fares in com-
parison to the [GO96] hardware with respect to this complexity measures.

- Hardware Runtime. The total combined running time of all the hard-
ware devices used by the one-time program. This measures the amount
of computation done by the secure hardware devices (e.g. number of op-
erations done by their CPU), and not the amount of computation done
by the one-time program’s software component. Clearly, it is desirable
for the hardware to do as little work as possible, both because simple

devices will be computationally much weaker than the CPU of a mod-
ern personal computer and because the more computation is done on a
device the more susceptible it may become to side-channel attacks.
We also consider the total runtime of the one-time program, which is the
combined runtime of the hardware and software components.

- Size. The combined sizes of all the hardware devices used by the one-
time program. The size of a hardware device is the size of its (persistent)
memory together with the size of its control program. The smaller the
hardware device, the better, as protecting smaller memories is easier.

- Latency. Number of times the one-time program P accesses its se-
cure hardware devices. We assume that each time hardware devices are
accessed, many of them may be queried in parallel, but we want to min-
imize the number of (adaptive) accesses to the hardware devices, both
to guarantee that the hardware is not involved in complex computations
and to optimize performance (as accessing hardware is expensive).

4 A One-Time Compiler

In what follows, we present an efficient one-time compiler that uses
OTMs, give an overview of the construction, compare it to other solutions
from the literature, and conclude with a discussion on the implications
of improvements to our results.

The Construction. Building on the ideas in Yao’s Garbled-Circuit con-
struction [Yao86], we demonstrate that a universal one-time compiler
exists using OTMs. First, convert the input (Turing machine) program
into a Boolean circuit on inputs of length n. Second, garble it using Yao’s
method. And, finally, use n OTM’s to transform the garbled circuit into
a one-time program. We encounter an obstacle in this last step, as the
security of Yao’s construction is only against honest-but-curious adver-
saries, whereas the one-time program needs to be secure against any
malicious adversary. In the secure function evaluation setting this is re-
solved using interaction (e.g. via zero-knowledge proofs, see [GMW91]),
or using some global setup and non-interactive zero-knowledge proofs.
Our setting of one-time programs, however, is not an interactive setting,
and we cannot use these solutions. Instead, we present a solution to this
problem that uses the OTM devices; see below.

Informal Theorem 1: Assume that one-way functions exist. There
exists an efficient one-time compiler C that for input length n uses n
OTMs: B1, . . . ,Bn. For any (non-uniform) Turing machine T , with worst-
case running time tT (n) (on inputs of length n), the compiler C, on input
1n, 1tT (n), description of T and security parameter 1κ(n), outputs a one-
time program P , MB1(v1),...,Bn(vn) such that P(x) = T (x) for inputs
of length n. Let tT (x) denote T ’s running time on input x ∈ {0, 1}n.
Then, P(x) achieves: latency 1; hardware runtime n · κ(n); total running
time Õ(tT (x) · poly(κ, n)); and size Õ(tT (n) · poly(κ)).

Proof (Construction Overview). We begin by briefly reviewing Yao’s
Garbled Circuit construction. We assume (for the sake of simplicity)

that the underlying Turing machine has a boolean (1 bit) output, but
the construction is easily generalized to multi-bit outputs while maintain-
ing the performance claimed in the theorem statement. The construction
proceeds by converting the Turing machine T into a boolean circuit of
size Õ(tT (n)) and then garbling it using Yao’s garbled circuit method.
This gives a garbled circuit G(T) of size Õ(tT (n) · poly(κ)), together
with n key-pairs (k0

1, k1
1) . . . (k0

n, k1
n). The construction guarantees both

(i) Correctness: namely there is an efficient algorithm that for any in-
put x ∈ {0, 1}n takes as input G(T) and only the n keys kx1

1 , . . . , kxn
n

(one from each pair of keys), and outputs T (x). The algorithm’s running
time is Õ(tT (x) · poly(κ)). The construction also guarantees (ii) Pri-
vacy: an adversary cannot learn more from the garbled circuit together
with one key out of each key-pair, say the xi-th key from the i-th key
pair, than the output of the machine on the input x = x1 ◦ . . . ◦ xn.
Formally, there exists an efficient simulator S such that for any machine
T , for any output value b and for any input x such that C(x) = b, the
simulator’s output on input (b, x, 1tT (n), 1κ) is indistinguishable from
(x, G(T), kx1

1 , . . . , kxn
n).

We want to use Yao’s garbled circuit to build one-time programs using
OTMs. A deceptively straightforward idea for a one-time compiler is to
use n OTMs: garble the machine T , and put the i-th key pair in the
i-th OTM. To compute T ’s output on an input x a user can retrieve
the proper key from each OTM and use the correctness of the garbled
circuit construction to get the machine’s output. Privacy may seem to
follow from the privacy of the garbled circuit construction. Surprisingly,
however, the above construction does not seem to guarantee privacy. In
fact, it hides a subtle but inherent difficulty.
The difficulty is that the privacy guarantee given by the garbled circuit
construction is too weak. At a higher level this is because the stan-
dard Yao construction is in the honest-but curious setting, whereas we
want to build a program that is one-time even against malicious adver-
saries. More concretely, the garbled circuit simulator generates a dummy
garbled circuit after the inputx is specified, i.e. only after it knows the
circuit’s output T (x). This suffices for honest-but-curious two-party com-
putation, but it is not sufficient for us. The (malicious) one-time program
adversary may be adaptive in its choice of x: the choice of x could de-
pend on the garbling itself, as well as the keys revealed as the adversary
accesses the OTMs. This poses a problem, as the simulator, who wants
to generate a dummy garbling and then run the adversary on it, does not
know in advance on which input the adversary will choose to evaluate
the garbled circuit. On closer examination, the main problem is that the
simulator does not know in advance the circuit’s output on the input the
adversary will choose, and thus it does not know what the dummy gar-
bling’s output should be. Note that we are not in an interactive setting,
and thus we cannot use standard solutions such as having the adversary
commit to its input x before seeing the garbled circuit.
To overcome this difficulty, we need to change the naive construction
that we got directly from the garbled circuit to give the simulator more
power. Our objective is allowing the simulator to “hold off” choosing
the output of the dummy garbling until the adversary has specified the

input. We do this by “hiding” a random secret bit bi in the i-th OTM,
this bit is exposed no matter which secret the adversary requests. These
n bits mask (via an XOR) the circuit’s output, giving the simulator the
flexibility to hold off “committing” to the unmasked garbled circuit’s out-
put until the adversary has completely specified its input x (by accessing
all n of the OTMs). The simulator outputs a garbled dummy circuit that
evaluates to some random value, runs the adversary, and once the adver-
sary has completely specified x by accessing all n OTMs, the simulator
can retrieve T (x) (via its one-time T -oracle), and the last masking bit it
exposes to the adversary (in the last OTM the adversary accesses) always
unmasks the garbled dummy circuit’s output to be equal to T (x).

Our Scheme vs. the [GO96] Scheme. Note that in the [GO96] scheme,
both the hardware runtime and the latency is the same as the entire
running time of the program, whereas in our scheme (using OTMs) the
latency is 1 and the hardware runtime is n · κ(n) (independent of the
program runtime). On the other hand, one advantage of the [GO96]
scheme is that the size of the entire one-time program is proportional
to the size of a single cryptographic key (independent of the program
runtime), whereas in our scheme the size is quasi-linear in the (worst-
case) runtime of the program.

4.1 Can we Get the Best of Both Worlds?

The primary disadvantage of our construction is the size of the one-time
program. The “garbled circuit” part of the program (the software part)
is as large as the (worst-case) running time of the original program. It is
natural to ask whether this is inherent. In fact, it is not, as one-time pro-
grams based on the Goldreich-Ostrovsky construction (with a counter
limiting the number of executions) have size only proportional to the
size of the original program and a cryptographic key. However, as dis-
cussed above, the Goldreich-Ostrovsky solution requires complex secure
hardware that runs the entire computation of the one-time program.
It remains to ask, then, whether it is possible to construct one-time pro-
grams that enjoy “the best of both worlds.” I.e. to build small one-time
programs with simple hardware that does very little work. This is a fun-
damental question in the study of one-time programs. Unfortunately,
we show that building a one-time program that enjoys the best of both
worlds (small size and hardware running time) is beyond the reach of
current knowledge in the field of cryptography. This is done by showing
that such a construction would resolve a central open problem in founda-
tional cryptography: it would give a secure-function-evaluation protocols
with sub-linear (in the computation size) communication complexity.

Informal Theorem 2: Assume that for every security parameter κ,
there exists a secure oblivious transfer protocol for 1-bit message pairs
with communication complexity poly(κ). Fix any input length n and
any (non-uniform) Turing machine T . Suppose P is a one-time program
corresponding to T (for inputs of length n). If P is of total size s(n)
and the worst-case (combined) running time of the secure hardware(s)

on an n-bit input is t(n), then there exists a secure function evaluation
protocol where Alice has input T , Bob has input x ∈ {0, 1}n, at the end
of the protocol Bob learns T (x) but nothing else, Alice learns nothing,
and the total communication complexity is s(n) + O(t(n) · poly(κ)).

Let us examine the possibility of achieving the best of both worlds in light
of this theorem. Suppose we had a one-time compiler that transforms any
program T into a one-time program with simple secure hardware that
does O(n · κ) work and has total size O(|T |+ κ). By the above theorem,
this would immediately give a secure function evaluation protocol where
Alice has T , Bob has x, Bob learns only T (x) and Alice learns nothing,
with linear in (n, |T |, κ) communication complexity! All known protocols
for this problem have communication complexity that is at least linear
in T ’s running time, and constructing a protocol with better communi-
cation complexity is a central open problem in theoretical cryptography.
For example, this is one of the main motivations for constructing a fully
homomorphic encryption scheme. See the full version for more details.

5 One-Time Programs: Applications

One-time programs have immediate applications to software protection.
They also enable new applications such as one-time proofs, outlined be-
low. Finally, OTMs and one-time programs can be used to construct
electronic cash and electronic token schemes [Cha82,Cha83]. The E-cash
applications and the discussion of related work are omitted from this
extended abstract for lack of space, see the full version for details.

5.1 Extreme Software Protection

By the very virtue of being one-time programs, they cannot be reverse
engineered, copied, re-distributed or executed more than once.

Limiting the Number of Executions. A vendor can put an explicit re-
striction as to the number of times a program it sells can be used, by
converting it into a one-time program which can be executed for at most
k times. For example, this allows vendors to supply prospective clients
with “preview” versions of software that can only be used a very lim-
ited number of times. Unlike techniques that are commonly employed in
practice, here there is a guarantee that the software cannot be reverse-
engineered, and the component that limits the number of executions
cannot be removed. Moreover, our solution does not require trusting a
system clock or communicating with the software over a network (as
do many solutions employed in practice). This enables vendors to con-
trol (and perhaps charge for) the way in which users use their software,
while completely maintaining the user’s privacy (since the vendors never
see users interacting with the programs). One-time programs naturally
give solutions to such copy-protection and software protection problems,
albeit at a price (in terms of complexity and distribution difficulty).

Temporary Transfer of Cryptographic Ability. As a natural application
for one-time programs, consider the following setting, previously sug-
gested by [GK05] in the context of program obfuscation. Alice wants
to go on vacation for the month of September. While she is away, she
would like to give her assistant Bob the power to decrypt and sign E-
mails dated “September 2008” (and only those E-mails). Alice can now
supply Bob with many one-time programs for signing and decrypting
messages dated “September 2008”. In October, when Alice returns, she
is guaranteed that Bob will not be able to decrypt or sign any of her
messages! As long as Alice knows a (reasonable) upper bound for the
number of expected messages to be signed and decrypted, temporarily
transferring her cryptographic ability to Bob becomes easy.

5.2 One-Time Proofs

The one-time paradigm leads to the new concept and constructions of
one-time proofs: proof tokens that can be used to prove (or verify) an
NP statement exactly once.
A one-time proof system for an NP language L consists of three enti-
ties: (i) a witness owner who has a witness to the membership of some
element x in a language L, (ii) a prover, and (iii) a verifier, where the
prover and verifier know the input x but do not know the witness to x’s
membership in L. A one-time proof system allows the witness owner to
(efficiently) transform its NP witness into a hardware based proof token.
The proof token can later be used by the efficient prover (who does not
know a witness) to convince the verifier exactly once that the input x
is in the language. The witness owner and the verifier are assumed to be
“honest” and follow the prescribed protocols, whereas the prover may be
malicious and deviate arbitrarily.5

In a one-time proof, the prover convinces the verifier by means of a
standard interactive proof system. In particular, the verifier doesn’t need
physical access to the proof token (only the prover needs this access).
After running the interactive proof and convincing the (honest) verifier
once, the proof token becomes useless and cannot be used again. The
point is that (i) the witness owner does not need to be involved in the
proof, beyond supplying the token (hence the proof system is off-line),
and (ii) the prover, even though it convinces the verifier, learns nothing
from interacting with the hardware, and in particular cannot convince
the verifier a second time. Thus, for any NP statement, one-time proofs
allow a witness owner to give other parties the capability to prove the
statement in a controlled manner, without revealing to them the witness.
A one-time proof system gives this “one-time proof” guarantee, as well as
the more standard completeness and soundness guarantees, and a zero-
knowledge guarantee (see [GMR89]), stating that anything that can be
learned from the proof token, can be learned without it (by a simulator).
Finally, a user who wants to use the one-time proof token to convince
himself that x ∈ L can do so without any interaction by running the

5 The case where even verifiers do not behave honestly is also interesting, see the full
version of this work for a discussion.

interactive proof in his head (in this case the prover and verifier are the
same entity).

Note that a prover who somehow does know a witness to x’s membership
can convince the verifier as many times as it wants. How then can one
capture the one-time proof requirement? We do this by requiring that any
prover who can use a single proof token to convince the verifier more than
once, must in fact know a witness to x’s membership in the language.
Formally, the witness can be extracted from the prover in polynomial
time. In particular, this means that if the prover can convince the verifier
more than once using a single proof token, then the prover could also
convince the verifier as many times as it wanted without ever seeing a
proof token! In other words, the proof token does not help the prover
prove the statement more than once.

Another natural setting where one-time proofs come up is in voting sys-
tems, where the goal is to ensure that voters can only vote once. In this
setting, each voter will be given a one-time proof for possessing the right
to vote (of course, one must also ensure that the proof tokens cannot be
transferred from one voter to another). A similar application of one-time
proofs is for electronic subway tokens. Here the subway operator wants
to sell electronic subway tokens to passengers, where the tokens should
be verifiable by the subway station turnstiles.6 A passenger should only
be able to use a token once to gain entrance to the subway, and after
this the token becomes useless. This goal is easily realized in a natural
way by one-time proofs. The subway operator generates a hard crypto-
graphic instance, say a product n = p · q of two primes. Subway tokens
are one-time proof tokens for proving that n is in fact a product of two
large primes. The passengers play the role of the prover. The turnstiles
are the verifier, and only let provers who can prove to them that n is a
product of two primes into the subway station. Any passenger who can
use a single token to gain entrance more than once, can also be used
to find a witness, or the factorization of n, a task which we assume is
impossible for efficient passengers.7

More generally, one can view one-time proofs as a natural generalization
of count-limited access control problems. In particular, we can convert
any 3-round ID scheme (or any Σ-protocol) into a one-time proof of
identity. See also the application to the E-token problem presented in
the next section.

One-time proofs are different from non interactive zero knowledge (NIZK)
proofs (introduced by [BFM88]). In both cases, the witness owner need
not be present when the proof is being verified. However, in NIZK proof
systems either the proof can be verified by arbitrary verifiers an unlim-
ited number of times, and in particular is also not deniable [Pas03] (for
example, NIZK proof systems in a CRS-like model, as in [BFM88]), or
the proofs have to be tailored to a specific verifier and are useless to
other verifiers (for example, NIZK proof systems in the pre-processing

6 This problem was originally suggested by Blum [Blu81]. A scheme using quantum
devices (without a proof of security) was proposed by Bennett et al. [BBBW82]

7 For simplicity we do not consider here issues of composability or maintaining pas-
senger’s anonymity.

model [SMP88]). One-time zero knowledge proofs, on the other hand, can
only be verified once, but by any user, and are later deniable. They also
do not need a trusted setup, public-key infrastructure, or pre-processing,
but on the other hand they do use secure hardware.

In the full version of this work we define one-time proofs and show (as-
suming one-way permutations) that any NP statement has an efficient
one-time proof using OTMs. To attain small soundness we need to over-
come problems that arise in the parallel composition of zero-knowledge
proof (but in a non-interactive setting). This is accomplished by using the
secure hardware to allow a delicate simulation argument. While we note
that the general-purpose one-time compiler from the previous section
can be used to construct a one-time proof,8 this results in considerably
less efficient (and less intuitively appealing) schemes.

Informal Theorem 3: Let κ be a security parameter and k a soundness
parameter. Assume that there exists a one-way permutation on κ-bit in-
puts. Every NP language L has a one-time zero-knowledge proof with
perfect completeness and soundness 2−k. The proof token uses k OTMs
(each of size poly(n, k, κ), where n is the input length).

Construction Overview. We construct a one-time proof for the NP com-
plete language Graph Hamiltonicity, from which we can derive a one-time
proof for any NP language. The construction uses ideas from Blum’s
[Blu87] protocol for Graph Hamiltonicity. The input is a graph G =
(V, E), the producer has a witness w describing a hamiltonian cycle in
the graph. The one-time proof uses k OTMs to get a proof with sound-
ness 2−k (and perfect completeness).

The basic idea of Blum’s zero-knowledge proof is for a prover to commit
to a random permutation of the graph and send this commitment to the
verifier. The verifier can then ask the prover wether to send it the permu-
tation and all the de-commitments (openings of all the commitments), or
to send de-commitments to a Hamiltonian cycle in the permuted graph.
The proof is zero-knowledge, with soundness 1/2.

A natural approach for our setting is for the witness owner to gener-
ate a proof token that has the committed permuted graph as a software
component. The proof token also includes an OTM whose first secret is
the permutation and all the de-commitments (the answer to one pos-
sible verifier query in Blum’s protocol), and whose second secret is de-
commitments to a Hamiltonian cycle in the permuted graph (the answer
to the second verifier query). This indeed gives a (simple) one-time proof
with soundness 1/2 via standard arguments: the only thing a prover can
learn from the token is one of the two possible de-commitment sequences,
and we know (from Blum’s zero-knowledge simulator), that the prover
could generate this on its own. On the other hand, somewhat paradox-
ically, this proof token does allow a prover to convince a verifier that
the graph has a Hamiltonian cycle in an interactive proof with perfect
completeness and soundness 1/2.

8 To do this, just generate a one-time program computing the prover’s answers.

To amplify the soundness to 2−k, a seemingly effective idea is to have
the producer produce k such committed graphs and k such corresponding
OTMs, each containing a pair of secrets corresponding to a new commit-
ment to a random permutation of its graph. This idea is, however, prob-
lematic. The difficulty is that simulating the one-time proof becomes as
hard as simulating parallel executions of Blum’s zero-knowledge proto-
col. Namely, whoever gets the OTMs can choose which of the two secrets
in each OTM it will retrieve as a function of all of the committed per-
muted graphs. In the standard interactive zero-knowledge proof setting
this is resolved by adding interaction to the proof (see Goldreich and
Kahan [GK96]). However, in our setting it is crucial to avoid adding in-
teraction with the witness owner during the interactive proof phase, and
thus known solutions do not apply. In general, reducing the soundness
of Blum’s protocol without adding interaction is a long-standing open
problem (see e.g. Barak, Lindell and Vadhan [BLV06]). In our setting,
however, we can use the secure hardware to obtain a simple solution.

To overcome the above problem, we use the secure hardware (OTMs)
to “force” a user who wants to gain anything from the proof token, to
access the boxes in sequential order, independently of upcoming boxes, as
follows. The first committed graph C1 is given to the user “in the clear”,
but subsequent committed graphs, Ci, i ≥ 2, are not revealed until all of
the prior i− 1 OTMs (corresponding to committed graphs C1, ..., Ci−1)
have been accessed. This is achieved by, for each i: (1) splitting the
description of the i-th committed graph Ci into i − 1 random strings
m1

i , ...m
i−1
i (or shares) such that their XOR is Ci; and (2) letting the

j-th ROK output mj
i for each i ≥ j + 1 as soon as the user accesses it

(regardless of which input the user gives to the OTM). Thus by the time
the user sees all shares of a committed graph, he has already accessed
all the previous OTMs corresponding to the previous committed graphs.
The user (information theoretically) does not know the i-th committed
graph until he has accessed all the OTMs 1, . . . , i − 1, and this forces
“sequential” behavior that can be simulated. Of course, after accessing
the boxes 1, . . . , i − 1, the user can retrieve the committed graph and
verify the proof’s correctness as usual (i.e. completeness holds). See the
full version for a formal theorem statement and proof.

We note that beyond being conceptually appealing, one-time proofs have
obvious applications to identification and limited time (rather than re-
vokable) credential proving applications. See the full version for formal
definitions and further details.

6 Further Related Work

Using and Realizing Secure Hardware. Recently, Katz [Kat07], fol-
lowed by Moran and Segev [MS08], studied the applications of secure
hardware to constructing protocols that are secure in a concurrent set-
ting. These works also model secure hardware as a “black box”. Earlier
work by Moran and Naor [MN05] showed how to construct cryptographic

protocols based on “tamper-evident seals”, a weaker secure hardware as-
sumption that models physical objects such as sealed envelopes, see the
full version of this work for a more detailed comparison.

Works such as Ishai, Sahai and Wagner [ISW03], Gennaro et al. [GLM+04]
and Ishai, Prabhakaran Sahai and Wagner [IPSW06], aim at achieving
the notion of “black-box” access to devices using only minimal assump-
tions about hardware (e.g. adversaries can read some, but not all, of the
hardware’s wires etc.). The work of Micali and Reyzin [MR04] was also
concerned with realizing ideal “black-box” access to computing devices,
but they focused on obtaining model-independent reductions between
specific physically secure primitives.

Alternative Approaches to Software Protection. An alternative
software-based approach to software protection and obfuscation was re-
cently suggested by Dvir, Herlihy and Shavit [DHS06]. They suggest
protecting software by providing a user with an incomplete program.
The user can run the program only by communicating with a server, and
the server provides the “missing pieces” of the program in a protected
manner. The setting of one-time programs is different, as we want to
restrict even the number of times a user can run the program.

Count-Limiting using a TPM. In recent (independent) work, Sar-
menta, van Dijk, O’Donnel, Rhodes and Devadas [SvDO+06] explore
cryptographic and system security-oriented applications of real-world se-
cure hardware, the Trusted Platform Module (TPM) chip (see [TPM07]).
They show how a single TPM chip can be used to implement a large num-
ber of trusted monotonic counters and also consider applications of such
counters to goals such as e-cash, DRM, and count limited cryptographic
applications. These have to do with count-limiting special tasks, specific
functionalities or small groups of functionalities, whereas we focus on
the question of count-limiting access to general-purpose programs (and
its applications). Our OTM construction indicates that TPMs can be
used to count-limit any efficiently computable functionality. Following
our work in ongoing work Sarmenta et al. began to consider using TPMs
to count-limit general-purpose programs.

7 Acknowledgements

We thank Ran Canetti for early collaboration on this work, for his in-
terest, suggestions and support. We are grateful to Nir Shavit for his
enthusiastic and pivotal support of the one-time program concept, for
suggesting applications to time-independent off-line E-tokens, and com-
menting on drafts of this work. Illuminating discussions on secure hard-
ware were very helpful, for which we thank Anantha Chandrakasan, as
well as Srini Devadas and Luis Sarmenta, who also explained to us their
work on trusted monotonic counters using TPMs.

We would also like to thank Oded Goldreich for helpful discussions re-
garding software protection, Susan Hohenberger for her continuous clear
and helpful answers to our questions about electronic cash, Adam Kalai
for his invaluable suggestions, Moni Naor for his advice and illuminating

discussions, Adi Shamir for pointing out the importance of choosing the
right order of operations on a ROM, and Salil Vadhan for his continuous
help, insight and suggestions throughout various stages of this work.
Finally, we are especially indebted to Silvio Micali’s crucial comments
following the first presentation of this work, which helped us focus on
the resistance of OTMs to side channel attacks. Thank you Silvio!

References

[And01] Ross J. Anderson. Security Engineering: A Guide to Building
Dependable Distributed Systems. Wiley, January 2001.

[BBBW82] Charles H. Bennett, Gilles Brassard, Seth Breidbard, and
Stephen Wiesner. Quantum cryptography, or unforgeable
subway tokens. In CRYPTO ’82, pages 267–275, 1982.

[Bes79] Robert M. Best. Us patent 4,168,396: Microprocessor for
executing enciphered programs, 1979.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-
interactive zero-knowledge and its applications (extended ab-
stract). In STOC ’88, pages 103–112, Chicago, Illinois, 1988.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven
Rudich, Amit Sahai, Salil P. Vadhan, and Ke Yang. On the
(im)possibility of obfuscating programs. In CRYPTO ’01,
volume 2139, pages 1–18, 2001.

[Blu81] Manuel Blum, 1981. Personal communication.
[Blu87] M. Blum. How to prove a theorem so no-one else can claim

it. In Proceedings of ICML, pages 1444–1451, 1987.
[BLV06] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower

bounds for non-black-box zero knowledge. J. Comput. Syst.
Sci., 72(2):321–391, 2006.

[Cha82] David Chaum. Blind signatures for untraceable payments.
In CRYPTO ’82, pages 199–203, 1982.

[Cha83] David Chaum. Blind signature systems. In CRYPTO ’83,
pages 153–156, 1983.

[DHS06] Ori Dvir, Maurice Herlihy, and Nir Shavit. Virtual leashing:
Creating a computational foundation for software protection.
Journal of Parallel and Distributed Computing (Special Is-
sue), 66(9):1233–1240, 2006.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A
randomized protocol for signing contracts. Commun. ACM,
28(6):637–647, 1985.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-
round zero-knowledge proof systems for np. J. Cryptology,
9(3):167–190, 1996.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impos-
sibility of obfuscation with auxiliary input. In Éva Tardos,
editor, FOCS ’05, pages 553–562. IEEE Computer Society,
2005.

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Mi-
cali, and Tal Rabin. Algorithmic tamper-proof (atp) security:
Theoretical foundations for security against hardware tam-
pering. In TCC ’04, volume 2951, pages 258–277, 2004.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof-systems. SIAM
Journal on Computing, 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs
that yield nothing but their validity, or all languages in np
have zero-knowledge proof systems. Journal of the ACM,
38(1):691–729, 1991.

[GO96] Oded Goldreich and Rafi Ostrovsky. Software protection
and simulation on oblivious rams. Journal of the ACM,
43(3):431–473, 1996.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David
Wagner. Private circuits ii: Keeping secrets in tamperable
circuits. In EUROCRYPT ’06, volume 4004, pages 308–327,
2006.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits:
Securing hardware against probing attacks. In CRYPTO ’03,
volume 2729, pages 463–481, 2003.

[Kat07] Jonathan Katz. Universally composable multi-party compu-
tation using tamper-proof hardware. In EUROCRYPT ’07,
volume 4515, pages 115–128. Springer, 2007.

[Ken80] Stephen T. Kent. Protecting Externally Supplied Software
in Small Computers. PhD thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1980.

[MN05] Tal Moran and Moni Naor. Basing cryptographic protocols
on tamper-evident seals. In Lúıs Caires, Giuseppe F. Ital-
iano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung,
editors, ICALP, volume 3580, pages 285–297, 2005.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryp-
tography (extended abstract). In TCC ’04, volume 2951,
pages 278–296, 2004.

[MS08] Tal Moran and Gil Segev. David and goliath commitments:
Uc computation for asymmetric parties using tamper-proof
hardware. In EUROCRYPT ’08, pages 527–544, 2008.

[Pas03] Rafael Pass. On deniability in the common reference string
and random oracle model. In CRYPTO ’03, volume 2729,
pages 316–337, 2003.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious
transfer. Cryptology ePrint Archive, Report 2005/187, 2005.

[SMP88] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano.
Non-interactive zero-knowledge with preprocessing. In
CRYPTO ’88, volume 403, pages 269–282, 1988.

[SvDO+06] Luis F. G. Sarmenta, Marten van Dijk, Charles W.
O’Donnell, Jonathan Rhodes, and Srinivas Devadas. Virtual
monotonic counters and count-limited objects using a tpm
without a trusted os (extended version). Technical Report
2006-064, MIT CSAIL Technical Report, 2006.

[TPM07] Trusted computing group trusted platform module (tpm)
specifications, 2007.

[Yao86] Andrew C. Yao. How to generate and exchange secrets. In
FOCS ’86, pages 162–167, 1986.

