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Abstract. We propose a simple and general framework for constructing
oblivious transfer (OT) protocols that are efficient, universally compos-

able, and generally realizable under any one of a variety of standard
number-theoretic assumptions, including the decisional Diffie-Hellman
assumption, the quadratic residuosity and decisional composite residu-
osity assumptions, and worst-case lattice assumptions.

Our OT protocols are round-optimal (one message each way), quite effi-
cient in computation and communication, and can use a single common
string for an unbounded number of executions between the same sender
and receiver. Furthermore, the protocols can provide statistical security
to either the sender or the receiver, simply by changing the distribution
of the common string. For certain instantiations of the protocol, even a
common uniformly random string suffices.

Our key technical contribution is a simple abstraction that we call a dual-

mode cryptosystem. We implement dual-mode cryptosystems by taking
a unified view of several cryptosystems that have what we call “messy”
public keys, whose defining property is that a ciphertext encrypted under
such a key carries no information (statistically) about the encrypted
message.

As a contribution of independent interest, we also provide a multi-bit
amortized version of Regev’s lattice-based cryptosystem (STOC 2005)
whose time and space complexity are improved by a linear factor in the
security parameter n. The resulting amortized encryption and decryption
times are only Õ(n) bit operations per message bit, and the ciphertext
expansion can be made as small as a constant; the public key size and
underlying lattice assumption remain essentially the same.
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1 Introduction

Oblivious transfer (OT), first proposed by Rabin [30], is a fundamental primitive
in cryptography, especially for secure two-party and multiparty computation [34,
16]. Oblivious transfer allows one party, called the receiver, to obtain exactly one
of two (or more) values from another other party, called the sender. The receiver
remains oblivious to the other value(s), and the sender is oblivious to which
value was received. Since its introduction, OT has received an enormous amount
of attention in the cryptographic literature (see [23, 11, 13], among countless
others).

OT protocols that are secure against semi-honest adversaries can be con-
structed from (enhanced) trapdoor permutations and made robust to malicious
adversaries using zero-knowledge proofs for NP [16]; however, this general ap-
proach is quite inefficient and is generally not suitable for real-world applications.

For practical use, it is desirable to have efficient OT protocols based on con-
crete assumptions. Naor and Pinkas [28] and independently, Aiello, Ishai and
Reingold [1] constructed efficient two-message protocols based on the decisional
Diffie-Hellman (DDH) assumption. Abstracting their approach via the the pro-
jective hash framework of Cramer and Shoup [10], Tauman Kalai [22] presented
analogous protocols based on the quadratic residuosity and decisional composite
residuosity assumptions. The primary drawback of these constructions is that
their security is proved only according to a “half-simulation” definition, where
an ideal world simulator is shown only for a cheating receiver. Therefore, they
are not necessarily secure when integrated into a larger protocol, such as a mul-
tiparty computation. Indeed, as pointed out in [28], such protocols may fall to
selective-failure attacks, where the sender causes a failure that depends upon the
receiver’s selection.

Very recently (and independently of our work), Lindell [25] used a cut-
and-choose technique (in lieu of general zero knowledge) to construct fully-
simulatable OT protocols under the same set of assumptions as in [28, 1, 22].
For this level of security, Lindell’s result is the most efficient protocol that has
appeared (that does not rely on random oracles), yet it still adds a few commu-
nication rounds to prior protocols and amplifies their computational cost by a
statistical security parameter (i.e., around 40 or so). There are also several re-
cent works on constructing fully-simulatable protocols for other variants of OT,
and on obtaining efficiency through the use of random oracles; see Section 1.3
for details.

We point out that all of the above fully-simulatable protocols are proved
secure in the plain stand-alone model, which allows for secure sequential com-
position, but not necessarily parallel or concurrent composition. For multiparty
computation or in complex environments like the Internet, composability can
offer significant security and efficiency benefits (e.g., by saving rounds of com-
munication through parallel execution).

In addition, while there is now a significant body of literature on construct-
ing cryptographic primitives from worst-case lattice assumptions (e.g., [2, 3, 31,
26, 32, 29, 15]), little is known about obtaining oblivious transfer. Protocols for



semi-honest adversaries can be easily inferred from the proof techniques of [3,
31, 32], and made robust to malicious adversaries by standard coin-flipping and
zero-knowledge techniques. However, for efficiency it appears technically diffi-
cult to instantiate the projective hash framework for OT [10, 22] under lattice
assumptions, so a different approach may be needed.

1.1 Our Approach

Our goal is to construct oblivious transfer protocols enjoying all of the following
desirable properties:

1. Secure and composable: we seek OT protocols that are secure according
to a full simulation-based definition, and that compose securely (e.g., in
parallel) with each other and with other protocols.

2. Efficient: we desire protocols that are efficient in computation, communi-
cation, and usage of any external resources.

3. Generally realizable: we endeavor to design an abstract framework that
is realizable under a variety of concrete assumptions, including those related
to lattices. Such a framework would demonstrate the conceptual generality
of the approach, and could protect against future advances in cryptanalysis,
such as improved algorithms for specific problems or the development of
practical quantum computers (which are known to defeat factoring- and
discrete log-based cryptosystems [33], but not those based on lattices).

We present a simple and novel framework for reaching all three of the above
goals, working in the universal composability (UC) model of Canetti [5] with
static corruptions of parties.

Our protocol is based on a new abstraction that we call a dual-mode cryp-
tosystem. The system is initialized in a setup phase that produces a common
string CRS, which is made available to all parties (we discuss this setup assump-
tion in more detail below). Depending on the instantiation, the common string
may be uniformly random, or created according to some prescribed distribution.

Given a dual-mode cryptosystem, the concrete OT protocol is very simple:
the receiver uses its selection bit (and the CRS) to generate a “base” public key
and secret key, and delivers the public key to the sender. The sender computes
two “derived” public keys (using the CRS), encrypts each of its values under
the corresponding derived key, and sends the ciphertexts to the receiver. Finally,
the receiver uses its secret key to decrypt the appropriate value. Note that the
protocol is message-optimal (one in each direction), and that it is essentially
as efficient as the underlying cryptosystem. The security of the protocol comes
directly from the dual-mode properties, which we describe in more detail next.

Dual-mode cryptosystems. The setup phase for a dual-mode cryptosystem cre-
ates the CRS according to one of two chosen modes, which we call the messy
mode and the decryption mode.

The system has three main security properties. In messy mode, for every
(possibly malformed) base public key, at least one of the derived public keys



hides its encrypted messages statistically. Moreover, the CRS is generated along
with a “trapdoor” that makes it easy to determine (given the base public key)
which of the derived keys does so. These properties imply statistical security
against even an unbounded cheating receiver.

In decryption mode, the honest receiver’s selection bit is likewise hidden
statistically by its choice of base key. In addition, there is a (different) trapdoor
for the CRS that makes it easy to generate a base public key together with two
properly-distributed secret keys corresponding to each potential selection bit.
This makes it possible to decrypt both of the sender’s ciphertexts, and implies
statistical security against even an unbounded cheating sender.

Finally, a dual-mode system has the property that messy mode and decryp-
tion mode are computationally indistinguishable; this is the only computational
property in the definition. The OT protocol can therefore provide statistical se-
curity for either the sender or the receiver, depending on the chosen mode (we
are not aware of any other OT protocol having this property). This also makes
the security proof for the protocol quite modular and symmetric: computational
security for a party (e.g., against a bounded cheating receiver in decryption
mode) follows directly from statistical security in the other mode, and by the
indistinguishability of modes.3

The dual-mode abstraction has a number of nice properties. First, the defi-
nition is quite simple: for any candidate construction, we need only demonstrate
three simple properties (two of which are statistical). Second, the same CRS can
be used for an unbounded number of OT executions between the same sender
and receiver (we are not aware of any other OT protocol having this property).
Third, we can efficiently realize the abstraction under any one of several standard
assumptions, including the DDH assumption, the quadratic residuosity and de-
cisional composite residuosity assumptions, and worst-case lattice assumptions
(under a slight relaxation of the dual-mode definition).

Of course, the security of our protocol depends on a trusted setup of the
CRS. We believe that in context, this assumption is reasonable (or even quite
mild). First, it is known that OT in the plain UC model requires some type of
trusted setup [6]. Second, as we have already mentioned, a single CRS suffices
for any number of OT executions between the same sender and receiver. Third,
several of our instantiations require only a common uniformly random string,
which may be obtainable without relying on a trusted party via natural processes
(e.g., sunspots).

1.2 Concrete Constructions

To construct dual-mode systems from various assumptions, we build upon sev-
eral public-key cryptosystems that admit what we call messy public keys (short
for “message-lossy;” these are also called “meaningless” keys in a recent work of
Kol and Naor [24]). The defining property of a messy key is that a ciphertext

3 Groth, Ostrovsky, and Sahai [19] used a similar “parameter-switching” argument in
the context of non-interactive zero knowledge.



produced under it carries no information (statistically) about the encrypted
message. More precisely, the encryptions of any two messages m0,m1 under
a messy key are statistically close, over the randomness of the encryption al-
gorithm. Prior cryptosytems based on lattices [3, 31, 32], Cocks’ identity-based
cryptosystem [9], and the original OT protocols of [28, 1] all rely on messy keys
as a key conceptual tool in their security proofs.

Messy keys play a similarly important role in our dual-mode constructions.
As in prior OT protocols [28, 1, 22], our constructions guarantee that for any
base public key (the receiver’s message), at least one of the derived keys is
messy. A novel part of our constructions is in the use of a trapdoor for efficiently
identifying messy keys (this is where the use of a CRS seems essential).

For our DDH- and DCR-based constructions, we obtain a dual-mode cryp-
tosystem via relatively straightforward abstraction and modification of prior
protocols (see Section 5). For quadratic residuosity, our techniques are quite dif-
ferent from those of [10, 22]; specifically, we build on a modification of Cocks’
identity-based cryptosystem [9] (see Section 6). In both of these constructions,
we have a precise characterization of messy keys and a trapdoor algorithm for
identifying them.

Our lattice-based constructions are more subtle and technically involved.
Our starting point is a cryptosytem of Regev [32], along with some recent
“master trapdoor” techniques for lattices due to Gentry, Peikert, and Vaikun-
tanathan [15]. We do not have an exact characterization of messy keys for this
cryptosystem, nor an error-free algorithm for identifying them. However, [15]
presents a trapdoor algorithm that correctly identifies almost every public key
as messy. By careful counting and a quantifier-switching argument, we show that
for almost all choices of the CRS, every (potentially malformed) base public key
has at least one derived key that is both messy and is correctly identified as such
by the trapdoor algorithm.

As an additional contribution of independent interest, we give a multi-bit ver-
sion of Regev’s lattice-based cryptosystem [32] whose time and space efficiency
are smaller by a linear factor in the security parameter n. The resulting system is
very efficient (at least asymptotically): the amortized runtime per message bit is
only Õ(n) bit operations, and the ciphertext expansion is as small as a constant.
The public key size and underlying lattice assumption are essentially the same
as in [32]. Due to space constraints, we defer the exposition of our lattice-based
constructions to the full version.

Our DDH and DCR constructions transfer (multi-bit) strings, while the QR
and lattice constructions allow for essentially single-bit transfers. It is an inter-
esting open question whether string OT can be achieved under the latter as-
sumptions. Simple generalizations of our framework and constructions can also
yield 1-out-of-k OT protocols.

1.3 Related Work

Under assumptions related to bilinear pairings, Camenisch, Neven, and shelat [4]
and Green and Hohenberger [17] recently constructed fully-simulatable protocols



in the plain stand-alone model (and the UC model, in [18]) for k-out-of-n adaptive
selection OT, as introduced by Naor and Pinkas [27]. Adaptive selection can be
useful for applications such as oblivious database retrieval.

Jarecki and Shmatikov [21] constructed UC-secure committed string OT un-
der the decisional composite residuosity assumption, using a common reference
string; their protocol is four rounds (or two in the random oracle model). Garay,
MacKenzie, and Yang [14] constructed (enhanced) committed OT using a con-
stant number of rounds assuming both the DDH and strong RSA assumptions.
Damgard and Nielsen [12] constructed UC-secure OT against adaptive corrup-
tions, under a public key infrastructure setup and the assumption that threshold
homomorphic encryption exists.

There are other techniques for achieving efficiency in oblivious transfer proto-
cols that are complementary to ours; for example, Ishai et al. [20] showed how to
amortize k oblivious transfers (for some security parameter k) into many more,
without much additional computation in the random oracle model.

2 Preliminaries

We let N denote the natural numbers. For n ∈ N, [n] denotes the set {1, . . . , n}.
We let poly(n) denote an unspecified function f(n) = O(nc) for some constant
c. The security parameter will be denoted by n throughout the paper. We let
negl(n) denote some unspecified function f(n) such that f = o(n−c) for every
fixed constant c, saying that such a function is negligible (in n). We say that a
probability is overwhelming if it is 1− negl(n).

2.1 The Universal Composability Framework (UC)

We work in the standard universal composability framework of Canetti [5] with
static corruptions of parties. We use the definition of computational indistin-

guishability, denoted by
c
≈, from that work. The UC framework defines a proba-

bilistic poly-time (PPT) environment machine Z that oversees the execution of
a protocol in one of two worlds. The “ideal world” execution involves “dummy
parties” (some of whom may be corrupted by an ideal adversary S) interacting
with a functionality F . The “real world” execution involves PPT parties (some
of whom may be corrupted by a PPT real world adversary A) interacting only
with each other in some protocol π. We refer to [5] for a detailed description of
the executions, and a definition of the real world ensemble EXECπ,A,Z and the
ideal world ensemble IDEALF,S,Z . The notion of a protocol π securely emulating
a functionality F is as follows:

Definition 1. Let F be a functionality. A protocol π UC-realizes F if for any
adversary A, there exists a simulator S such that for all environments Z,

IDEALF,S,Z

c
≈ EXECπ,A,Z .



The common reference string functionality FD
CRS produces a string with a

fixed distribution that can be sampled by a PPT algorithm D.
Oblivious Transfer (OT) is a two-party functionality, involving a sender S

with input x0, x1 and a receiver R with an input σ ∈ {0, 1}. The receiver R
learns xσ (and nothing else), and the sender S learns nothing at all. These
requirements are captured by the specification of the OT functionality FOT

from [7], given in Figure 1.

Functionality FOT

FOT interacts with a sender S and a receiver R.

– Upon receiving a message (sid, sender, x0, x1) from S, where each xi ∈ {0, 1}ℓ,
store (x0, x1) (The lengths of the strings ℓ is fixed and known to all parties).

– Upon receiving a message (sid, receiver, σ) from R, check if a (sid, sender, . . .)
message was previously sent. If yes, send (sid, xσ) to R and (sid) to the adversary
S and halt. If not, send nothing to R (but continue running).

Fig. 1. The oblivious transfer functionality FOT [7].

Our OT protocols operate in the common reference string model, or, in the
terminology of [5], the FCRS-hybrid model. For efficiency, we would like to reuse
the same common reference string for distinct invocations of oblivious transfer
whenever possible. As described in [8], this can be achieved by designing a proto-
col for the multi-session extension F̂OT of the OT functionality FOT. Intuitively,
F̂OT acts as a “wrapper” around any number of independent executions of FOT,
and coordinates their interactions with the parties via subsessions (specified by
a parameter ssid) of a single session (specified by sid).

The UC theorem with joint state (JUC theorem) [8] says that any protocol π
operating in the FOT-hybrid model can be securely emulated in the real world
by appropriately composing π with a single execution of a protocol ρ implement-
ing F̂OT. This single instance of ρ might use fewer resources (such as common
reference strings) than several independent invocations of some other protocol
that only realizes FOT; in fact, the protocols ρ that we specify will do exactly
this.

3 Dual-Mode Encryption

Here we describe our new abstraction, called a dual-mode cryptosystem. It is
initialized in a trusted setup phase, which produces a common string crs known
to all parties along with some auxiliary “trapdoor” information t (which is only
used in the security proof). The string crs may be either uniformly random or
selected from a prescribed distribution, depending on the concrete instantiation.
The cryptosystem can be set up in one of two modes, called messy mode and
decryption mode. The first crucial security property of a dual-mode cryptosystem
is that no (efficient) adversary can distinguish, given the crs, between the modes.



Once the system has been set up, it operates much like a standard public-
key cryptosystem, but with an added notion that we call encryption branches.
The key generation algorithm takes as a parameter a chosen decryptable branch
σ ∈ {0, 1}, and the resulting secret key sk corresponds to branch σ of the public
key pk. When encrypting a message under pk, the encrypter similarly specifies
a branch b ∈ {0, 1} on which to encrypt the message. Essentially, messages
encrypted on branch b = σ can be decrypted using sk, while those on the other
branch cannot. Precisely what this latter condition means depends on the mode
of the system.

When the system is in messy mode, branch b 6= σ is what we call messy. That
is, encrypting on branch b loses all information about the encrypted message —
not only in the sense of semantic security, but even statistically. Moreover, the
trapdoor for crs makes it easy to find a messy branch of any given public key,
even a malformed one that could never have been produced by the key generator.

In decryption mode, the trapdoor circumvents the condition that only one
branch is decryptable. Specifically, it allows the generation of a public key pk
and corresponding secret keys sk0, sk1 that enable decryption on branches 0 and
1 (respectively). More precisely, for both values of σ ∈ {0, 1}, the distribution of
the key pair (pk, skσ) is statistically close to that of an honestly-generated key
pair with decryption branch σ.

We now proceed more formally. A dual-mode cryptosystem with message
space {0, 1}

ℓ
consists of a tuple of probabilistic algorithms having the following

interfaces:

– Setup(1n, µ), given security parameter n and mode µ ∈ {0, 1}, outputs
(crs, t). The crs is a common string for the remaining algorithms, and t is a
trapdoor value that enables either the FindMessy or TrapKeyGen algorithm,
depending on the selected mode.
For notational convenience, we define a separate messy mode setup algo-
rithm SetupMessy(·) := Setup(·, 0) and a decryption mode setup algorithm
SetupDec(·) := Setup(·, 1).
All the remaining algorithms take crs as their first input, but for notational
clarity, we usually omit it from their lists of arguments.

– KeyGen(σ), given a branch value σ ∈ {0, 1}, outputs (pk, sk) where pk is a
public encryption key and sk is a corresponding secret decryption key for
messages encrypted on branch σ.

– Enc(pk, b,m), given a public key pk, a branch value b ∈ {0, 1}, and a message

m ∈ {0, 1}
ℓ
, outputs a ciphertext c encrypted on branch b.

– Dec(sk, c), given a secret key sk and a ciphertext c, outputs a message m ∈

{0, 1}
ℓ
.

– FindMessy(t, pk), given a trapdoor t and some (possibly even malformed)
public key pk, outputs a branch value b ∈ {0, 1} corresponding to a messy
branch of pk.

– TrapKeyGen(t), given a trapdoor t, outputs (pk, sk0, sk1), where pk is a public
encryption key and sk0, sk1 are corresponding secret decryption keys for
branches 0 and 1, respectively.



Definition 2 (Dual-Mode Encryption). A dual-mode cryptosystem is a tu-
ple of algorithms described above that satisfy the following properties:

1. Completeness for decryptable branch: For every µ ∈ {0, 1}, (crs, t) ←

Setup(1n, µ), σ ∈ {0, 1}, (pk, sk)← KeyGen(σ), and m ∈ {0, 1}
ℓ
, decryption

is correct on branch σ: Dec(sk,Enc(pk, σ,m)) = m.
2. Indistinguishability of modes: the first outputs of SetupMessy and SetupDec

are computationally indistinguishable, i.e., SetupMessy1(1
n)

c
≈ SetupDec1(1

n).
3. (Messy mode) Trapdoor identification of a messy branch: For every

(crs, t)← SetupMessy(1n) and every (possibly malformed) pk, FindMessy(t, pk)
outputs a branch value b ∈ {0, 1} such that Enc(pk, b, ·) is messy. Namely,

for every m0,m1 ∈ {0, 1}
ℓ
, Enc(pk, b,m0)

s
≈ Enc(pk, b,m1).

4. (Decryption mode) Trapdoor generation of keys decryptable on
both branches: For every (crs, t) ← SetupDec(1n), TrapKeyGen(t) outputs

(pk, sk0, sk1) such that for every σ ∈ {0, 1}, (pk, skσ)
s
≈ KeyGen(σ).

It is straightforward to generalize these definitions to larger sets {0, 1}
k

of
branches, for k > 1 (in this generalization, FindMessy would return 2k−1 different
branches that are all messy). Such a dual-mode cryptosystem would yield a 1-
out-of-2k oblivious transfer in an analogous way. All of our constructions can
be suitably modified to satisfy the generalized definition; for simplicity, we will
concentrate on the branch set {0, 1} throughout the paper.

4 Oblivious Transfer Protocol

Here we construct a protocol dm that emulates the multi-session functionality
F̂OT functionality in the FCRS-hybrid model. The dm protocol, which uses any
dual-mode cryptosystem, is given in Figure 2.

The protocol can actually operate in either mode of the dual-mode cryp-
tosystem, which affects only the distribution of the CRS that is used. In messy
mode, the receiver’s security is computational and the sender’s security is sta-
tistical, i.e., security is guaranteed even against an unbounded cheating receiver.
In decryption mode, the security properties are reversed.

To implement the two modes, we define two different instantiations of FD
CRS

that produce common strings according to the appropriate setup algorithm:
F ext

CRS uses D = SetupMessy1, and Fdec

CRS uses D = SetupDec1.

Theorem 3. Let mode ∈ {ext, dec}. Protocol dmmode securely realizes the func-
tionality F̂OT in the Fmode

CRS
-hybrid model, under static corruptions.

For mode = ext, the sender’s security is statistical and the receiver’s security
is computational; for mode = dec, the security properties are reversed.

Proof. Given all the properties of a dual-mode cryptosystem, the proof is con-
ceptually quite straightforward. There is a direct correspondence between com-
pleteness and the case that neither party is corrupted, between messy mode



Protocol dmmode for Oblivious Transfer

The dmmode protocol is parameterized by mode ∈ {ext, dec} indicating the type of crs

to be used.

Sender Input: (sid, ssid, x0, x1), where x0, x1 ∈ {0, 1}ℓ.
Receiver Input: (sid, ssid, σ), where σ ∈ {0, 1}.
When activated with their inputs, the sender S queries Fmode

CRS with (sid,S,R) and
gets back (sid, crs). The receiver R then queries Fmode

CRS with (sid,S,R) and gets
(sid, crs).

R computes (pk, sk) ← KeyGen(crs, σ), sends (sid, ssid, pk) to S, and stores
(sid, ssid, sk).

S gets (sid, ssid, pk) from R, computes yb ← Enc(pk, b, xb) for each b ∈ {0, 1}, and
sends (sid, ssid, y0, y1) to R.

R gets (sid, ssid, y0, y1) from S and outputs (sid, ssid, Dec(sk, yσ)), where
(sid, ssid, sk) was stored above.

Fig. 2. The protocol for realizing F̂OT.

and statistical security for the sender, and between decryption mode and sta-
tistical security for the receiver. The indinstinguishability of modes establishes
computational security for the appropriate party in the protocol.

Let A be a static adversary that interacts with the parties S and R run-
ning the dmmode protocol. We construct an ideal world adversary (simulator) S
interacting with the ideal functionality F̂OT, such that no environment Z can
distinguish an interaction with A in the above protocol from an interaction with
S in the ideal world. Recall that S interacts with both the ideal functionality
F̂OT and the environment Z.
S starts by invoking a copy of A and running a simulated interaction of A

with Z and the players S and R. More specifically, S works as follows:

Simulating the communication with Z: Every input value that S receives from Z
is written into the adversary A’s input tape (as if coming from A’s environment).
Every output value written by A on its output tape is copied to S’s own output
tape (to be read by the environment Z).

Simulating the case when only the receiver R is corrupted: Regardless of the
mode of the protocol, S does the following. Run the messy mode setup algorithm,
letting (crs, t)← SetupMessy(1n). When the parties query the ideal functionality
Fmode

CRS , return (sid, crs) to them. (Note that when mode = ext, the crs thus
returned is identically distributed to the one returned by Fmode

CRS , whereas when
mode = dec, the simulated crs has a different distribution from the one returned
by Fmode

CRS in the protocol).
WhenA produces a protocol message (sid, ssid, pk), S lets b← FindMessy(crs, t, pk).

S then sends (sid, ssid, receiver, 1− b) to the ideal functionality F̂OT, receives the
output (sid, ssid, x1−b), and stores it along with the value b.

When the dummy S is activated for subsession (sid, ssid), S looks up the
corresponding b and x1−b, computes y1−b ← Enc(pk, 1 − b, x1−b) and yb ←



Enc(pk, b, 0ℓ) and sends the adversary A the message (sid, ssid, y0, y1) as if it
were from S.

Simulating the case when only the sender S is corrupted: Regardless of the mode
of the protocol, S does the following. Run the decryption mode setup algorithm,
letting (crs, t) ← SetupDec(1n). When the parties query the ideal functionality
Fmode

CRS , return (sid, crs) to them.
When the dummy R is activated on (sid, ssid), S computes (pk, sk0, sk1) ←

TrapKeyGen(crs, t), sends (sid, ssid, pk) toA as if from R, and stores (sid, ssid, pk, sk0, sk1).
When A replies with a message (sid, ssid, y0, y1), S looks up the corresponding
(pk, sk0, sk1), computes xb ← Dec(skb, yb) for each b ∈ {0, 1} and sends to F̂OT

the message (sid, ssid, sender, x0, x1).

Simulating the remaining cases: When both parties are corrupted, the simulator
S just runs A internally (who itself generates the messages from both S and R).

When neither party is corrupted, S internally runs the honest R on input
(sid, ssid, σ = 0) and honest S on input (sid, ssid, x0 = 0ℓ, x1 = 0ℓ), activating the
appropriate algorithm when the corresponding dummy party is activated in the
ideal execution, and delivering all messages between its internal R and S to A.

We complete the proof using the following claims, which are straightforward
to prove using the dual-mode properties (so we defer the proofs to the full ver-
sion):

1. (Statistical security for S in messy mode.) When A corrupts the receiver R,

IDEAL
F̂OT,S,Z

s
≈ EXECdmext,A,Z .

2. (Statistical security for R in decryption mode.) When A corrupts the sender
S,

IDEAL
F̂OT,S,Z

s
≈ EXECdmdec,A,Z .

3. (Parameter switching.) For any protocol πmode in the Fmode

CRS -hybrid model,
any adversary A and any environment Z,

EXECπext,A,Z

c
≈ EXECπdec,A,Z .

We now complete the proof as follows. Consider the protocol dmext. When A
corrupts R, by item 1 above we have statistical security for S (whether or not
S is corrupted). When A corrupts S, by items 2 and 3 above we have

IDEAL
F̂OT,S,Z

s
≈ EXECdmdec,A,Z

c
≈ EXECdmext,A,Z ,

which implies computational security for R.
It remains to show computational security when neither the sender nor the

receiver is corrupted. Let EXECdmext,A,Z(x0, x1, b) (resp, EXECdmdec,A,Z(x0, x1, b))

denote the output of an environment in the protocol dmext (resp, dmdec) that sets



the inputs of the sender S to be (x0, x1) and the input of the receiver R to be
the bit b. The following sequence of hybrids establishes what we want.

EXECdmext,A,Z(x0, x1, 1)
s
≈ EXECdmext,A,Z(0ℓ, x1, 1)

c
≈

EXECdmext,A,Z(0ℓ, x1, 0)
s
≈ EXECdmext,A,Z(0ℓ, 0ℓ, 0)

The first two and the last two experiments are statistically indistinguishable
because of the messy property of encryption, and the second and third experi-
ments are computationally indistinguishable because of the computational hiding
of the receiver’s selection bit. The first experiment corresponds to the real world
execution, whereas the last experiment is what the simulator runs. Furthermore,
by the completeness of the dual-mode cryptosystem, the first experiment is sta-
tistically indistinguishable from the ideal world exection with inputs (x0, x1, b).

The proof of security for protocol dmdec follows symmetrically, and we are
done. ⊓⊔

5 Realization from DDH

5.1 Background

Let G be a an algorithm that takes as input a security parameter 1n and outputs
a group description G = (G, p, g), where G is a cyclic group of prime order p
and g is a generator of G.

Our construction will make use of groups for which the DDH problem is
believed to be hard. The version of the DDH assumption we use is the following:
for random generators g, h ∈ G and for distinct but otherwise random a, b ∈ Zp,
the tuples (g, h, ga, ha) and (g, h, ga, hb) are computationally indistinguishable.4

This version of the DDH assumption is equivalent to another common form,

namely, that (g, ga, gb, gab)
c
≈ (g, ga, gb, gc) for independent a, b, c← Zp, because

ga is a generator and c 6= ab with overwhelming probability.

5.2 Cryptosystem Based on DDH

We start by presenting a cryptosystem based on the hardness of the Decisional
Diffie-Hellman problem, which slightly differs from the usual ElGamal cryptosys-
tem in a few ways. The cryptosystem depends on a randomization procedure that
we describe below. We note that the algorithm Randomize we describe below is
implicit in the OT protocol of Naor and Pinkas [28].

Lemma 4 (Randomization). Let G be an arbitrary multiplicative group of
prime order p. For each x ∈ Zp, define dlogG(x) = {(g, gx) : g ∈ G}. There is
a probabilistic algorithm Randomize that takes generators g, h ∈ G and elements
g′, h′ ∈ G, and outputs a pair (u, v) ∈ G2 such that:

4 To be completely formal, the respective ensembles of the two distributions, indexed
by the security parameter n, are indistinguishable.



– If (g, g′), (h, h′) ∈ dlogG(x) for some x, then (u, v) is uniformly random in
dlogG(x).

– If (g, g′) ∈ dlogG(x) and (h, h′) ∈ dlogG(y) for some x 6= y, then (u, v) is
uniformly random in G2.

Proof. Define Randomize(g, h, g′, h′) to do the following: Choose s, t← Zp inde-
pendently and let u = gsht and v = (g′)s(h′)t. Output (u, v).

Since g and h are generators of G, we can write h = gr for some nonzero
r ∈ Zp. First suppose (g, g′) and (h, h′) belong to dlogG(x) for some x. Now,
u = gsht = gs+rt is uniformly random in G, since g is a generator of G and s
is random in Zp. Furthermore, v = (g′)s(h′)t = (gsht)x = ux and thus, (u, v) ∈
dlogG(x).

Now suppose (g, g′) ∈ dlogG(x) and (h, h′) ∈ dlogG(y) for some x 6= y.
Then u = gsht = gs+rt and v = gxs+ryt. Because r(x − y) 6= 0 ∈ Zp, the
expressions s + rt and xs + ryt are linearly independent combinations of s and
t. Therefore, over the choice of s, t ∈ Zp, u and v are uniform and independent
in G.

We now describe the basic cryptosystem.

– DDHKeyGen(1n): Choose G = (G, p, g) ← G(1n). The message space of the
system is G.
Choose another generator h← G and exponent x← Zp. Let pk = (g, h, gx, hx)
and sk = x. Output (pk, sk).

– DDHEnc(pk,m): Parse pk as (g, h, g′, h′). Let (u, v)← Randomize(g, h, g′, h′).
Output the ciphertext (u, v ·m).

– DDHDec(sk, c): Parse c as (c0, c1). Output c1/csk
0 .

Now consider a public key pk of the form (g, h, gx, hy) for distinct x, y ∈
Zp (and where g, h are generators of G). It follows directly from Lemma 4
that DDHEnc(pk, ·) is messy. Namely, for every two messages m0,m1 ∈ Zp,

DDHEnc(pk,m0)
s
≈ DDHEnc(pk,m1).

5.3 Dual-Mode Cryptosystem

We now construct a dual-mode encryption scheme based on the hardness of
DDH.

– Both SetupMessy and SetupDec start by choosing G = (G, p, g)← G(1n).
SetupMessy(1n): Choose random generators g0, g1 ∈ G. Choose distinct nonzero
exponents x0, x1 ← Zp. Let hb = gxb

b for b ∈ {0, 1}. Let crs = (g0, h0, g1, h1)
and t = (x0, x1). Output (crs, t).
SetupDec(1n): Choose a random generator g0 ∈ G, a random nonzero y ∈ Zp,
and let g1 = gy

0 . Choose a random nonzero exponent x ∈ Zp. Let hb = gx
b

for b ∈ {0, 1}, let crs = (g0, h0, g1, h1) and t = y. Output (crs, t).
In the following, all algorithms are implicitly provided the crs and parse it
as (g0, h0, g1, h1).



– KeyGen(σ): Choose r ← Zp. Let g = gr
σ, h = hr

σ and pk = (g, h). Let sk = r.
Output (pk, sk).

– Enc(pk, b,m): Parse pk as (g, h). Let pkb = (gb, hb, g, h). Output DDHEnc(pkb,m)
as the encryption of m on branch b.

– Dec(sk, c): Output DDHDec(sk, c).

– FindMessy(t, pk): Parse the messy mode trapdoor t as (x0, x1) where x0 6=
x1. Parse the public key pk as (g, h). If h 6= gx0 , then output b = 0 as
a (candidate) messy branch. Otherwise, we have h = gx0 6= gx1 because
x0 6= x1, so output b = 1 as a (candidate) messy branch.

– TrapKeyGen(t): Parse the decryption mode trapdoor t as a nonzero y ∈ Zp.
Pick a random r ← Zp and compute pk = (gr

0, h
r
0) and output (pk, r, r/y).

We remark that SetupMessy actually produces a crs that is statistically close
to a common random (not reference) string, because it consists of four generators
that do not comprise a DDH tuple.

Theorem 5. The above scheme is a dual-mode cryptosystem, assuming that
DDH is hard for G.

Proof. Completeness follows by inspection from the correctness of the basic DDH
cryptosystem.

We now show indistinguishability of the two modes. In messy mode, crs =
(g0, h0 = gx0

0 , g1, h1 = gx1

1 ), where g0, g1 are random generators of G and x0, x1

are distinct and nonzero in Zp. Let a = logg0
g1, which is nonzero but otherwise

uniform in Zp. Then b = logh0
(h1) = a · x1/x0 is nonzero and distinct from

a, but otherwise uniform. Therefore crs is statistically close to a random DDH
non-tuple (g0, h0, g

a
0 , hb

0), where a, b ← Zp are distinct but otherwise uniform.
Now in decryption mode, crs = (g0, h0 = gx

0 , g1, h1 = gx
1 ), where x is nonzero

and random in Zp. Since logh0
(h1) = logg0

(g1) = y is nonzero and random in Zp,
crs is statistically close to a random DDH tuple. Under the DDH assumption,
the two modes are indistinguishable.

We now demonstrate identification of a messy branch. By inspection, FindMessy(t, pk)
computes a branch b for which (gb, hb, g, h) (the key used when encrypting under
pk on branch b) is not a DDH tuple. By Lemma 4, this b is therefore a messy
branch.

We conclude with trapdoor key generation. Let (crs, y)← SetupDec(1n). Note
that crs is a DDH tuple of the form (g0, h0 = gx

0 , g1 = gy
0 , h1 = gx

1 ), where x and
y are nonzero. TrapKeyGen(crs, y) outputs (pk, sk0, sk1) = ((gr

0, h
r
0), r, r/y). The

output of KeyGen(σ), on the other hand, is ((gr
σ, hr

σ), r). We will now show that
(pk, skσ) and KeyGen(σ) are identically distributed.

Indeed, (pk, sk0) = (gr
0, h

r
0, r) is identically distributed to KeyGen(0), by def-

inition of KeyGen. By a renaming of variables letting r = r′y, we have that

(pk, sk1) = (gr
0, h

r
0, r/y) is identical to (gr′y

0 , hr′y
0 , r′) = (gr′

1 , hr′

1 , r′), which is dis-
tributed identically to KeyGen(1), since r′ = r/y ∈ Zp is uniformly distributed.



Larger branch sets. We briefly outline how the dual-mode cryptosystem is mod-
ified for larger branch sets {0, 1}

k
. Essentially, the scheme involves k parallel

and independent copies of the one above, but all using the same group G. The
encryption algorithm Enc computes a k-wise secret sharing of the message, and
encrypts each share under the corresponding copy of the scheme. This ensures
that decryption succeeds only for the one specific branch selected to be decrypt-
able. The FindMessy algorithm includes a branch b ∈ {0, 1}

k
in its output list of

messy branches if any branch bi is messy for its corresponding scheme.

6 Realization from QR

6.1 Cryptosystem Based on QR

We start by describing a (non-identity-based) variant of Cocks’ cryptosystem [9],
which is based on the conjectured hardness of the quadratic residuosity problem.

For N ∈ N, let JN denote the set of all x ∈ Z∗
N with Jacobi symbol 1. Let

QRN ⊂ JN denote the set of all quadratic residues (squares) in Z∗
N . The message

space is {±1}. Let
(

t
N

)

denote the Jacobi symbol of t in Z∗
N .

– CKeyGen(1n): Choose two random n-bit safe primes5 p and q and let N = pq.
Choose r ← Z∗

N and let y ← r2. Let pk = (N, y), and sk = r. Output
(pk, sk).

– CEnc(pk,m): Parse pk as (N, y). Choose s← Z∗
N at random such that

(

s
N

)

=
m, and output c = s + y/s.

– CDec(sk, c): Output the Jacobi symbol of c + 2 · sk.

The following lemma is implicit in the security proof from [9].

Lemma 6 (Messy Characterization). Let N be a product of two random
n-bit safe primes p and q, let y ∈ Z∗

N and let pk = (N, y). If y 6∈ QRN , then

CEnc(pk, ·) is messy. Namely, CEnc(pk,+1)
s
≈ CEnc(pk,−1).

Proof. Consider the equation c = s + y/s mod N in terms of s (for fixed c and
y), and say s = s0 is one of the solutions. Then we have c = s0 + y/s0 mod p
and c = s0 + y/s0 mod q. The other solutions are s1, s2, and s3, where

s1 = s0 mod p s2 = y/s0 mod p s3 = y/s0 mod p

s1 = y/s0 mod q s2 = s0 mod q s3 = y/s0 mod q.

If y 6∈ QRN , then at least one of α1 =
(

y
p

)

or α2 =
(

y
q

)

is −1. Then
(

s1

N

)

=

α2

(

s0

N

)

,
(

s2

N

)

= α1

(

s0

N

)

and
(

s3

N

)

= α1α2

(

s0

N

)

. Thus, two of
(

si

N

)

are +1 and the

other two are −1. It follows that c hides
(

s
N

)

perfectly.

5 Safe primes are primes p such that p−1

2
is also prime.



6.2 Dual-Mode Cryptosystem

We now describe a dual-mode cryptosystem that is based on the above cryp-
tosystem.

– SetupMessy(1n): Choose two random n-bit safe primes p and q and let N =
pq. Choose y ← JN \QRN . Let crs = (N, y), and t = (p, q). Output (crs, t).
SetupDec(1n): Let N = pq for random n-bit safe primes as above. Choose
s← Z∗

N , and let y = s2 mod N . Let crs = (N, y), amd t = s. Output (crs, t).
In the following, all algorithms are implicitly provided the crs and parse it
as (N, y), and all operations are performed in Z∗

N .
– KeyGen(σ): Choose r ← Z∗

N , and let pk = r2/yσ. Let sk = r. Output
(pk, sk).

– Enc(pk, b,m): Let pkb = (N, pk · yb). Output CEnc(pkb,m).
– Dec(sk, c): Output CDec(sk, c).
– FindMessy(t, pk): Parse the trapdoor t as (p, q) where N = pq. If pk ∈ QRN

(this can be checked efficiently using p and q), then output b = 1 as the
(candidate) messy branch; otherwise, output b = 0.

– TrapKeyGen(t): Choose a random r ← Z∗
N and let pk = r2 and skb = r · tb

for each b ∈ {0, 1}. Output (pk, sk0, sk1).

Theorem 7. The above scheme is a dual-mode cryptosystem, assuming the
hardness of the quadratic residuosity problem.

Proof. We first show completeness. Say (pk, sk)← KeyGen(σ). Thus, pk = r2y−σ

for some r. Enc(pk, σ,m) runs CEnc(pk · yσ,m) = CEnc(r2,m). Thus, the pub-
lic key used in the Cocks encryption algorithm is a quadratic residue. By the
completeness of the Cocks cryptosystem, the decryption algorithm recovers m.

We now show indistinguishability of the two modes. In messy mode, crs =
(N, y), where y is a uniform element in JN \ QRN . In decryption mode, crs =
(N, y), where y is a uniform element in QRN . By the QR assumption, these are
indistinguishable.

We now demonstrate identification of a messy branch. Let pk be the (possibly
malformed) public key. Since y 6∈ QRN , either pk or pk · y is not a quadratic
residue. Lemma 6 implies that one of the branches of pk is messy; it can be
found using the factorization t = (p, q) of N .

We conclude with trapdoor key generation. Let y = t2. TrapKeyGen(crs, t)
outputs (r2, r, r · t). The output of KeyGen(σ), on the other hand, is (r2y−σ, r).
Now, (pk, sk0) = (r2, r) is distributed identically to KeyGen(0), by definition
of KeyGen. By a renaming of variables letting r = r′/t, we have (pk, sk1) =
((r′)2/t2, r′) = ((r′)2/y, r′), which is distributed identically to KeyGen(1), since
r′ = r/t ∈ Z∗

N is uniformly distributed.

For larger branch sets {0, 1}
k
, the scheme is modified in a manner similar to

the one from Section 5, where all k parallel copies of the scheme use the same
modulus N .



7 Acknowledgments

We thank Susan Hohenberger, Yuval Ishai, Oded Regev, and the anonymous
reviewers for helpful comments on earlier drafts of this paper.

References

1. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How
to sell digital goods. In EUROCRYPT, pages 119–135, 2001.

2. Miklós Ajtai. Generating hard instances of lattice problems. Quaderni di Matem-

atica, 13:1–32, 2004. Preliminary version in STOC 1996.
3. Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-

case/average-case equivalence. In STOC, pages 284–293, 1997.
4. Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivious

transfer. In EUROCRYPT, pages 573–590, 2007.
5. Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In FOCS, pages 136–145, 2001.
6. Ran Canetti and Marc Fischlin. Universally composable commitments. In

CRYPTO, pages 19–40, 2001.
7. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-

posable two-party and multi-party secure computation. In STOC, pages 494–503,
2002.

8. Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO,
pages 265–281, 2003.

9. Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In IMA Int. Conf., pages 360–363, 2001.

10. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In EUROCRYPT, pages
45–64, 2002.
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