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Abstract. We compare the method of Weil descent for solving the
ECDLP, over extensions fields of composite degree in characteristic two,
against the standard method of parallelised Pollard rho. We give details
of a theoretical and practical comparison and then use this to analyse
the difficulty of actually solving the ECDLP for curves of the size needed
in practical cryptographic systems. We show that composite degree ex-
tensions of degree divisible by four should be avoided. We also examine
the elliptic curves proposed in the Oakley key determination protocol
and show that with current technology they remain secure.

1 Introduction

Ever since its invention, in 1986 by Koblitz [9] and Miller [12], elliptic curve cryp-
tography (ECC) has attracted considerable interest since it enables improved
security, in the sense of greater perceived strength per bit of key, compared to
conventional systems such as RSA, with the added benefit of smaller key sizes,
less bandwidth and less computing power, see [4] for a complete treatment of
ECC. Various standards bodies, both government sponsored and industry led
(for example NIST [2] and SECG [3]), have standardised on elliptic curves de-
fined over fields of the form F2p and Fp, where p denotes a prime.
Despite this standardisation effort various people still propose using curves

defined over so called composite extension fields, i.e. fields of the form Fqn where
q is some non-trivial power of the characteristic and n > 1. Composite exten-
sion fields are chosen because they provide greater computational efficiency for
what at first glance appears to be the same security. The improved efficiency
is particularly pronounced in characteristic two, where one chooses q = 2l and
n = 4 or 5, in these later cases the use of look up tables to represent the subfield
of degree 4 or 5 over F2 can significantly improve the efficiency of the resulting
cryptographic scheme.
However, recent work of Frey, Galbraith, Gaudry, Hess and Smart, see [5], [6]

and [8], has cast doubt on the claim that composite extension fields offer about
the same security as those fields defined in the standards. This recent work is
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based on the technique of Weil descent. Even though the work on Weil descent
is now well known in the community there still appears to be a reluctance to
drop composite extension fields in certain quarters.
In this paper we investigate in detail the security of such systems and try

to quantify by how much the techniques based on Weil restriction weaken the
cryptographic system. We shall concentrate solely on the case of characteristic
two, which is important in applications. In section 2 we shall review the method
of Weil restriction from [8]. In section 3 we examine in more detail Gaudry’s
method and explain a very efficient implementation of it. In section 4 we compare
Gaudry’s method for the hyperelliptic curves arising from Weil restriction to the
method of Pollard rho on the original elliptic curve. In section 5 we discuss the
curve over F2155 proposed in the Oakley key determination protocol. Finally we
give some conclusions.

2 The Method of Weil Restriction

Let k = Fq denote a finite field of characteristic two and let K = Fqn denote an
extension of degree n ≥ 4. Suppose we are given an elliptic curve, defined over
K,

E : Y 2 +XY = X3 + αX2 + β

which is suitable for use in cryptography, i.e. E(K) contains a large cyclic sub-
group of prime order s ≈ qn/2. In particular this means that E must be defined
over K and not over some proper subfield, since otherwise the order of E(K)
would not be almost prime, unless n were prime and q = 2. The elliptic curve
discrete logarithm problem (ECDLP) for such curves is the following: Given
P,Q ∈ E(K) such that

[s]P = [s]Q = O

find λ ∈ (Z/sZ)∗ such that
Q = [λ]P.

Now let H denote a (imaginary quadratic) hyperelliptic curve of genus g,
defined over k,

H : Y 2 + h(X)Y = f(X)

where deg h(X) ≤ g and deg f(X) = 2g + 1. The Jacobian of H has about
qg elements and one can also consider a hyperelliptic curve discrete logarithm
problem (HCDLP) for such curves. We let the degree-zero divisor D1 generate
some large cyclic subgroup of Jack(H) and let D2 ∈ 〈D1〉. The HCDLP is to
find the integer λ such that

D2 = [λ]D1.

Further details on the hyperelliptic group law and the HCDLP can be found in
[10] and [4].
The main result from [8] is the following: From an ECDLP in E(K), i.e.

P2 = [λ]P1 with λ ∈ (Z/sZ)∗, one can construct a hyperelliptic curve H of
genus g over k and two divisors D1 and D2 of order s in Jack(H) such that
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– g = 2m−1 or 2m−1 − 1 where 1 ≤ m ≤ n.

– D2 = [λ]D1.

We note that the construction of [8] is very fast and that the genus g is almost
always equal to 2n−1 for curves of cryptographic interest. There is a small prob-
ability that the construction does not actually work in practice, but for real life
examples this can usually be ignored.

Why this result is interesting is that it maps the discrete logarithm problem
from a group E(K) where the only known solution has exponential complexity
in the size of qn, to a group Jack(H) where the best known solution has sub-
exponential complexity, albeit in the size of

qg = q2n−1

.

However, for fixed genus there is an algorithm due to Gaudry which solves the
HCDLP in time O(q2+ε), which is much better than the algorithm for the equiv-
alent ECDLP which takes time O(qn/2(log q)2). In [8] it is argued that for small
fixed n, and hence essentially fixed g, this provides evidence for the weakness of
the ECDLP on curves defined over composite extension fields, at least asymp-
totically. However, the asymptotic complexity hides a very bad dependence on
g, and hence such a conclusion may not be able to be substantiated on curves
over field sizes of cryptographic interest. In [8] a single experiment was reported
on, involving an elliptic curve over a field of the form Fq4 which gave rise to a
hyperelliptic curve of genus four. This experiment was conducted for an elliptic
curve which is not typical of elliptic curves over fields of the form Fq4 . Curves
defined over Fq4 would usually give rise to a hyperelliptic curve of genus eight.
It is this latter problem that we aim to address here.

3 Analysing and Implementing Gaudry’s Method

We refer to [7] for a detailed explanation of Gaudry’s method for the HCDLP.
Essentially one takes a factor base of all the degree one prime divisors on H up
to the equivalence

D1 ≡ D2 if D1 = −D2.

This gives approximately q/2 such divisors, but one selects by some appropriate
means (see [8]) a proportion, say 1/l, of them. Hence, the total factorbase size
is roughly

F = q/(2l).

Then one collects relations amongst the factor base elements by performing a
random walk. Once F + 1 relations have been found one can solve the HCDLP
by using a linear algebra technique for finding elements of the kernel of a large
sparse matrix over Fs, such as Lanczos [17].

We define the following estimates of the bit-complexity of certain algorithms:
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– cq = Maximum cost of an arithmetic operation in Fq. For fields of crypto-
graphic interest this is given by

cq = (log q)
2

– cq,g = Maximum cost of an arithmetic operation on a polynomial of degree g
over Fq. For fields of cryptographic interest and polynomials of degree g ≤ 32
the actual methods used have cost, using a Karatsuba style multiplication,

cq,g = g1.59cq.

– cJ = Cost of a doubling/addition in the Jacobian of H. By work of [15] this
is given by

cJ = 22cq,g.

– cs = Maximum cost of operation in Z/sZ, for values of s of cryptographic
interest namely s ≈ qn we have

cs = (n log q)
2.

Arguing as in [7] one can see that Gaudry’s algorithm then takes around

Flgg!cJ

bit operations to compute the matrix and then

F 2csg

bit operations to actually compute an element in the kernel. Here we have as-
sumed, as is born out by experiment, that the operations in the Jacobian dom-
inate the time needed to compute the matrix.
The idea of the parameter l is to balance the time for finding the matrix with

the time for solving the matrix. Assuming we have X times more computing
power available to perform the relation finding, this gives the equation

2lg+1g!cJ = csgq/X.

In theory one should choose X = 1 but in practice a given organisation probably
has more spare idle time available on desk top computers than on a single big
server like that needed to run the matrix step. When X = 1 this means we
should choose our proportion of good divisors as

l ≈

(

n2q

44g!g0.59

)1/(g+1)

= `.

But since we must have l ≥ 1, we shall choose l ≈ min(1, `). In particular this
means that the overall complexity of the attack on the ECDLP based on Weil
descent, is given by

C =
(qn ln(q))

2
g

4

(

n2qg−0.59

44g!

)(−2/(g+1))

= (qn ln(q))
2
2n−3

(

n2q
(

2n−1
)−0.59

(44 · 2n−1)!

)(−2/(2n−1+1))

,
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since g ≤ 2n−1. Therefore, for fixed n we obtain a complexity of

O(q2−ε(log q)2),

where ε = 2/(2n−1 + 1). For the purposes of extrapolating run times later we
shall take this as O(q2(log q)2). We implemented Gaudry’s algorithm with the
following optimisations

– The field arithmetic in Fq was implemented using very fast hand coded loops
for the particular finite fields we where interested in, namely q = 2i with
i ≤ 31. This on its own provided nearly a 200% improvement in performance.

– The polynomial code was also optimised heavily for the case where the poly-
nomials have degree less than twenty, using Karatsuba type techniques.

– The linear algebra step was run using the code used in the McCurley chal-
lenge [18]. We thank T. Denny and D. Weber for allowing us to use this
code. This was run on a machine with 6 processors and 8GB of RAM run-
ning HP-UX.

4 Comparison with Pollard Rho

To have something concrete to compare the method of Weil descent to we im-
plemented the parallel version of Pollard’s rho method [16] for the ECDLP. We
used the method of distinguished points due to Wiener and van Oorschot [13]
which has been used in recent years to solve various challenge ECDLP examples
set by Certicom.
Since we are using elliptic curves defined over fields of the form Fqn where

n = 4 or 5 we implemented very efficient techniques for these fields, using lookup
tables for the subfields of degree 4 or 5 over F2. In table 1 we give the time needed
to solve an elliptic curve discrete logarithm problem on various elliptic curves
over Fq4 . This was for an implementation on a network of 80 Sun Sparc-5 and
Sparc-10s, for comparison we also give the time to run the program on a single
Sparc-10.

Table 1. Pollard rho for E(Fq4)

q 27 211 213 217 219 221

80 Sparcs 00:00 00:00 00:06 38:32 ≈11d ≈621d
Single Sparc 00:00 00:11 04:50 ≈38d ≈3y ≈71y

Times are given either in the format hrs:mins rounded to the nearest minute,
or in the format xd or xy to denote a certain number of days or years. A ≈ in
the table denotes an approximate run time deduced from running the program
for a reasonable length of time and then calculating the expected run time from
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this empirical data. One should note that since the rho method is heuristic in
nature the running times represent an average for the small values of q.

In tables 2 and 3 we give the run times for Gaudry’s algorithm using the
same set of 80 Sun Sparc-5 and Sparc-10s to compute the matrix, we also give
the estimate of the time needed for a single Sparc-10 to compute the matrix.
We also give the time needed for the matrix step using a HP-UX machine which
had 8 GBytes of RAM. These times should be compared to the time needed to
solve the equivalent problem on the elliptic curve using Pollard rho.

Table 2. Numerical data for n = 4 and g = 4

q 27 211 213 217 219 221

min(1, `) 1 1.6 2.2 3.8 5.1 6.78
l used 1 2 2 4 4 8

F = #FB 65 513 2049 16428 65537 131283

Time for relation step
80 Sparcs 00:00 00:00 00:01 00:55 05:15 68:00
Single Sparc 00:00 00:02 00:10 16:50 70:00 ≈115d

Time for matrix step 00:00 00:00 00:01 00:06 02:10 13:00

Table 3. Numerical data for n = 4 and g = 8

q 27 211 213 217 219

min(1, `) 1 1 1 1 1.03
l used 1 1 1 1 1
#F 64 1024 4096 65536 262144

Time for relation step
80 Sparcs 00:05 01:20 05:45 43:45 ≈8d
Single Sparc 01:30 19:20 95:10 ≈62d ≈250d

Time for matrix step 00:00 00:00 00:02 31:00 ≈20d

We first examine the case of n = 4 and g = 4, this case occurs for around
1/q of all elliptic curves defined over the field Fq4 . As can be seen from the table
the method of Weil descent provides a far more efficient way of attacking such
elliptic curves than the standard method of Pollard rho for all values of q.

For the case n = 4 and g = 8, which is the most common case for elliptic
curve systems over fields of the form Fq4 , we see that the cross over point be-
tween Pollard rho and the method of Weil descent occurs at a value of q just
over 217. This, therefore, provides the missing evidence from [8] that all curves
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over fields of composite extension degree divisible by four should be avoided in
cryptographic applications.
Hence, we now have a complete experimental treatment of the case n = 4 in

the method of Weil descent. The next case to consider is n = 5, which in fact
turns out to be the most interesting in practical applications. In the next section
we turn to this case.

5 The Oakley ‘Well-Known Groups’ 3 and 4

In [1] two elliptic curve groups are proposed for use in a key agreement protocol
used as part of the IPSEC set of protocols. These groups, denoted ‘Well-Known
Group’ 3 and ‘Well-Known Group’ 4, are defined as elliptic curves over fields of
composite degree over F2. The first group is defined over the field F2155 , whilst
the second is defined over the field F2185 . Since the extension degree of these
fields over F2 are composite it is an open question as to whether these curves
should still be used within the IPSEC family of protocols. In this section we
shall concentrate solely on group 3.
Group 3 is defined by the equation

Y 2 +XY = X3 + β

where

β = ω18 + ω17 + ω16 + ω13 + ω12 + ω9 + ω8 + ω7 + ω3 + ω2 + ω + 1,

where ω155 + ω62 + 1 = 0. This has group order

E(F2155) = 12 · 3805993847215893016155463826195386266397436443.

We carried out a number of experiments on elliptic curves over fields of the
form Fq5 . For the Pollard rho method, using the various optimisations available
in such fields, we obtained the times in Table 4. Extrapolating our experimental

Table 4. Pollard rho for E(Fq5)

q 27 211 213 217 219

80 Sparcs 00:00 00:06 06:30 ≈376d ≈41y
Single Sparc 00:00 02:05 ≈20d ≈58y ≈4000y

results on the Pollard rho algorithm to ‘Well Known Group’ 3 it would appear
that we would require

1011 years
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to solve the discrete logarithm problem using our network of 80 Sparc 5 and
Sparc 10 computers, or

1013 years

using a single Sparc-10. Hence, it is clearly currently infeasible to attack this
curve using the Pollard rho algorithm.
We now turn out attention to whether it is feasible to attack ‘Well Known

Group’ 3 using techniques based on Weil descent. Applying the method of [8] to
this curve we obtain the hyperelliptic curve

H : y2 +y

(

1258097243x16 + 1177011841x8 + 540379308x4

+1555798523x2 + 613019365x

)

+558654746x33 + 1390366357x32 + 577010024x28

+1211700991x26 + 2017104043x25 + 1674361774x24

+993950732x22 + 1777282797x21 + 1982857394x20

+144558341x19 + 693983331x18 + 1937134056x16

+1947274294x8 + 31687647x4 + 1217310851x2 + 493932675x

defined over the field F231 , where w31+w3+1 = 0 and the curve H has genus 16.
In the above equation to convert the decimal coefficients to field elements one
should first convert the decimal to binary and then use the binary representation
to define the polynomial in w which gives the corresponding field element. For
example

1258097243 ≡ w30 + w27 + w25 + w23 + w22 + w21 + w20 + w19

+w18 + w16 + w11 + w9 + w6 + w4 + w3 + w + 1

In our experiments using curves of genus 16 we found that it would take over
three years for the network of 80 workstations to compute a single relation for a
curve over a field of size 27. Hence, it makes very little sense to extrapolate from
actual run times for Gaudry’s algorithm. However, we can give a rough estimate
as to how long it would take to perform the two steps for the curve over F2155

considered above.
Firstly we note that for such a curve we would take l = 1 and hence the

factor base would have size,
F ≈ 230.

This on its own would imply that the matrix step would require around

107 years

to process using the code used to produce the examples in the last section. To
produce the matrix we estimate would take the network of 80 Sparcs over

1010 years.

Hence, although the method of Weil descent would appear to produce a more
efficient way to attack systems based on ‘Well Known Group 3’, it would appear
that such curves are secure. However, this assumes there is no further algorithmic
improvements in either the method of Weil descent or the method of Gaudry for
solving HCDLP.
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6 Conclusion

The ‘Well Known Groups’ 3 and 4 in IPSEC may still be considered secure,
however, they are made less secure by the method of Weil descent. This does
not pose an immediate threat, but future algorithmic improvements could render
them insecure. It should be noted that since both Weil descent and Gaudry’s
algorithm are comparatively recent advances one cannot rule out further algo-
rithmic improvements in the coming years.
For large genus the method of Gaudry will only be asymptotically better

than Pollard rho, as q →∞, this is due to the bad dependence of the complexity
estimate on g. For values of g where g is significantly larger than n the current
techniques of Weil descent produce a major problem, namely the ECDLP is in a
group of order qn, whilst using Weil descent we have mapped it into a subgroup
(of order qn) of a group of order

qg = q2n−1

.

Hence, we seem to have made our problem more difficult. It may be that the best
algorithm for the HCDLP in this setting may be the ones which have asymptotic
complexity

O (Lqg (1/2, c)) = O
(

exp((c+ o(1))
√

(log qg)(log log qg))
)

as q is fixed and g → ∞. However, there has been little work on practical
implementations of these methods, the only one in the literature being described
in [14]. The algorithm in [14] does not appear practical for the curve which arose
above when we considered the Oakley group.
We end by stating that for curves over characteristic two fields of size 2p,

where p is prime, the method of Weil descent does not apply. In [8] it was
proved that for over fifty percent of all cryptographically interesting curves over
F2p the method of Weil descent would not apply. Recently, Menezes and Qu
[11] showed that the method did not apply to any cryptographically interesting
curves over F2p .
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