
Multiparty Computation from Threshold

Homomorphic Encryption

Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen

BRICS? Department of Computer Science
University of Aarhus
Ny Munkegade

DK-8000 Arhus C, Denmark
{cramer,ivan,buus}@brics.dk

Abstract. We introduce a new approach to multiparty computation
(MPC) basing it on homomorphic threshold crypto-systems. We show
that given keys for any sufficiently efficient system of this type, general
MPC protocols for n parties can be devised which are secure against
an active adversary that corrupts any minority of the parties. The total
number of bits broadcast is O(nk|C|), where k is the security parameter
and |C| is the size of a (Boolean) circuit computing the function to be
securely evaluated. An earlier proposal by Franklin and Haber with the
same complexity was only secure for passive adversaries, while all earlier
protocols with active security had complexity at least quadratic in n.
We give two examples of threshold cryptosystems that can support our
construction and lead to the claimed complexities.

1 Introduction

The problem of multiparty computation (MPC) dates back to the papers by
Yao [Yao82] and Goldreich et al. [GMW87]. What was proved there was basi-
cally that a collection of n parties can efficiently compute the value of an n-input
function, such that everyone learns the correct result, but no other new informa-
tion. More precisely, these protocols can be proved secure against a polynomial
time bounded adversary who can corrupt a set of less than n/2 parties initially,
and then make them behave as he likes, we say that the adversary is active.
Even so, the adversary should not be able to prevent the correct result from
being computed and should learn nothing more than the result and the inputs
of corrupted parties. Because the set of corrupted parties is fixed from the start,
such an adversary is called static or non-adaptive.

There are several proposals on how to define formally the security of such
protocols [MR91,Bea91,Can00], but common to them all is the idea that security
means that the adversary’s view can be simulated efficiently by a machine that
has access to only those data that the adversary is entitled to know.

? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

280 Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen

Proving correctness of a simulation in the case of [GMW87] requires a com-
plexity assumption, such as existence of trapdoor one-way permutations. This is
because the model of communication considered there is such that the adversary
may see every message sent between parties, this is known as the cryptographic
model. Later, unconditionally secure MPC protocols were proposed by Ben-Or
et al. and Chaum et al.[BGW88,CCD88], in the model where private channels
are assumed between every pair of parties. In this paper, however, we are only
interested in the cryptographic model with an active and static adversary.

Over the years, several protocols have been proposed which, under specific
computational assumptions, improve the efficiency of general MPC, see for in-
stance [CDM00,GRR98]. Virtually all proposals have been based on some form
of verifiable secret sharing (VSS), i.e., a protocol allowing a dealer to securely
distribute a secret value s among the parties, where the dealer and/or some of
the parties may be cheating. The basic paradigm is to ensure that all inputs and
intermediate values in the computation are VSS’ed; this prevents the adversary
from causing the protocol to terminate early or with incorrect results. In all these
earlier protocols, the number of bits sent was Ω(n2k|C|), where n is the number
of parties, k is a security parameter, and |C| is the size of a circuit computing
the function. Here, C may be a Boolean circuit, or an arithmetic circuit over a
finite field, depending on the protocol.

In [FH96] Franklin and Haber propose a protocol for passive adversaries
which achieves complexity O(nk|C|). This protocol is not based on VSS (there is
no need since the adversary is passive) but instead on a so called joint encryption
scheme, where a ciphertext can only be decrypted with the help of all parties,
but still the length of an encryption is independent of the number of parties.

2 Our Results

In this paper, we present a new approach to building multiparty computation
protocols with active security, namely we start from any secure threshold en-
cryption scheme with certain extra homomorphic properties. This allows us to
avoid the need to VSS all values handled in the computation, and therefore leads
to more efficient protocols, as detailed below.

The MPC protocols we construct here can be proved secure against an active
and static adversary who corrupts any minority of the parties. Like the protocol
of [FH96], our construction requires an initial phase where keys for the threshold
cryptosystem are set up. This can be done by a trusted party, or by any suitable
MPC. In particular, the techniques of Damg̊ard and Koprowski [DK01] could be
used to make this phase reasonably efficient for the example cryptosystems we
present here (see below). We stress that unlike some earlier proposals for prepro-
cessing in MPC, the complexity of this phase does not depend on the number or
the size of computations to be done later. In the following we therefore focus on
the complexity of the actual computation. In our protocol the computation can
be done only by broadcasting a number of messages, no encryption is needed
to set up private channels. The complexities we state are therefore simply the

Multiparty Computation from Threshold Homomorphic Encryption 281

number of bits broadcast. This does not invalidate comparison with earlier pro-
tocols because first, the same measure was used in [FH96] and second, the earlier
protocols with active security have complexity quadratic in n even if one only
counts the bits broadcast. Our protocol has complexity O(nk|C|) bits and re-
quires O(d) rounds, where d is the depth of C. To the best of our knowledge, this
is the most efficient general MPC protocol proposed to date for active adver-
saries. Note that all complexities stated here and in the previous section are for
computing deterministic functions. Probabilistic functions can be handled using
standard techniques, see Section 8.1 for details.

Here, C is an arithmetic circuit over a ring R determined by the crypto-
system used, e.g., R = ZN for an RSA modulus N , or R = GF (2k). While such
circuits can simulate any Boolean circuit with a small constant factor overhead,
this also opens the possibility of building an ad-hoc circuit over R for the desired
function, possibly exploiting the fact that with a large R, we can manipulate
many bits in one arithmetic operation.

The complexities given here assume existence of sufficiently efficient thresh-
old cryptosystems. We give two examples of such systems with the right prop-
erties. One is based on Paillier’s cryptosystem [Pai99] and Damg̊ard and Jurik’s
generalisation thereof[DJ01], the other one is a variant of Franklin and Haber’s
cryptosystem [FH96], which is secure assuming that both the QR assumption
and the DDH assumption are true (this is essentially the same assumption as
the one made in [FH96]). While the first example is known (from [DJ01,FPS00]),
the second is new and may be of independent interest.

Franklin and Haber in [FH96] left as an open problem to study the communi-
cation requirements for active adversaries. We can now say that under the same
assumption as theirs, active security comes essentially for free.

2.1 Concurrent Related Work

In concurrent independent work, Jacobson and Juels[MJ00] present an idea for
MPC somewhat related to ours, the mix-and-match approach. It too is based on
threshold encryption (with extra algebraic properties, similar to, but different
from the ones we use). Beyond this, the techniques are completely different. For
Boolean circuits and in the random oracle model, they get the same message
complexity as we obtain (without using random oracles). The round complexity
is larger than ours (namely O(n+d)). Another difference is that mix-and-match
is inherently limited to circuits where gates can be specified by constant size
truth-tables, thus excluding arithmetic circuits over large rings. On the other
hand, while mix-and-match can be based on the DDH assumption alone, it is
not known if this is possible for our notion of threshold homomorphic encryption.

In [MH00], Hirt, Maurer and Przydatek show an MPC protocol designed for
the private channels model. It can be transformed to our setting by implementing
the channels using secure public-key encryption. This results in protocol that can
be based on any secure public-key encryption scheme, with essentially the same
communication complexity as ours, but with lower resilience, i.e. tolerating only
less than n/3 active cheaters.

282 Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen

3 An Informal Description

In this section, we give an informal introduction to some main ideas. All the
concepts introduced here will be treated more formally later in the paper. We
will assume that from the start, the following scenario has been established:
we have a semantically secure threshold public-key system given, i.e., there is
a public encryption key pk known by all parties, while the matching private
decryption key has been shared among the parties, such that each party holds a
share of it.

The message space of the cryptosystem is assumed to be a ring R. In practice
R might be ZN for some RSA modulus N . For a plaintext a ∈ R, we let a
denote an encryption of a. We then require certain homomorphic properties:
from encryptions a, b, anyone can easily compute an encryption of a+ b, which
we denote a¢b. We also require that from an encryption a and a constant α ∈ R,
it is easy to compute a random encryption of αa.

Finally we assume that three secure and efficient protocols are available:

Proving you know a plaintext If Pi has created an encryption a, he can give
a zero-knowledge proof of knowledge that he knows a.

Proving multiplications correct Assume that Pi is given an encryption a,
chooses a constant α, computes a random encryption αa and broadcasts
α, αa. He can then give a zero-knowledge proof that indeed αa contains the
product of the values contained in α and a.

Threshold decryption For the third protocol, we have common input pk and
an encryption a, in addition every party also uses his share of the private
key as input. The protocol computes securely a as output for everyone.

We can then sketch how to perform securely a computation specified as a
circuit doing additions and multiplications in R.

The MPC protocol would simply start by having each party publish encryp-
tions of his input values and give zero-knowledge proofs that he knows these
values and also, if we are simulating a Boolean circuit, that the values are 0 or
1. Then any operation involving addition or multiplication by constants can be
performed with no interaction. This leaves only the following problem: Given en-
cryptions a, b (where it may be the case that no parties knows a nor b), compute
securely an encryption of c = ab. This can be done by (a slightly more elaborate
version of) the following protocol:

1. The parties generate an additive secret sharing of a:

(a) Each party Pi chooses at random a value di ∈ R, broadcasts an encryp-
tion di, and proves he knows di. Let d denote

∑n
i=1 di.

(b) The parties use the third protocol to decrypt a¢ d1 ¢ ...¢ dn.
(c) Party P1 sets a1 = (a + d) − d1, all other parties Pi set ai = −di. Note

that a =
∑n

i=1 ai.

2. Each Pi broadcasts an encryption aib, and invoke the second protocol with
inputs b, ai and aib.

Multiparty Computation from Threshold Homomorphic Encryption 283

3. Let H be the set of parties for which the previous step succeeded, and let C
be the complement of H. The parties decrypt ¢i∈Cai, learn aC =

∑

i∈C ai,

and compute aCb. From this, and {aib| i ∈ H}, all parties can compute an
encryption (¢i∈Haib) ¢ aCb, which is indeed an encryption of ab.

At the final stage we know encryptions of the output values, which we can
just decrypt. Intuitively this is secure if the encryption is secure because, other
than the outputs, only random values and values already known to the adversary
are ever decrypted. We will give proofs of this intuition in the following.

The above multiplication protocol is a more efficient version of a related idea
from [FH96], where we have exploited the homomorphic properties to add protec-
tion against faults without loosing efficiency. Other papers have exploited homo-
morphic properties to construct efficient protocols for multiplication. In [GV87]
Goldreich and Vainish used the homomorphic properties of the QR problem
to construct a two-party protocol for multiplication over GF (2) and in [KK91]
Kurosawa and Kotera generalised it to GF (L) for small L using the homomor-
phic properties of the Lth residuosity problem. Using also the Lth residuosity
problem [Kur91] constructs an efficient ZKIP for multiplication over GF (L).

4 Preliminaries and Notation

Let A be a probabilistic polynomial time (PPT) algorithm, which on input x ∈
{0, 1}∗ and random bits r ∈ {0, 1}∗ outputs a value y ∈ {0, 1}∗. We write
y ← A(x)[r] to denote that y should be computed by running A on x and r. By
y ← A(x) we mean that y should be computed using uniformly random r and
by y ∈ A(x) we mean that y is among the values, that A(x) outputs.

4.1 The MPC Model

We prove security in the MPC model from [Can00], with an open authenticated
broadcast channel, against active non-adaptive adversaries corrupting any mi-
nority of the parties. We index the parties by N = {1, . . . , n} and let C ⊂ N
denote the subset of corrupted parties, k is the security parameter, and xi
is the secret input of party Pi. We study functions giving a common output
y = f(x1, . . . , xn). We extend the model to handle this by saying that oracles
for such functions broadcast y on the broadcast channel. This to assure that
the ideal-model adversary learns the public output even though no party is cor-
rupted. The technical report [CDN00] contains a more detailed description of the
model. In the following we let secure mean secure against minority adversaries.

4.2 Σ-Protocols

In this section, we look at two-party zero-knowledge protocols of a particular
form. Assume we have a binary relation R consisting of pairs (x,w), where we
think of x as a (public) instance of a problem and w as a witness, a solution

284 Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen

to the instance. Assume also that we have a 3-move proof of knowledge for R:
this protocol gets a string x as common input for prover and verifier, whereas
the prover gets as private input w such that (x,w) ∈ R. Conversations in the
protocol are of form (a, e, z), where the prover sends a, the verifier chooses e
at random, the prover sends z, and the verifier accepts or rejects. There is a
security parameter k, such that the length of both x and e are linear in k. We
will only look at protocols where also the length of a and z are linear in k. Such
a protocol is said to be a Σ-protocol if we have the following:

– The protocol is complete: if the prover gets as private input w such that
(x,w) ∈ R, the verifier always accepts.

– The protocol is special honest verifier zero-knowledge: from a challenge value
e, one can efficiently generate a conversation (a, e, z), with probability distri-
bution equal to that of conversation between the honest prover and verifier
where e occurs as challenge.

– A cheating prover can answer only one of the possible challenges: more pre-
cisely, from the common input x and any pair of accepting conversations
(a, e, z), (a, e′, z′) where e 6= e′, one can compute efficiently w such that
(x,w) ∈ R.

It is easy to see that the definition of Σ-protocols is closed under parallel
composition.

5 Threshold Homomorphic Encryption

In this section we formalise the notion of threshold homomorphic encryption.

Definition 1 (Threshold Encryption Scheme). We call the tuple (K,KD,
R,E,Decrypt) a threshold encryption scheme if the following holds.

Key space The key space K = {Kk}k∈N is a family of finite sets of keys of the

form (pk, sk1, . . . , skn). We call pk the public key and call ski the private key

share of party i. There exists a PPT key-generator K which given k generates

a random key (pk, sk1, . . . , skn) ← K(k) from Kk. By skC for C ⊂ N we

denote the family {ski}i∈C .
Key-generation There exists a n-party protocol KD securely evaluating the

key-generator K.
Message Sampling There exists a PPT algorithm R, which on input pk out-

puts a uniformly random element from a set Rpk. We write m← Rpk.
Encryption There exists a PPT algorithm E, which on input pk and m ∈ Rpk

outputs an encryption m ← Epk(m) of m. By Cpk we denote the set of

possible encryptions for the public key pk.
Decryption There exists a secure protocol Decrypt which on common input

(M,pk), and secret input ski for the honest party Pi, where ski is the secret
key share of the public key pk and M is a set of encryptions of the messages

M ⊂ Rpk, returns M as common output.1

1 We need that the Decrypt protocol is secure when executed in parallel. The MPC-
model in [Can00] is however not security preserving under parallel composition, so

Multiparty Computation from Threshold Homomorphic Encryption 285

Threshold semantic security Let A be any PPT algorithm, which on input

1k, C such that |C| < n/2, public key pk, and corresponding private keys skC
outputs two messages m0,m1 ∈ Rpk and some arbitrary value s ∈ {0, 1}∗.
Let Xi(k,C) denote the distribution of (s, ci), where (pk, sk1, . . . , skn) ←
K(k), (m0,m1, s) ← A(1k, C, pk, skC), and ci ← Epk(mi). Then Xi =
{Xi(k,C)}k∈N ,C:|C|<n/2 for i = 0, 1 are distribution ensembles over the in-

dex set {C||C| < n/2} and we require that X0
c
≈ X1.

A threshold homomorphic encryption scheme in addition has these properties:

Message ring For all public keys pk, the message space Rpk is a ring in which
we can compute efficiently using the public key only. We denote the ring
(Rpk, ·pk,+pk, 0pk, 1pk).

+pk-homomorphic There exists a PPT algorithm, which given public key pk
and encryptions m1 ∈ Epk(m1) and m2 ∈ Epk(m2) outputs a uniquely
determined encryption m ∈ Epk(m1 +pk m2). We write m ← m1 ¢pk m2.
Further more there exists a similar algorithm, ¯pk, for subtraction.

Multiplication by constant There exists a PPT algorithm, which on input
pk, m1 ∈ Rpk and m2 ∈ Epk(m2) outputs a random encryption m ←
Epk(m1 ·pk m2). We write m ← m1 ¡pk m2 ∈ Epk(m1 ·pk m2). We assume
that we can also multiply a constant from the right.

Blindable There exists a PPT algorithm Blind, which on input pk,m ∈ Epk(m)
outputs an encryption m′ ∈ Epk(m) such that m

′ is distributed identically
to Epk(m)[r], where r is chosen uniformly random.

Check of ciphertextness Given y ∈ {0, 1}∗ and pk, where pk is a public key,
it is easy to check whether y ∈ Cpk.

2

Proof of plaintext knowledge Let L1 = {(pk, y)|pk a public key∧ y ∈ Cpk}.
There exists a Σ-protocol for the relation over L1 × ({0, 1}

∗)2 given by
(pk, y) ∼ (x, r)⇔ x ∈ Rpk ∧ y = Epk(x)[r].

Proof of correct multiplication Let L2 = {(pk, x, y, z)|pk is a public key ∧
x, y, z ∈ Cpk}. There exists a Σ-protocol for the relation over L2× ({0, 1}

∗)3

given by (pk, x, y, z) ∼ (d, r1, r2)⇔ y = Epk(d)[r1] ∧ z = (d¡pk x)[r2].

6 Multiparty Σ-protocols

In Section 7 we describe how to implement general multiparty computation from
a threshold homomorphic encryption scheme, but as the first step towards this
we show how one can generally and efficiently extend two-party Σ-protocols, as

we have to state this required property of the Decrypt protocol by simply letting
the input be sets of ciphertexts.

2 This check can be either directly or using a Σ-protocol: we will always use the test in
a context, where a party publishes an encryption and then the recipients either check
locally that y ∈ Cpk or the publisher proves it using a Σ-protocol. In the following
sections we adopt the terminology to the case, where the recipients can perform the
test locally. Details for the case where a Σ-protocol is used are easy extractable.

286 Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen

those for proof of plaintext knowledge and proof of correct multiplication in a
threshold homomorphic encryption scheme, into secure multiparty protocols. We
will need two essential tools in this section: the notion of trapdoor commitments
and a multiparty protocol for generating a sufficiently random bit string. Our
underlying purpose here is to allow a party to prove a claim using a Σ-protocol
such that all other parties will be convinced and to do it much more efficiently
than doing the original Σ-protocol independently with each of the other parties.

6.1 Generating (almost) Random Common Challenges

First of all we want to be able to generate a common challenge for the Σ-
protocols. Suppose first that n ≤ 16k. Then we create a challenge by letting
every party choose at random a d2k/ne-bit string, and concatenate all these
strings. This produces an m-bit challenge, where 2k ≤ m ≤ 16k. We can assume
without loss of generality that the basic Σ-protocol allows challenges of length
m bits (if not, just repeat it in parallel a number of times). It is easy to see
that with this construction, at least k bits of a challenge are chosen by honest
parties and are therefore random, since a majority of parties are assumed to be
honest. This is equivalent to doing a Σ-protocol where the challenge length is the
number of bits chosen by honest parties. The cost of doing such a proof is O(k)
bits. If n > 16k, we will assume, as detailed later, that an initial preprocessing
phase returns as public output a description of a random subset A of the parties,
of size 4k. It is easy to see that, except with probability exponentially small in k,
A will contain at least k honest parties. We then generate a challenge by letting
each party in A choose one bit at random, and then continue as above.

6.2 Trapdoor Commitments

A trapdoor commitment scheme can be described as follows: first a public key
pk is chosen based on a security parameter k, by running a PPT generator G.

There is a fixed function commit that the committer C can use to com-
pute a commitment c to s by choosing some random input r, computing c =
commit(s, r, pk), and broadcasting c. Opening takes place by broadcasting s, r; it
can then be checked that commit(s, r, pk) is the value C broadcasted originally.

We require the following:

(Perfect) Hiding For a pk correctly generated by G, uniform r, r′ and any s, s′,
the distributions of commit(s, r, pk) and commit(s′, r′, pk) are identical.

(Computational) Binding For any C running in expected polynomial time
(in k) the probability that C on input pk computes s, r, s′, r′ such that
commit(s, r, pk) = commit(s′, r′, pk) and s 6= s′ is negligible.

Trapdoor Property The algorithm for generating pk also outputs a string
t, the trapdoor. There is an efficient algorithm which on input t, pk out-
puts a commitment c, and then on input any s produces r such that c =
commit(s, r, pk). The distribution of c is identical to that of commitments
computed in the usual way.

Multiparty Computation from Threshold Homomorphic Encryption 287

In other words, the commitment scheme is binding if you know only pk, but given
the trapdoor, you can cheat arbitrarily. Finally, we also assume that the length
of a commitment to s is linear in the length of s.3 Existence of commitments
with all these properties follow in general merely from existence of Σ-protocols
for hard relations, and this assumption in turn follows from the properties we
already assume for the threshold cryptosystems. For concrete examples that
would fit with the examples of threshold encryption we use, see [CD98].

6.3 Putting Things Together

In our global protocol, we assume that the initial preprocessing phase indepen-
dently generates for each party Pi a public key ki for the trapdoor commitment
scheme and distributes it to all participating parties. We may assume in the
following that the simulator for our global protocol knows the trapdoors ti for
(some of) these public keys. This is because it is sufficient to simulate in the hy-
brid model where parties have access to a trusted party that will output the ki’s
on request. Since this trusted party gets no input from the parties, the simulator
can imitate it by running G itself a number of times, learning the trapdoors, and
showing the resulting ki’s to the adversary.

In our global protocol there are a number of proof phases. In each such phase,
each party in some subset N ′4 is supposed to give a proof of knowledge: each Pi
in the subset has broadcast an xi and claims he knows wi such that (xi, wi) is in
some relation Ri which has an associated Σ-protocol. We then do the following:

1. Each Pi in N ′ computes the first message ai in his proof and broadcasts
ci = commit(ai, ri, ki).

5

2. Make random challenge e according to the method described earlier.

3. Each Pi in N
′ computes the answer zi to challenge e, and broadcasts ai, ri, zi

4. Every party can check every proof given by verifying ci = commit(ai, ri, ki)
and that (ai, e, zi) is an accepting conversation.

3 In principle any commitment scheme can be transformed to fulfil this. Assume that a
scheme C has commitments of length kc and consider the modified scheme C ′ which
on security parameter k runs C on security parameter k′ = k1/c. This scheme is
still a commitment scheme as δ(k′) is still negligible and now the commitments has
length k. However in the new scheme the basic cryptographic primitives providing
the security is instantiated at a much lower key-size, and indeed such a reduction
is only weakly security preserving[pac96]. The remaining reductions in this paper
are all polynomially security preserving and for the security of the protocol to be
polynomially preserved relative to the underlying computational assumptions the
above reduction should be avoided.

4 The subset N ′ is the subset of the parties that still participate, i.e. have not been
excluded due to deviation from the protocol.

5 The intuition behind the use of (independently generated instances) of perfectly
hiding trapdoor commitments in the proofs of knowledge of e.g. a plaintext is to
avoid malleability issues, and to ensure “independence of inputs” where necessary.

288 Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen

It is clear that such a proof phase has communication complexity no larger
than n times the complexity of a single Σ-protocol, i.e. O(nk) bits. We denote the
execution of the protocol by (A′, N ′′)← Σ(A, xN ′ , wH∩N ′ , kN), where A is the
state of the adversary before the execution, xN ′ = {xi}i∈N ′ are the instances that
the parties N ′ are to prove that they know a witness to, wH∩N ′ = {wi}i∈H∩N ′

are witnesses for the instances xi corresponding to honest Pi, kN = {ki}i∈N is
the commitment keys for all the parties, A′ is the state of the adversary after
the execution, and N ′′ ⊂ N ′ is the subset of the parties completing the proof
correctly. The reason why the execution only depends on the witnesses wH∩N ′ is
that the corrupted parties are controlled by the adversary and their witnesses,
if even well-defined, are included in the start-state A of the adversary.

Now let tH = {ti}i∈H be the commitment trapdoors for the honest parties.
We describe a procedure (A′, N ′′, wN ′′∩C) ← SΣ(A, xN ′ , tH , kN) that will be
used as subroutine in the simulation of our global protocol. SΣ(A, xN ′ , kN , tH)
will have the following properties:

– SΣ(A, xN ′ , kN , tH) runs in expected polynomial time and the part (A
′, N ′′)

of the output is perfectly indistinguishable from the output of a real execu-
tion Σ(A, xN ′ , wH∩N ′ , kN) given the start state A of the adversary (which
we assume includes xN ′ and kN).

– Except with negligible probability wN ′′∩C = {wi}i∈N ′′∩C are valid witnesses
to the instances xi corresponding the corrupted parties completing the proofs
correctly.

The algorithm of SΣ is as follows:

1. For each Pi: if Pi is honest, use the trapdoor ti for ki to compute a commit-
ment ci that can be opened arbitrarily and show ci to the adversary. If Pi is
corrupt, receive ci from the adversary.

2. Run the procedure for choosing the challenge, choosing random contributions
on behalf of honest parties. Let e0 be the challenge produced.

3. For each Pi do (where the adversary may choose the order in which parties
are handled): If Pi is honest, run the honest verifier simulator to get an
accepting conversation (ai, e0, zi). Use the commitment trapdoor to compute
ri such that ci = commit(ai, ri) and show (ai, ri, zi) to the adversary. If Pi
is corrupt, receive (ai, ri, zi) from the adversary.
The current state A′ of the adversary and the subset N ′′ of parties correctly
completing the proof is copied to the output from this simulation subroutine.
In addition, we now need to find witnesses for xi from those corrupt Pi that
sent a correct proof in the simulation. This is done as follows:

4. For each corrupt Pi that sent a correct proof in the view just produced,
execute the following loop:
(a) Rewind the adversary to its state just before the challenge is produced.
(b) Run the procedure for generating the challenge using fresh random bits

on behalf of the honest parties. This results in a new value e1.
(c) Receive from the adversary proofs on behalf of corrupted parties and

generate proofs on behalf of honest parties, w.r.t. e1, using the same

Multiparty Computation from Threshold Homomorphic Encryption 289

method as in Step 3. If the adversary has made a correct proof a′i, r
′
i, e

′, z′i
on behalf of Pi, exit the loop. Else go to Step 4a.

If e0 6= e1 and ai = a′i compute and output a witness for xi, from the
conversations (ai, e0, zi), (a

′
i, e1, z

′
i). Else output ci, ai, ri, a

′
i, r

′
i (this will be a

break of the commitment scheme). Go on to next corrupt Pi.

It is clear by inspection and assumptions on the commitments and Σ-proto-
cols that the part (A′, N ′′) of the output is distributed correctly. For the running
time, assume Pi is corrupt and let ε be the probability that the adversary outputs
a correct ai, ri, zi given some fixed but arbitrary value V iew of the adversary’s
view up to the point just before e is generated. Observe that the contribution
from the loop to the running time is ε times the expected number of times the
loop is executed before terminating, which is 1/ε, so that to the total contribution
is O(1) times the time to do one iteration, which is certainly polynomial. As for
the probability of computing correct witnesses, observe that we do not have
to worry about cases where ε is negligible, say ε < 2−k/2, since in these cases
Pi 6∈ N

′′ with overwhelming probability. On the other hand, assume ε ≥ 2−k/2,
let ē denote the part of the challenge e chosen by honest parties, and let pr() be
the probability distribution on ē given the view V iew and given that the choice
of ē leads to the adversary generating a correct answer on behalf of Pi. Clearly,
both ē0 and ē1 are distributed according to pr(). Now, the a priori distribution of
ē is uniform over at least 2k values. This, and ε ≥ 2−k/2 implies by elementary
probability theory that pr(ē) ≤ 2−k/2 for any e, and so the probability that
ē0 = ē1 is ≤ 2

−k/2. We conclude that except with negligible probability, we will
output either the required witnesses, or a commitment with two different valid
openings. However, the latter case occurs with negligible probability. Indeed, if
this was not the case, observe that since the simulator never uses the trapdoors
of ki for corrupt Pi, the simulator together with the adversary could break
the binding property of the commitments. Formulating a reduction proving this
formally is straightforward and is left to the reader.

7 General MPC from Threshold Homomorphic

Encryption

Assume that we have a threshold homomorphic encryption scheme as described
in Section 5. In this section we describe the FuncEvalf protocol which securely
computes any polynomial time computable n-party function y ← f(x1, . . . , xn)
using a uniform polynomially sized family of arithmetic circuits over Rpk.

Our approach works for any reasonable encoding of f as an arithmetic circuit.
This can allow for efficient encodings of arithmetic function if one can exploiting
knowledge about the rings Rpk over which the function is evaluated. For simplic-
ity we will however here assume that f is encoded using a circuit taking inputs
from {0pk, 1pk}, using +, −, and · gates, and using the same circuit for a fixed
security parameter. Since our encryption scheme is only + and −-homomorphic
we will be needing a protocol Mult for securely computing an encryption of
m1 ·pk m2 given encryptions of m1 and m2.

290 Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen

We assume that the parties has access to a trusted party Preprocess, which
at the beginning of the protocol outputs a public value (k1, . . . , kn), where ki is a
random public commitment key for a trapdoor commitment scheme as described
in Section 6.2. If n > 16k then further more the trusted party returns a public
description of a random 4k-subset of the parties as described in Section 6.16.
As described in Section 6.3, we can then from the Σ-protocols of the threshold
homomorphic encryption scheme for proof of plaintext knowledge and correct
multiplication construct n-party versions, which we call POPK resp. POCM. The
corresponding versions of our general simulation routine SΣ for these protocols
will be called SPOPK resp. SPOCM.

7.1 The Mult Protocol

Description All honest parties Pi know public values kN = {ki}i∈N , pk, and
encryptions a, b ∈ Epk(a), for some possible unknown a, b ∈ Rpk, and private
values ski. Further more a set N

′ of participating parties, those that have not
been caught deviating from the protocol, is known to all parties. The corrupted
parties are controlled by an adversary and the parties want to compute a common
value c ∈ Epk(ab) without anyone learning anything new about a, b, or a · b.

Implementation

1. First all participating parties additively secret share the value of a.
(a) Pi, for i ∈ N

′ chooses a value di uniformly at random in Rpk, computes
an encryption di ← E(di), broadcasts it, and participates in POPK to
check that each Pi knows ri and di such that di = Epk(di)[ri].

(b) Let N ′′ denote parties completing the proof in (a) and let d =
∑

i∈N ′′ di.

All parties compute d = ¢i∈N ′′di and e = a¢ d.
(c) The parties in N ′′ call Decrypt to compute the value a+ d from e.
(d) The party in N ′′ with smallest index sets ai ← e¯di and ai ← a+d−di.

The other parties in N ′′ set ai ← ¯di and ai ← −di.
2. Each party Pi for i ∈ N

′′ computes f i ← ai ¡ b, broadcasts f i, and partic-
ipates in POCM to check that all f i was computed correctly. Let X be the
subset failing the proof and let N ′′′ = N ′′ \X.

3. The parties compute aX = ¢i∈Xai and decrypt it using Decrypt to obtain
aX =

∑

i∈X ai.

4. All parties compute c← (¢i∈N ′′′f i)¢ (aX ¡ b) ∈ Epk(ab).

Theorem 1. There exists a simulator for the Mult protocol, which produces a

view in the ideal-world that is computationally indistinguishable from the view

produced by an execution of the Mult protocol in the real-world.

Proof outline: We give an outline of the main ideas used in the simulation.
The main obstacle is Step 1c, where a+ d should be handed to the adversary to
simulate an oracle call to the Decrypt oracle. By choosing di correctly for honest

6 In the following we present the case where n ≤ 16k.

Multiparty Computation from Threshold Homomorphic Encryption 291

parties and using SPOPK the simulator can learn d, but it cannot learn a. We
handle this by letting one of the honest party Ps choose ds as Blind(Epk(d

′
s)¯a)

for uniformly random d′s ∈ Rpk. Then all values are still correctly distributed,
but now the simulator can compute a+ d as (

∑

i∈N ′′\{s} di) + d′s. Observe that
the simulator now cannot compute the value as which is necessary later. Doing
the same computation on d′s it can however compute a

′
s = as + a. Now assume

that the simulator has access to an oracle returning an encryption c′ of a · b.
Then it simulates Step 2 by computing as¡ b as Blind((a

′
s¡ b)¯ c

′) and running
SPOCM. Step 3 is simulated by giving

∑

i∈X ai to the adversary (this value the
simulator can compute as s 6∈ X) and Step 4 is simulated by doing the correct
computation as the necessary values are available.

By the properties of the knowledge extractors and Blind it follows that the
view produced as above is statistically indistinguishable from the view of a real-
world execution. Now instead of the oracle value c′ use a random encryption of
0pk. If this changes the view produced by the simulator except computationally
negligible, then as the simulator does not use the secret keys of any honest party
the simulator would be a distinguisher of encryptions of a · b and encryptions of
0pk contradicting the semantic security of the encryption scheme. The technical
report [CDN00] contains a detailed proof. ¤

As the Decrypt protocol is assumed to be secure under parallel composition
and our multiparty zero-knowledge proofs have been proven to be secure, so are
then trivially the Mult protocol.

7.2 The FuncEvalf Protocol

Now assume that the description of a arithmetic circuit for evaluating f is given.
The parties then evaluate f in the following manner. First the parties run the
Preprocess and the KD oracles and obtain the keys (k1, . . . , kn) for the trapdoor
commitment scheme and (pk, sk1, . . . , skn) for the encryption scheme. The key
ski is private to Pi. Each party Pi then does a bitwise encryption xi,j ← Epk(xi,j)
of its input xi, broadcasts the encryptions, and proves in zero-knowledge, that
xi,j does in fact contain either 0 or 1.

7 For those Pi failing the above proof the
parties exclude them, take xi to be 000 . . . 00, and compute xi,j ← Epk(xi,j)[r]
for some fixed agreed upon string r ∈ {0, 1}p(k). In this way all parties get to
know common legal encrypted circuit inputs for all parties. Then the circuit is
evaluated. In each round all gates that are ready to be evaluated are evaluated
in parallel. Addition and subtraction gates are evaluated locally using ¢ and
¯; and multiplication gates are evaluated using the Mult protocol. Finally the
parties decrypt the output gates and output the reviled values.

Theorem 2. The FuncEvalf protocol as described above securely evaluates f in

the presence of active non-adaptive adversary corrupting at most a minority of

7 We will be needing aΣ-protocol for doing this, but such protocol is easy to implement
for the examples of threshold encryption that we give in Section 8.

292 Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen

the parties.8 The round complexity is in the order of the depth of the circuit for f
and the communication complexity of the protocol is O((nk+d)|f |) bits, where |f |
denotes the size of the circuit for evaluating f and d denotes the communication
complexity of a decryption.

Proof outline: Given a real-world adversary A we construct a simulator S(A)
running in the ideal-world. The initial oracle calls are simulated by running the
generators locally and giving the appropriate values to A. The simulator saves
(k1, . . . , kn, pk, {ski}i∈C) for later use, but discards ski for all honest parties.
Assume for now that S has access to an oracle giving it the values xi,j for all
honest parties. The simulator then gives the xi,j values to A and receive xi,j for
all corrupted parties from A. Using the knowledge extractor the simulator then
learns all xi,j for corrupted parties that completed the proof that xi,j contains
0 or 1. It uses these values as input to the ideal evaluation of f and learns
the output y. Now the gate evaluation is simulated using the simulator for the
Mult protocol. The decryption (by oracle call) of output gates are simulated
by just handing the correct value to A. These values are known as the correct
output y of the computation is known to the simulator. This simulation is by the
properties of the knowledge extractors and the Mult simulator computationally
indistinguishable from that of a real-world execution. We get rid of the oracle
values xi,j as we did in the proof of Theorem 1.

The round complexity follows by inspection. The gates that give rise to com-
munication are the input, multiplication, and output gates. The communication
used to handle these gates is in the order of n encryptions (O(nk) bits), n zero-
knowledge proofs (O(nk) bits as we have assumed that the Σ-protocols have
communication complexity O(k)) and 1 decryption (O(d) bits by definition).
The total communication complexity therefore is O((nk+d)|f |) as claimed. The
technical report [CDN00] contains a detailed proof. ¤

The threshold homomorphic encryption schemes we present in Section 8 both
have d = O(kn). It follows that for deterministic f the FuncEvalf protocol based
on any of these schemes has communication complexity O(nk|f |) bits.

8 Examples of Threshold Homomorphic Cryptosystems

In this section, we describe some concrete examples of threshold systems meeting
our requirements, including Σ-protocols for proving knowledge of plaintexts,
correctness of multiplications and validity of decryptions.

Both our examples involve choosing as part of the public key a k-bit RSA
modulus N = pq, where p, q are chosen such that p = 2p′ + 1, q = 2q′ + 1 for
primes p′, q′ and both p and q have k/2 bits. For convenience in the proofs to
follow, we will assume that the length of the challenges in all the proofs is k/2−1.

8 Generally we can make the protocol secure against any corruption structure for
which the threshold cryptosystem is secure and for which one can generate short
random challenges containing at least k random bits as in Section 6.1.

Multiparty Computation from Threshold Homomorphic Encryption 293

8.1 Basing it on Paillier’s Cryptosystem

In [Pai99], Paillier proposes a probabilistic public-key cryptosystem where the
public key is a k-bit RSA modulus N and an element g ∈ Z∗

N2 of order divisible
by N . The plaintext space for this system is ZN . In [DJ01] the crypto-system
is generalised to have plaintext space ZNs for any s smaller than the factors
of N and there g has order divisible by N s. To encrypt a ∈ ZNs , one chooses
r ∈ Z∗

Ns+1 at random and computes the ciphertext as a = garN
s

mod Ns+1.
The private key is the factorisation of N , i.e., φ(N) or equivalent information.
Under an appropriate complexity assumption given in [Pai99], this system is
semantically secure, and it is trivially homomorphic over ZNs as we require
here: we can set a¢ b = a · b mod N s+1. Furthermore, from α and an encryption
a, a random encryption of αa can be obtained by multiplying aα mod Ns+1 by
a random encryption of 0. In [DJ01] a threshold version of this system has been
proposed, based on a variant of Shoup’s [Sho00] technique for threshold RSA. A
multiplication protocol was also given in [DJ01], though for a slightly different
setting. We will not go into further details here, but note that using known
techniques the multiplication protocol can be modified to meet our definition
of a threshold homomorphic encryption scheme. The technical report [CDN00]
contains more details.

Generalisations of FuncEval Using standard techniques, the FuncEval-proto-
col can be extended to handle probabilistic functions. In this section we describe
how this works when we instantiate using the Paillier cryptosystem. We show
how random ZNs -gates (outputting a uniformly random element from ZNs un-
known to all parties) and random 0/1-gates (outputting a uniformly random
element from {0,1} unknown to all parties) can be implemented securely in a
constant number of rounds.

As a step-stone we also recall how to implement inversion gates and do un-
bounded fan-in multiplication of invertible elements in a constant number of
rounds (see [BB89]). Due to lack of space only the protocols are given, but they
can all be proven secure using the techniques of the previous sections.

In the following, if n ≥ 16k, let the random group denote the 4k-subset A
given in the preprocessing and if n < 16k let the random group be all the
parties. Assume that the parties in the random group are indexed 1, . . . , r(n, k).
Observe that r(n, k) ∈ O(min(n, k)) and that except with negligible probability
the random group contains a honest party.

Random ZNs-gates All the parties in the random group pick a uniformly random
element ai ∈ ZNs , broadcast an encryption ai, and prove knowledge of ai. Then

all the parties compute a = ¢
r(n,k)
i=1 ai and a is the secret uniformly random

ZNs -element. The communication complexity is O(r(n, k)k).

Inversion Gates Given a, where a is invertible, the parties generates b using
a random ZNs -gate. Since b is invertible except with negligible probability, we
assume in the following that it is. The parties compute ab and reveals ab (this is

294 Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen

secure since ab is a uniformly random invertible element). The parties computes
(ab)−1 and a−1 = (ab)−1 ¡ b. The communication complexity is O(nk).

Constant-round unbounded fan-in multiplication of invertible elements Given
encryptions x1, . . . , xl of invertible elements the parties generate secret ran-

dom ZNs -elements y0, . . . , yl, compute y
−1
0 , . . . , y−1

l , and compute and reveal

zi = yi−1xiy
−1
i , i = 1, . . . , l. Then they compute

∏l
i=1 xi = y−1

0 (
∏l
i=1 zi)yl. The

communication complexity of this is O(lnk).

Random 0/1-gates Each party in the random group generates a random bit
bi, publishes bi, proves knowledge of bi ∈ {0, 1}, and all the parties compute

b =
[(

¡
r(n,k)
i=1 (1¯ 2¡ bi)

)

¢ 1
]

¡ 2−1. The communication complexity of this is

O(r(n, k)nk).

8.2 Basing it on QRA and DDH

In this section, we describe a cryptosystem which is a simplified variant of
Franklin and Haber’s system [FH96], a somewhat similar (but non-threshold)
variant was suggested by one the authors of the present paper and appears in
[FH96].

For this system, we choose an RSA modulus N = pq, where p, q are chosen
such that p = 2p′ + 1, q = 2q′ + 1 for primes p′, q′. We also choose a random
generator g of SQ(N), the subgroup of quadratic residues modulo N (which here
has order p′q′). We finally choose x at random modulo p′q′ and let h = gx mod N .
The public key is now N, g, h while x is the secret key.

The plaintext space of this system is Z2. We set ∆ = n! (recall that n is the
number of parties). Then to encrypt a bit b, one chooses at random r modulo
N2 and a bit c and computes the ciphertext

((−1)cgr mod N, (−1)bh4∆2r mod N)

The purpose of choosing r modulo N 2 is to make sure that gr will be close to
uniform in the group generated by g even though the order of g is not public.
It is clear that a ciphertext can be decrypted if one knows x. The purpose of
having h4∆2r (and not hr) in the ciphertext will be explained below.

The system clearly has the required homomorphic properties, we can set:

(α, β)¢ (γ, δ) = (αγ mod N, βδ mod N)

Finally, from an encryption (α, β) of a value a and a known b, one can obtain
a random encryption of value ba mod 2 by first setting (γ, δ) to be a random
encryption of 0 and then outputting (αbγ mod N, βbδ mod N).

We now argue that under the Quadratic Residuosity Assumption (QRA) and
the Decisional Diffie Hellman Assumption (DDH), the system is semantically
secure. Recall that DDH says that the distributions (g, h, gr mod p, hr mod p)

Multiparty Computation from Threshold Homomorphic Encryption 295

and (g, h, gr mod p, hs mod p) are indistinguishable, where g, h both generate
the subgroup of order p′ in Z∗

p and r, s are independent and random in Zp′ .
By the Chinese remainder theorem, this is easily seen to imply that also the
distributions (g, h, gr mod N,hr mod N) and (g, h, gr mod N,hs mod N) are in-
distinguishable, where g, h both generate SQ(N) and r, s are independent and
random in Zp′q′ . Omitting some tedious details, we can then conclude that the
distributions

(g, h, (−1)cgr mod N,h4∆2r mod N)

(g, h, (−1)cgr mod N,h4∆2s mod N)

(g, h, (−1)cgr mod N,−h4∆2s mod N)

(g, h, (−1)cgr mod N,−h4∆2r mod N)

are indistinguishable, using (in that order) DDH, QRA and DDH.

Threshold decryption Shoup’s method for threshold RSA [Sho00] can be
directly applied here: he shows that if one secret-shares x among the parties
using a polynomial computed modulo p′q′ and publishes some extra verification
information, then the parties can jointly and securely raise an input number
to the power 4∆2x. This is clearly sufficient to decrypt a ciphertext as defined
here: to decrypt the pair (a, b), compute ba−4∆2x mod N . We do not describe
the details here, as the protocol from [Sho00] can be used directly. We only note
that decryption can be done by having each party broadcast a single message
and prove by a Σ-protocol that it is correct. The communication complexity
of this is O(nk) bits. In the original protocol the random oracle model is used
when parties prove that they behave correctly. However, the proofs can instead
be done according to our method for multiparty Σ-protocols without loss of
efficiency (Section 6). This also immediately implies a protocol that will decrypt
several ciphertexts in parallel.

Proving you know a plaintext We will need an efficient way for a party to
prove in zero-knowledge that a pair (α, β) he created is a legal ciphertext, and
that he knows the corresponding plaintext. A pair is valid if and only if α, β
both have Jacobi symbol 1 (which can be checked easily) and if for some r we

have (g2)r = α2 mod N and (h8∆2

)r = β2 mod N . This last pair of statements
can be proved non-interactively and efficiently by a standard equality of discrete
log proof appearing in [Sho00]. Note that the squarings of α, β ensure that we
are working in SQ(N), which is necessary to ensure soundness.

This protocol has the standard 3-move form of a Σ-protocol. It proves that
an r fitting with α, β exists. But it does not prove that the prover knows such
an r (and hence knows the plaintext), unless we are willing to also assume the
strong RSA assumption9. With this assumption, on the other hand, the equality
of discrete log proof is indeed a proof of knowledge.

9 That is, assume that it is hard to invert the RSA encryption function, even if the
adversary is allowed to choose the public exponent

296 Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen

However, it is possible to do without this extra assumption: observe that if
β was correctly constructed, then the prover knows a square root of β (namely

h2∆2r mod N) iff b = 0 and he knows a root of −β otherwise. One way to
exploit this observation is if we have a commitment scheme available that allows
committing to elements in ZN . Then Pi can commit to his root α, and prove
in zero-knowledge that he knows α and that α4 = β2 mod N . This would be
sufficient since it then follows that α2 is β or −β.

Here is a commitment scheme (already well known) for which this can be
done efficiently: choose a prime P , such that N divides P − 1 and choose el-
ements G,H of order N modulo P , but where no party knows the discrete
logarithm of H base G. This can all be set up initially (recall that we already
assume that keys are set up once and for all). Then a commitment to α has form
(Gr mod P,GαHr mod P), and is opened by revealing α, r. It is easy to see that
this scheme is unconditionally binding, and is hiding under the DDH assump-
tion (which we already assumed). Let [α] denote a commitment to α and let
[α][β] mod P be the commitment you obtain in the natural way by component-
wise multiplication modulo P . It is then clear that [α][β] mod P is a commitment
to α+ β mod N .

It will be sufficient for our purposes to make a Σ-protocol that takes as
input commitments [α], [β], [γ], shows that the prover knows α and shows that
αβ = γ mod N . Here follows such a protocol:

1. Inputs are commitments [α], [β], [γ] where Pi claims that αβ = γ mod N . Pi
chooses a random δ and makes commitments [δ], [δβ].

2. The verifier send a random e.
3. Pi opens the commitment [α]

e[δ] mod P to reveal a value e1. Pi opens the
commitment [β]e1 [δβ]−1[γ]−e mod P to reveal 0.

4. The verifier accepts iff the commitments are correctly opened as required.

Using standard techniques, it is straightforward to show that this protocol is
a Σ-protocol. The technical report [CDN00] contains more details.

Proving multiplications correct Finally, we need to consider the scenario
where party Pi has been given an encryption Ca of a, has chosen a constant
b, and has published encryptions Cb, D, of values b, ba, and where D has been
constructed by Pi as we described above. It follows from this construction that
if b = 1, then D = Ca¢E where E is a random encryption of 0. Assuming b = 1,
E can be easily reconstructed from D and Ca.

Now we want a Σ-protocol that Pi can use to prove that D contains the
correct value. Observe that this is equivalent to the statement

((Cb encrypts 0) AND (D encrypts 0)) OR

((Cb encrypts 1) AND (E encrypts 0))

We have already seen how to prove by a Σ-protocol that an encryption (α, β)
contains a value b, by proving that you know a square root of (−1)bβ. Now,
standard techniques from [CDS94] can be applied to building a new Σ-protocol
proving a monotone logical combination of statements such as we have here.

Multiparty Computation from Threshold Homomorphic Encryption 297

9 An Optimisation of the FuncEval Protocol

The following optimisation of the FuncEval-protocol was brought to our atten-
tion by an anonymous referee. The optimisation applies to the situation where
at most (12 − c)n parties, for some c > 0, can be corrupted and n is larger than
k. In that case we can use the random group for doing the entire computation.
The decryption keys for the threshold cryptosystem are distributed only to the
random group and all parties are given the public key. All parties then broadcast
encryptions of their inputs as before. Then the parties in the random group do
the actual computation and broadcast the result. The communication complex-
ity of this is O(k2|C|) as the initial broadcast of inputs are dominated by the
computation. This is better than O(kn|C|) if n > k. The same optimisation ap-
plies to any MPC protocol by letting the parties secret share their input among
the random group initially. This typically reduces a complexity of O(kdne|C|)
to O(kd+e|C|). Finally kd+e can be replaced by k to obtain a communication
complexity of O(k|C|) using the weakly security preserving reduction of Footnote
3. Note that the last part of the transformation has no practical value, it is a
property of the security model allowing to sell security for cuts in complexity.

References

[ACM88] Proceedings of the Twentieth Annual ACM STOC, Chicago, Illinois, 2–4 May
1988.

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In Proc. ACM PODC’89, pages
201–209, 1989.

[Bea91] D. Beaver. Foundations of secure interactive computing. In Joan Feigen-
baum, editor, Advances in Cryptology - Crypto ’91, pages 377–391, Berlin,
1991. Springer-Verlag. LNCS Vol. 576.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation (extended
abstract). In ACM [ACM88], pages 1–10.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic proto-
cols. Journal of Cryptology, 13(1):143–202, winter 2000.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondition-
ally secure protocols (extended abstract). In ACM [ACM88], pages 11–19.

[CD98] Ronald Cramer and Ivan Damgaard. Zero-knowledge proofs for finite field
arithmetic, or: Can zero-knowledge be for free. In Hugo Krawczyk, editor,
Advances in Cryptology - Crypto ’98, pages 424–441, Berlin, 1998. Springer-
Verlag. LNCS Vol. 1462.

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Ueli Maurer. General secure multi-
party computation from any linear secret-sharing scheme. In Bart Preneel,
editor, Advances in Cryptology - EuroCrypt 2000, pages 316–334, Berlin,
2000. Springer-Verlag. LNCS Vol. 1807.

[CDN00] Ronald Cramer, Ivan B. Damg̊ard, and Jesper B. Nielsen. Multiparty com-
putation from threshold homomorphic encryption. Research Series RS-00-14,
BRICS, Department of Computer Science, University of Aarhus, June 2000.
Updated version available at Cryptology ePrint Archive, record 2000/064,
http://eprint.iacr.org/.

298 Ronald Cramer, Ivan Damg̊ard, and Jesper B. Nielsen

[CDS94] R. Cramer, I. B. Damg̊ard, and B. Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Yvo Desmedt,
editor, Advances in Cryptology - Crypto ’94, pages 174–187, Berlin, 1994.
Springer-Verlag. LNCS Vol. 839.

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In Public Key Cryp-

tography, Fourth International Workshop on Practice and Theory in Public

Key Cryptography, PKC 2001, Proceedings, 2001. LNCS. Obtainable from
http://www.daimi.au.dk/∼ivan.

[DK01] Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures
without a trusted dealer. In these proceedings.

[FH96] Matthew Franklin and Stuart Haber. Joint encryption and message-efficient
secure computation. Journal of Cryptology, 9(4):217–232, Autumn 1996.

[FPS00] P. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of
voting or lotteries. In Proceedings of Financial Crypto 2000, 2000.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In
Proceedings of the Nineteenth Annual ACM STOC, pages 218–229, New York
City, 25–27 May 1987.

[GRR98] R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and fast-track multi-
party computations with applications to threshold cryptography. In Proc.

ACM PODC’98, 1998.
[GV87] O. Goldreich and R. Vainish. How to solve any protocol problem - an effi-

ciency improvement. In Carl Pomerance, editor, Advances in Cryptology -

Crypto ’87, pages 73–86, Berlin, 1987. Springer-Verlag. LNCS Vol. 293.
[KK91] Kaoru Kurosawa and Motoo Kotera. A multiparty protocol for modulo

operations. Technical Report SCIS91-3B, 1991.
[Kur91] Kaoru Kurosawa. Zero knowledge interactive proof system for modulo op-

erations. In IEICE Trans., volume E74, pages 2124–2128, 1991.
[MH00] Bartosz Przydatek, Martin Hirt, and Ueli M. Maurer. Efficient secure multi-

party computation. In Tatsuaki Okamoto, editor, Advances in Cryptology -

ASIACRYPT 2000, pages 143–161, Berlin, 2000. Springer. LNCS Vol. 1976.
[MJ00] Ari Juels and Markus Jakobsson. Mix and match: Secure function evaluation

via ciphertexts. In Tatsuaki Okamoto, editor, Advances in Cryptology -

ASIACRYPT 2000, pages 162–177, Berlin, 2000. Springer. LNCS Vol. 1976.
[MR91] S. Micali and P. Rogaway. Secure computation. In Joan Feigenbaum, editor,

Advances in Cryptology - Crypto ’91, pages 392–404, Berlin, 1991. Springer-
Verlag. LNCS Vol. 576.

[pac96] Pseudorandomness and Cryptographic Applications. Princeton University
Press, 1996.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residue
classes. In Jacques Stern, editor, Advances in Cryptology - EuroCrypt ’99,
pages 223–238, Berlin, 1999. Springer-Verlag. LNCS Vol. 1592.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor,
Advances in Cryptology - EuroCrypt 2000, pages 207–220, Berlin, 2000.
Springer-Verlag. LNCS Vol. 1807.

[Yao82] Andrew C. Yao. Protocols for secure computations (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, pages 160–
164, Chicago, Illinois, 3–5 November 1982. IEEE.

