
Fault Injection and a Timing Channel on an

Analysis Technique

John A Clark and Jeremy L Jacob

Dept. of Computer Science, University of York,
York YO10 5DD, England UK
{jac,jeremy}@cs.york.ac.uk

Abstract. Attacks on cryptosystem implementations (e.g. security fault
injection, timing analysis and differential power analysis) are amongst the
most exciting developments in cryptanalysis of the past decade. Altering
the internal state of a cryptosystem or profiling the system’s computa-
tional dynamics can be used to gain a huge amount of information. This
paper shows how fault injection and timing analysis can be interpreted
for a simulated annealing attack on Pointcheval’s Permuted Perceptron
Problem (PPP) identification schemes. The work is unusual in that it
concerns fault injection and timing analysis on an analysis technique. All
recommended sizes of the PPP schemes are shown to be unsafe.
Keywords: Heuristic Optimisation, timing channels, identifica-

tion schemes

1 Introduction: Zero Knowledge and NP-Hard Solution

Techniques

Since the introduction of zero-knowledge proofs by Goldwasser et al. in 1985
[5] several schemes have been proposed. Some make use of number theoretic
results [3]. Others have sought to make use of the computational intractability
of known NP-complete problems. Since Shamir exemplified the concept using
the Permuted Kernel Problem (PKP)[12], others have offered systems based on
Syndrome Decoding [14], Constrained Linear Equations (CLEs) [15] and the
Permuted Perceptron Problem (PPP) [11].
Heuristic optimisation techniques such as genetic algorithms [4] and simu-

lated annealing [7] have shown their worth over a huge number of engineering
disciplines. It comes as no surprise that they have been investigated as crypt-
analysis tools. Most work has been concerned with elementary ciphers [16, 6,
10, 13] but recent work has included attacks on full-strength zero knowledge
schemes. Pointcheval [11] gives results of attacks using simulated annealing on
his PPP-based schemes. Knudsen and Meier [8] have recently improved on those
results using an unusual and sophisticated attack. Their work (based on prop-
erties of sets of solutions obtained from multiple runs) is a direct challenge to
the ‘standard’ way of applying heuristic optimisation techniques and indicates
that there is considerable room for more sophistication in their application to
cryptanalysis.

This paper describes two further very non-standard approaches based loosely
around extant cryptanalysis notions of security fault injection [1] and timing
analysis [9]. For comparison, Pointcheval’s schemes are the subject of attack. In
Section 3 Problem Warping (an interpretation of security fault injection) is used
to attack the Perceptron Problem (PP). Cost functions whose minimisation is
highly unlikely to lead to an actual solution are used. In a sense, the search is
used to find a solution to a warped (different but related) problem. It turns out
that the solutions obtained in this way are highly correlated with the solution
to the actual problem (much more so than solutions obtained by attempting
to solve the original problem directly). Furthermore, combining solutions from
differently warped problem searches also provides an efficient way of obtaining
secret information. In Section 4 the same technique is used to attack the more
difficult Permuted Perceptron Problem (PPP). In addition, a form of timing side-
channel with huge power is also demonstrated. The search process is monitored
as it moves to its final solution. Some elements of the solution take particular
values early in the search and then never change. Observing when particular
solution elements get ‘stuck’ in this way can reveal over half the secret vector
in a single run. The authors believe that this is the first time the computational

dynamics of an analysis technique have been used to reveal information. Section
5 draws conclusions and indicates future work. First, the particular schemes
analysed are described together with an outline of simulated annealing.

2 Preliminaries

2.1 The Perceptron Problem and Permuted Perceptron Problem

In 1995 Pointcheval [11] suggested what seems a promising scheme based on the
Perceptron Problem (PP). In fact, he chose a variant of this problem that is much
harder to solve known as the Permuted Perceptron Problem (PPP). If instances of
these problems can be solved the identification schemes are broken. The protocols
used to implement the identification schemes are not described here (the reader is
referred to [11] for details). This paper concentrates on attacking the underlying
NP-complete problems. The notation of [11] and [8] will be used. A column
vector whose entries have value +1 or -1 is termed an ε -vector. Similarly, a
matrix whose entries have value +1 or -1 is termed an ε -matrix.

– Perceptron Problem: :
Input: An m by n ε-matrix A.
Problem: Find an ε-vector V of size n such that
(AV)i ≥ 0 for all i = 1, ...,m.

– Permuted Perceptron Problem:

Input: An m by n ε-matrix A and a multiset S of non-negative numbers of
size m.
Problem: Find an ε-vector V of size n such that
{{(AV)i|i = {1, ...,m}}} = S.

In the PP we require that image elements (AV)i be non-negative, in the
PPP we require that these elements have a particular distribution (histogram).
If n is odd (even) then the (AV)i must all take odd (even) numbered values.
Pointcheval’s PPP schemes used only odd values for n (see below). It is always
possible to generate feasible instances of these problems. The matrix A and
column vector V are generated randomly. If (AV)i < 0 then the elements aij
of the ith row are negated. This method of generation introduces significant
structure into the problem. In particular, the majority vectors of the entries for
columns of A are correlated with the corresponding elements of V (as indicated in
[11] and [8]). The security of the scheme relies on the computational intractability
of exploiting this structure.
Any PPP solution is obviously a solution to the corresponding PP since the

PPP simply imposes an extra histogram (multiset) constraint. A solution to
the PP is not necessarily a solution to a related PPP. Pointcheval investigated
the complexity of generating PPP solutions by the repeated generation of PP
solutions. He indicated that matrices of the form (m,n) = (m,m+16) gave best
practical security and offered three particular sizes: (101, 117), (131, 147) and
(151, 167).

2.2 Simulated Annealing

Simulated annealing is a combinatorial optimisation technique based loosely on
the physical annealing process of molten metals. An informal description is given
below followed by a detailed one.

States and State Cost. Candidate solutions to the problem at hand form
the states over which the search will range. With each state V is associated a cost,
cost(V), that gives some measure of how undesirable that state is (in physical
annealing a high energy state is undesirable). In attacking the Perceptron and
Permuted Perceptron Probems, the current state (solution) will be some ε-vector
Vcurr of size n. The choice of cost function is a crucial issue (discussed in Section
3).

The Neighborhood. The search moves from state to state in an attempt
to find a state Vbest with minimum cost over all states. The search may move
only to another state that is ‘close to’ or ‘in the neighborhood of’ the current
one, i.e. it is a local search. If Vcurr is the current state vector, then the local
neighborhood Neighborhood(Vcurr) is the set of ε-vectors of size n obtained from
Vcurr by negating a single element (i.e. changing a 1 to a -1 or vice versa).

Accepting and Rejecting Moves. Simulated annealing combines hill-
climbing with an ability to accept worsening state moves to provide for escape
from local optima. From the current state Vcurr a neighbouring state Vneigh is
generated randomly. If cost(Vneigh) < cost(Vcurr) then Vneigh becomes the cur-
rent state (this is the ‘hill-climbing’, though perhaps ‘valley diving’ would be a
better term for minimisation problems.) If not, then the state may be accepted
probabilistically in a way that depends on the temperature T of the search (see
below) and the extent to which the target state is worse (in terms of cost). The
worse a target state is, the less likely it is a move to that state will be taken.

Cooling It All Down. In analogy with the physical annealing process,
simulated annealing has a control parameter T , known as the temperature. Ini-
tially the temperature is high and virtually any move is accepted. Gradually the
temperature is cooled and it becomes ever harder to accept worsening moves.
Eventually the process ‘freezes’ and only improving moves are accepted at all. If
no move has been accepted for some time then the search halts. We now describe
the algorithm in detail.
The technique has the following principal parameters:

– the temperature T

– the cooling rate α ∈ (0, 1)
– the number of moves N considered at each temperature cycle
– the number MaxFailedCycles of consecutive failed temperature cycles
(where no move is accepted) before the search aborts

– the maximum number ICMax of temperature cycles considered before the
search aborts

The initial temperature T0 is obtained by the technique itself. The other
values are typically supplied by the user. In the work described here they remain
fixed during a run. More advanced approaches allow these parameters to vary
dynamically during the search. The simulated annealing algorithm is as follows:

1. Let T0 be the start temperature. Increase this temperature until the per-
centage of moves accepted within an inner loop of N trials exceeds some
threshold (e.g. 95%).

2. Set IC = 0 (iteration count), finished = false and ILSinceLastAccept = 0
(number of inner loops since a move was accepted) and randomly generate
an initial current solution Vcurr.

3. while(not finished) do 3a-3d
(a) Inner Loop: repeat N Times

i. Vnew = generateMoveFrom(Vcurr)
ii. calculate change in cost

∆cost = cost(Vnew)− cost(Vcurr)
iii. If ∆cost < 0 then accept the move, i.e. Vcurr = Vnew

iv. Otherwise generate a value u from a uniform(0,1) random variable.
If exp−∆cost/T > u then accept the move, otherwise reject it.

(b) if no move has been accepted in most recent inner loop then
ILSinceLastAccept = ILSinceLastAccept+ 1
else ILSinceLastAccept = 0

(c) T = T ∗ α, IC = IC + 1
(d) if (ILSinceLastAccept > MaxFailedCycles) or (IC > ICmax) then

finished = true

4. The state Vbest giving the lowest cost over the whole search is taken as the
final ‘solution’.

Note that as T decreases to 0 then exp−∆cost/T also tends to 0 if ∆cost > 0
and so the chances of accepting a worsening move become vanishingly small as

the temperature is lowered. In all the work reported here, the authors have used
a value 0.95 for the geometric cooling parameter α and a value of 400 for N .
In attacking the PPP it will be useful also to record when each solution

element (i.e. V0, . . . , Vn−1) changed for the last time. For current purposes, the
time of last change to an element Vk is deemed to be the index IC of the inner
loop in which the last change was made to that element (i.e. when a neighboring
solution was obtained by flipping Vk and a move to that solution was taken).
These times form the basis of the timing channel indicated earlier.

3 Attacking the Perceptron Problem by Problem

Warping

Both Pointcheval [11] and subsequently Knudsen and Meier [8] have attacked
the PP using a cost function of the form.

Cost(V ′) =

m∑

i=1

max{−(AV ′)i, 0}

Pointcheval uses the annealing process directly to obtain solutions to the PP
and reports ‘We have carried out many tests on square matrices (m = n) and on
some other sizes, and during a day, we can find a solution to any instance of PP
with size less than about 200.’ Knudsen and Meier use an iterative procedure,
each stage using multiple runs of the annealing algorithm. At each stage com-
monality between solutions is determined and then fixed for subsequent stages.
They report obtaining solutions for various sizes including (m,n) = (151, 167)
far quicker (a factor of 180) than those reported earlier.
In both cases the cost function used is very direct. It is an obvious character-

isation of what the search process is required to achieve. Direct cost functions
are, however, not always the most effective. Examination of the way problem
instances are generated reveals that small values of wi = (AV)i are more likely
than larger values. The initial distribution of (AV)i is (essentially) binomial,
with values ranging (potentially) from −n to n. The negation of particular ma-
trix rows simply folds the distribution at 0. This causes difficulties for the search
process since attempting to cause negative wi to become positive by flipping
the value of some element Vj is likely to cause various small but positive wk
to become negative. It is just too easy for the search to get stuck in such local
optima. One solution is to encourage the wi to assume values far from 0. This
is easily effected: rather than punish when wi is negative, punish when wi < K

for some positive value K, i.e. use a cost function of the form

Cost(V ′) = g

m∑

i=1

(max{K − (AV ′)i, 0})
R

The cost function is a means to an end. A ‘good’ cost function is one that
‘works’, i.e. one that guides the search to obtain desired results. Choice of cost

0 1 2 3 0 1 2 3

Pr 0 0 0 0 3 Pr 5 0 4 6 5
Pr 1 3 6 2 11 Pr 6 3 6 12 5
Pr 2 1 11 6 8 Pr 7 4 7 14 2
Pr 3 8 12 6 3 Pr 8 3 14 2 9
Pr 4 0 4 5 4 Pr 9 1 1 5 4

PP(201,217):30 Runs

0 1 2 0 1 2

Pr 0 0 0 1 Pr 5 0 1 0
Pr 1 0 0 2 Pr 6 1 2 6
Pr 2 0 0 1 Pr 7 0 11 6
Pr 3 1 4 14 Pr 8 0 2 9
Pr 4 1 3 6 Pr 9 3 12 11

PP(401,417):40 Runs

Table 1. Number of successes after simulated annealing plus {0,1,2,3}-bit hill-climbing
for (201,217) and (401,417) instances

0 1 2 3 0 1 2 3

Pr 0 0 0 0 0 Pr 5 0 0 0 2
Pr 1 0 0 1 1 Pr 6 0 0 0 1
Pr 2 0 2 2 4 Pr 7 0 0 0 1
Pr 3 0 1 1 3 Pr 8 0 0 0 0
Pr 4 0 0 0 0 Pr 9 0 1 3 4

PP(501,517):10 Runs

0 1 2 3 0 1 2 3

Pr 0 0 0 0 1 Pr 5 0 0 2 2
Pr 1 0 0 0 1 Pr 6 0 2 1 1
Pr 2 0 0 0 0 Pr 7 0 0 0 0
Pr 3 0 0 0 2 Pr 8 0 0 0 0
Pr 4 0 0 0 0 Pr 9 0 0 0 0

PP(601,617):10 Runs

Table 2. Number of successes after simulated annealing plus {0,1,2,3}-bit hill-climbing
for (501,517) and (601,617) instances

function is a subtle matter and experience with many domains suggests that
experimentation is essential. This explains the inclusion of R as a parameter.
There would seem no a priori reason to restrict R to 1.0 (the value used by
previous researchers), and the work reported below shows that higher values
give very good results. Here g magnifies the effect of changes when the current
solution is changed and is really intended as a weighting factor when the cost
function is extended for the PPP problem (see Section 4).

By varying the parameters of this cost function quite radical improvements
can be brought in effectiveness. Experiments were carried out for problem in-
stances of sizes (201, 217), (401, 417), (501, 517) and (601, 617). For the (201, 217)
problems three values of K were used: 20, 15, 10. For the (401, 417) problems
four values of K were used: 30, 25, 20, 15. For the rest K = 25 was used. In the
(201, 217) and (401, 417) cases R = 2.0 and in the others R = 3.0. A weighting
value g = 20 was used throughout. For each configuration of parameters ten runs
were carried out for each problem instance.

The results are shown in Tables 1 and 2. It was found that there were few
direct simulated annealing solutions of the largest PP instances. However, it was
often found that flipping a small number of annealing solution bits (e.g. 1, 2 or
3) provided a solution to the PP instance.

All (201, 217) problem instances gave rise to some solution with Problem 0
being the most resilient (only three out of thirty annealing solutions gave rise to
a PP solution and then only after three-bit enumerative search). Four of the ten
(401, 417) problems produced direct (0-bit search) simulated annealing solutions.

All problems were solved by some run followed by at most an enumerative 2-bit
search. For the (501, 517) problems seven produced a solution (with up to 3-bit
search used). Half the (601, 617) problems gave rise to a solution. No claim to
optimality is made here. For the larger problem sizes only one cost function has
been used and then with only ten runs for each problem. The results serve as a
simple demonstration of how small changes may matter greatly. The use of cost
functions whose minimisation does not lead to the required solution we term
Problem Warping. The solutions obtained by the warping are highly correlated
with the actual defining solution of the problem. For the (201, 217) problems,
the best solution over the 30 runs for each problem ranged from 79.2% – 87.1 %
correct. For the (401, 417), (501, 517) and (601, 617) problems, the ranges were
83.4 % – 87.5%, 80.6% – 86.4% and 77.5% – 86.1%. This is generally much better
than solutions obtained using the standard cost function (K = 0 and R = 1).
That an enumerative search should be required to obtain PP solutions is

not surprising. The cost functions used do not define what it means to be a
solution to the PP and the annealing has attempted to solve the problem it was
posed. However, the results show that the cost functions used do characterise in
some way what it means to be ‘close’ to a PP solution. The enumerative search
can be considered as a second stage optimisation with respect to the traditional
cost function (i.e. K = 0). The authors would suggest a playful guideline for
optimisation researchers in cryptography — if you cannot solve a problem, solve
a different one. It might just help!
Application of Problem Warping has allowed instances of the Perceptron

Problem with secret vectors three times longer than hitherto handled in the
literature (an increase in secret state space from around 2200 to 2617). This is a
huge increase in power and stresses how fragile is current understanding of the
power of heuristic optimisation for cryptanalysis (including our own). However,
the real power of Problem Warping will be seen in the next section. Its real
power lies in its application to the Permuted Perceptron Problem.

4 Attacking the Permuted Perceptron Problem

In 1999 Knudsen and Meier [8] showed that the (m,n) = (101, 117) schemes
recommended by Pointcheval were susceptible to a sophisticated attack based
on an understanding of patterns in the results obtained during repeated runs of
an annealing process. Essentially, their initial simulated annealing process is the
standard one (with the number of trials at each temperature cycle equal to n)
but with a modified cost function given by

Cost(V ′) = g

m∑

i=1

(max{K − (AV ′)i, 0})
R
+

n∑

i=1

(|H(i)−H ′(i)|)
R

H(k) = #{j : (AV)j = k}, i.e. the number of the wi = (AV)i that have value
k. H is the reference histogram for the target solution V (i.e. the histogram of
the values in AV). Similarly H ′ is the histogram for the current solution V ′.

The histograms apply only to positive (AV)i elements. In all the experiments
reported in [8] R = 1.0 and K = 0. There, repeated runs are carried out and
commonality of the outputs from these runs is noted. Loosely speaking if all runs
of the technique agree on certain secret element values there is a good chance
that the agreed values are the correct ones. Agreed bits are fixed and the process
carried out repeatedly until all bits agree. Unfortunately some (small number
of) bits unanimously agreed in this way are actually wrong, and an enumerative
search is made for these bits.

4.1 ClearBox Cryptanalysis - Looking Inside the Box

Virtually all applications of optimisation techniques in cryptography view opti-
misation as a black box technique. A problem is served as input, the optimisation
algorithm is applied, and some output is obtained (a candidate secret in the PP
and PPP examples). However, in moving from starting solution to eventual solu-
tion the heuristic algorithm will have evaluated a cost function at many (possibly
hundreds of) thousands of points. Each such evaluation is a source of information
for the guidance process. In the black-box approach this information is simply
thrown away. For the PPP, the information loss is huge.

As the temperature cools in an application of simulated annealing it becomes
more difficult to accept worsening moves. At some stage an element will assume
the value of 1 (or -1) and then never change for the rest of the search, i.e. it gets
stuck at that value. It is found that some bits have a considerable tendency to get
stuck earlier than others when annealing is applied. (Indeed this observation is
at the root of Chardaire et al.’s variant of annealing known as thermo-statistical
persistency [2].) One could ask ‘Why?’. The answer is that the structure of the
problem instance defined by the matrix and reference histogram exerts such
influence as to cause this. The bits that get stuck early tend to get stuck at

the correct values. Once a bit has got stuck at the wrong value it is inevitable
that other bits will subsequently get stuck at wrong values too. However, it is
unclear how many bits will get stuck at the right value before a wrong value is
fixed. This has been investigated for various problem sizes and cost functions.
Three problem sizes were considered as shown in Table 3. For each problem size
a cost function is defined by a value of g, a value of K and a value of R. Thirty
problem instances were created for each problem size. For each problem and each
cost function ten runs of the annealing process were carried out. The runs were
assessed on two criteria: number of bits set correctly in the final solution and
number of bits initially stuck correctly before a bit became stuck at an incorrect
value.

Thus, for (101, 117) instances there were 3×8×3 = 72 cost functions and so
720 runs in total for each problem. The results are shown in Table 4. For each
problem the maximum number of correctly set bits in a final solution (i.e. the
final result of an annealing run) is recorded together with the maximum number
bits fixed correctly in a solution before a bit was set incorrectly (usually these
will not be simultaneously achieved by one single solution).

(m,n) Values of g1 Values of K Values of R

(101,117) 20,10,5 1,3,5,7,9,11,13,15 2,1.5,1
(131,147) 20,10 7, 10, 13, 16 2,1
(151,167) 20,15,10,5 5, 10, 15, 20 2,1

Table 3. Cost function parameter values. All combinations of g, K and R were used.

Prob FBC IBC

Pr 0 102 50
Pr 1 100 45
Pr 2 103 45
Pr 3 99 53
Pr 4 101 46
Pr 5 108 72
Pr 6 99 39
Pr 7 101 56
Pr 8 104 55
Pr 9 106 56
Pr 10 102 56
Pr 11 107 56
Pr 12 101 58
Pr 13 104 42
Pr 14 102 47
Pr 15 102 56
Pr 16 101 39
Pr 17 103 51
Pr 18 103 40
Pr 19 103 50
Pr 20 105 62
Pr 21 107 68
Pr 22 106 58
Pr 23 103 62
Pr 24 103 53
Pr 25 100 56
Pr 26 104 51
Pr 27 98 53
Pr 28 105 57
Pr 29 103 56

Size (101,117)
720 runs

Prob FBC IBC

Pr 0 126 42
Pr 1 135 68
Pr 2 128 64
Pr 3 126 672
Pr 4 130 39
Pr 5 131 70
Pr 6 126 47
Pr 7 128 56
Pr 8 123 52
Pr 9 139 75
Pr 10 129 51
Pr 11 123 48
Pr 12 134 57
Pr 13 132 62
Pr 14 124 37
Pr 15 122 59
Pr 16 124 41
Pr 17 121 42
Pr 18 130 62
Pr 19 129 53
Pr 20 132 67
Pr 21 128 59
Pr 22 129 97
Pr 23 127 61
Pr 24 126 43
Pr 25 127 72
Pr 26 132 44
Pr 27 125 68
Pr 28 126 38
Pr 29 123 50

Size (131,147)
160 runs

Prob FBC IBC

Pr 0 148 72
Pr 1 142 64
Pr 2 145 66
Pr 3 157 88
Pr 4 147 58
Pr 5 140 67
Pr 6 151 86
Pr 7 135 48
Pr 8 143 55
Pr 9 150 95
Pr 10 149 61
Pr 11 145 70
Pr 12 143 49
Pr 13 138 63
Pr 14 147 58
Pr 15 141 63
Pr 16 151 56
Pr 17 144 82
Pr 18 147 98
Pr 19 137 47
Pr 20 136 69
Pr 21 140 59
Pr 22 142 55
Pr 23 146 67
Pr 24 138 69
Pr 25 147 69
Pr 26 145 61
Pr 27 146 68
Pr 28 141 64
Pr 29 143 80

Size (151,167)
320 runs

Table 4. Maximum final bits correct (FBC) and maximum initial bits correct (IBC)
over all runs. Total number of runs shown for each problem size. Thirty problem in-
stances were attacked for each problem size.

4.2 Making Best Use of Available Information

Consider Ax for any solution vector x. Flipping any single element of x causes
the components (Ax)i to change by ±2. Similarly, flipping any two bits of x

causes the components to change by ±4 or else stay the same. Flipping three
bits causes the components to change by ±2 or ±6. Generalising, if x may be
transformed into the secret generating solution V by changing an even number
of bits, then (Ax)i = (AV)i± 4k for some integer k. Similarly, if an odd number
of bit changes are needed then (Ax)i = (AV)i ± 4k + 2. For any x let

SUMA(x) = #{i : (Ax)i = 4k + 1, for some k}

SUMB(x) = #{i : (Ax)i = 4k + 3, for some k}

SUMA(V) = H(1) + H(5) + . . . and SUMB(V) = H(3) + H(7) + . . . where
H is the publicly available reference histogram. If V is obtained from x by an
even number of bit changes, then we have SUMA(V) = SUMA(x) and also
SUMB(V) = SUMB(x). If V is obtained from x by an odd number of bit
changes, then SUMA(V) = SUMB(x) and SUMB(V) = SUMA(x). Only one
of SUMA(V) and SUMB(V) can be odd (since their sum, n, is odd). Thus, for
any vector x it is possible to determine whether it differs from V by an even or
odd number of bits using the respective values of SUMA(x) and SUMA(V).
Suppose V is the actual secret and x is a solution obtained by annealing. If x

is a high performing solution (with few bits wrong) then (Ax)i will typically be
very close to (AV)i. For the (101,117) problem instances, if (Ax)i = 1 then the
average actual value of (AV)i was 6.02. For (131,147) and (151,167) instances
the averages were 6.23 and 6.46.
Suppose that (Ax)i = 1 and ten bits are wrong. Typically it will be the case

that (AV)i ∈ {1, 5, 9, 13}. This observation has a big impact on enumerative
search. For the sake of argument suppose that (Ax)i = (AV)i = 1. Then flipping
the ten wrong bit values to obtain the actual secret must have no effect on the
resulting value of (Ax)i. This means that for five wrong bits we must have
aijxj = 1 and for the other five we must have aijxj = −1. This reduces any
enumerative search. For example, searching over 117 bits would usually require
C117

10
(around 4.4 × 1015) but now requires a search of order around C58

5
× C57

5

(around 2.1 × 1013). This assumes that for solution x #{xj : aijxj = 1} = 58
and #{xj : aijxj = −1} = 57 (or vice versa). In practice, this may not be
the case but any skew actually reduces the complexity of the search. In this
respect, it may be computationally advantageous to consider some (Ax)i < 0.
For example, if (Ax)i = −7 and there are 10 bits wrong then (AV)i must be in
the range 1..13 with the smaller values much more likely. If (AV)i = 1 then there
must be seven wrong bits currently with aijxj = −1 and three with aijxj = 1.
This is a powerful mechanism that will be used repeatedly.
One has to guess the relationship of (Ax)i to (AV)i. This will generally

add only a factor of about four to the search (and often less). One has also to
determine how many bits are actually wrong too. One can start by assuming that
the solution vector has the minimum number of bits wrong yet witnessed and

engage in enumerative searches. If these fail, simply increment the number of bits
assumed incorrect by 2 and repeat the search processes (only even numbers or
odd numbers of wrong bits need be considered). The complexity of the search is
dominated by the actual number of wrong bits (searches assuming fewer numbers
of wrong bits are trivial by comparison). The complexities reported in this paper
therefore assume knowledge of the number of wrong bits in the current solution.

4.3 The Direct Attack

It is obvious that ‘warping’ the cost function produces results that are indeed bet-
ter than those obtained under the natural cost function. Thus, in the (101, 117)
problems three (5, 11 and 22) have given rise to solutions with 10 bits or fewer
wrong (from the FBC column of Table 4). Once the highest performing solution
has been selected (a factor of 720) an enumerative search of order C58

5
× C57

5

(which is less than 245) will find the solution in these cases. For the (131, 147)
and (151, 167) instances extreme results are also occasionally produced. (131,147)
Problem 9 gave rise to one solution with only 8 bits wrong. (151,167) Problem
3 similarly gave rise to a solution with only 10 bits wrong. This would require a
total search of approximately 320×C84

5
×C83

5
which is less than 260. Thus, even

a fairly brutal search will suffice on occasion, even for the biggest sizes. This is
not the most efficient way of solving the problem however.

4.4 Timing Supported Attack

The largest number of initially settled bits can clearly leak a huge amount of
information. For (151,167) problems 18, 9 and 3 some solution was obtained
whose first 98, 95,88 initially stuck bits were correct. The respective complexities
of brute force search over the remaining entries would be of order 269, 272, 279.
Although not within the traditional 264 distance they are sufficiently close to
render use of the PPP scheme impossible. For (131,147) there would appear to
be an outlier problem 22 with 97 initial bits correct. This leaves a search of order
250.
Another approach would be to consider in turn all possible pairs of solutions

obtained. One pair contains a solution VMAX with the maximum number of bits
correct and a solution VINIT with the maximum number of initial bits correct.
This pair could form the basis for the subsequent search and we can calculate
the computational complexity of finding the exact solution. Obtaining this pair
requires a search factor equal to the number of runs squared.
Assume that at least the first I bits initially fixed in VINIT are correct.

Change the corresponding bits in VMAX to agree with those in VINIT. These
bits are now excluded from the subsequent search — the search will be over
the remaining n − I bits of the modified VMAX. For example, suppose in the
(101, 117) case that the best initial solution provides us with at least 37 bits
(from Table 4 this applies to all 30 problems). This leaves us with 80 bits over
which to conduct the remaining search. Suppose ten wrong bits remain. The

66 71 65 69 69 47 75 65 60 56
63 54 64 64 67 63 71 64 67 64
56 51 56 59 63 66 62 70 58 62

85 59 74 76 77 67 84 77 87 47
76 88 64 67 91 85 89 94 71 76
65 76 57 77 85 72 71 77 86 88

80 94 88 56 86 95 70 111 95 68
81 86 97 100 86 96 78 83 72 108
99 99 97 86 97 83 89 85 95 85

Table 5. Search complexities (log 2) of Timing Supported Attacks on (101,117)(upper),
(131,147)(middle) and (151,167)(lower) size schemes. Thirty problem instances at each
size.

total complexity of the whole search is now approximately

720× 720× C40

5
× C40

5
= 2.24× 257

Enumerative searches can be performed under optimistic assumptions and these
can be progressively relaxed leading to more complex searches. Assuming the
number of initially set bits is known, and the number of bits wrong in the best
final solution is known, the complexities of the searches are given in Table 5.
We have given some very conservative attacks. Some cost functions are clearly
more effective than others and it would be possible to restrict attention to a
subset of the set consider so far. For the (151,167) problem size Tables 6 and 7
give summary results for each problem instance (over all cost functions) and for
each cost function (over all problem instances).

4.5 Other Attacks

Other attacks are possible. For example taking the majority vector over all so-
lution runs (whatever the cost function) can on occasion leak a great deal of
information. Commonality of solution elements of repeated runs is at the heart
of Knudsen and Meier’s technique. This strategy can be adopted here. If runs
agree under widespread problem deformation (i.e. using multiple cost functions)
then there is often good cause to believe they agree correctly. Rather than insist
on absolute agreement, we can rank the secret bits according to the degree of
agreement. Frequently the top ranked bits are correct though this method is
somewhat erratic. Table 8 shows the number of top ranked bits correct for each
(151,167) problem. Thus, for problem 1 the 41 bits that gave rise to most agree-
ment over all runs (the 320 runs indicated in Table 4) were actually correct. We
can see that for problems 3, 9 and 18 the most agreed 78, 87 and 88 bits were
correct (in the sense that the majority vector is right). This is very significant
since around half of all bits are revealed without any kind of enumerative search
being deployed.
It is also possible to add up the sticking times of components over all runs.

When these are ranked (the highest being the one that took least aggregate time

Problem Final Bits Correct Initial Bits Correct
Av.Min Over.Av Av.Max Av.Min Over.Av Av.Max

Prob 0 130.84 135.82 140.34 6.84 22.06 43.81
Prob 1 125.66 130.25 136.12 7.41 23.68 43.28
Prob 2 129.31 135.24 140.94 8.78 25.78 47.59
Prob 3 133.16 140.88 147.19 23.72 44.34 66.81
Prob 4 127.53 132.96 138.44 9 24.3 41.25
Prob 5 128.22 132 135.72 9.66 27.13 47.22
Prob 6 136.06 140.78 145.22 12.91 31.31 53.69
Prob 7 116.94 123.18 129.22 8.28 21.33 35.56
Prob 8 129.56 133.32 137.22 5.16 16.9 33.09
Prob 9 135.34 139.48 143.84 25.03 49.25 73
Prob 10 127.34 132.09 136.94 3.84 16.82 34.78
Prob 11 127.91 135.78 141.53 23.66 39.82 57.62
Prob 12 124.69 131.02 137.34 6.19 20.69 35.25
Prob 13 122.69 127.63 132.44 10.66 25.44 42.16
Prob 14 127.91 132.17 137.12 9.91 25.47 43.5
Prob 15 125.25 130.67 134.91 5.59 18.6 35.62
Prob 16 132.75 139.54 145.41 3.84 17.9 38.12
Prob 17 125.91 131.04 136.38 24.12 42.57 61.72
Prob 18 133.78 138.31 143.12 30.06 53.65 72.81
Prob 19 122.94 127.63 132.25 1.09 11.93 28.03
Prob 20 122.16 126.53 131.56 10.25 26.03 43.94
Prob 21 126.62 131.68 136.69 8.72 24.37 43.34
Prob 22 123.28 129.99 135.91 4.06 17.48 36.09
Prob 23 127.34 133.53 139.31 7.25 21.68 40.88
Prob 24 120.28 126.09 131.94 16.78 35.12 54.59
Prob 25 130.16 136.05 140.38 8 25.65 46.06
Prob 26 134.09 138.25 141.94 6.84 23.44 45.97
Prob 27 131.22 136.85 142.19 5.97 23.45 46.22
Prob 28 119.03 125.63 133.38 6.19 20.47 37.62
Prob 29 129.12 134.59 139.47 18.25 37.94 59.44

Table 6. Summary results over all cost functions for the (151,167) problem instances.
For each problem instance and cost function the minimum final bits correct, the average
final bits correct and the maximum final bits correct over the ten annealing runs were
calculated. For each problem instance columns 2–4 record the averages of such results
over all cost functions. Columns 5–7 record similar information for the initial bits
correct.

Parameters Final Bits Correct Initial Bits Correct
(K,g,R) Av.Min Over.Av Av.Max Av.Min Over.Av Av.Max

(20,20,2) 132.47 136.02 139.23 12.9 29.25 49.97
(20,20,1) 129.93 132.71 135.07 8.47 24.13 40.73
(20,15,2) 132.17 135.82 138.9 14.8 30.57 49.27
(20,15,1) 130.03 132.49 135 9.33 24.86 43.27
(20,10,2) 132.6 135.74 138.57 12.77 29.54 49.1
(20,10,1) 129.97 132.37 134.53 10.3 24.3 41.8
(20,5,2) 132.13 135.8 138.9 13.7 30.71 49.33
(20,5,1) 129.73 132.29 135.07 8.47 24.44 41.97

(15,20,2) 129.7 135.13 139.63 12.23 29.67 48.1
(15,20,1) 129.57 133.67 137.6 10.57 26.64 45.63
(15,15,2) 130.87 135.32 140.1 12.37 30.43 50.7
(15,15,1) 130.1 133.76 137.33 12.1 28.09 46.3
(15,10,2) 129.63 135.15 140.1 12.53 30.85 49.83
(15,10,1) 129.23 133.57 137.3 12.83 29.77 47.9
(15,5,2) 130.5 135.49 140.13 14.9 31.16 51.67
(15,5,1) 129.63 133.67 137.3 10.6 27.61 47.07

(10,20,2) 126.67 133.01 140.23 10.53 28.56 48.87
(10,20,1) 128 134.06 139.47 11.27 28.89 50.6
(10,15,2) 126.6 133.39 140.1 11.53 29.25 47.23
(10,15,1) 128.87 134.17 138.9 12.4 29.28 49.47
(10,10,2) 126.93 133.54 139.73 10.67 28.06 49.3
(10,10,1) 128.57 133.91 139.13 14.27 29.95 47.03
(10,5,2) 126.6 133.43 140.53 12.63 28.5 47.73
(10,5,1) 128.8 134.2 139.73 12.77 29.48 49.27

(5,20,2) 120.4 128.16 135.97 7.23 21.24 38.93
(5,20,1) 122 130.1 138.77 8.87 23.74 43.23
(5,15,2) 120.27 129.18 137 7.97 23.81 44
(5,15,1) 122.5 130.04 137.53 7.47 23.73 43.27
(5,10,2) 121.37 129.17 137.03 7.57 22.54 42.1
(5,10,1) 122.8 130.13 137.2 8.9 24.15 44.6
(5,5,2) 121.23 129.19 136.87 8.13 21.95 40.67
(5,5,1) 122.37 130.22 137.77 8.87 23.75 42.77

Table 7. Summary results for each cost function over all (151,167) problem instances.
For each problem instance and cost function the minimum final bits correct, the average
final bits correct and the maximum final bits correct over the ten annealing runs were
calculated. For each cost function columns 2–4 record the averages of such results
over all problem instances. Columns 5–7 record similar information for the initial bits
correct.

Probs 0–9 0 41 0 78 0 30 0 0 0 87
Probs 10–19 0 41 0 0 0 39 0 62 88 0
Probs 20–29 0 36 0 0 36 32 33 36 28 46

Table 8. Top N agreed correct for problem instances of size (151,167)

to get stuck) the results can also leak information. In some cases only 1 bit of
the first ranked 100 for the (151,167) gave rise to a majority vector component
that was incorrect.

5 Summary and Conclusions

We have demonstrated that recent fault injection and timing side channel at-
tacks on cryptosystems may be interpreted in the context of optimisation-based
search. The attacks on PP and PPP problems have shown the potential power of
such interpretations. We make no claims to optimality for our results; extensive
experimentation and profiling would allow more effective and efficient sets of
cost functions to be determined.
Virtually all work using optimisation techniques attempts to solve the prob-

lem at hand in one go. We believe we should stop expecting optimisation to solve
problems in this way, and view optimisation as a means of creating data (‘failed’
solutions) on which to do cryptanalysis! This suggests a new form of cryptanal-
ysis – the profiling and interpretation of local optima obtained by optimisation-
based searches. The authors are currently investigating the use of such techniques
to block and public key algorithms. We recommend the area to researchers.

6 Acknowledgements

The authors would like to thank Susan Stepney for comments on a previous draft.
The authors would also like to thank the anonymous Eurocrypt 2002 referees
for their comments.

References

1. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking crypto-
graphic protocols for faults (extended abstract). In Walter Fumy, editor, Advances

in Cryptology - EuroCrypt ’97, pages 37–51, Berlin, 1997. Springer-Verlag. Lecture
Notes in Computer Science Volume 1233.

2. P Chardaire, J C Lutton, and A Sutter. Thermostatistical persistency: a power-
ful improving concept for simulated annealing. European Journal of Operations

Research, 86:565–579, 1995.
3. A. Fiat and A. Shamir. How to Prove Yourself:Practical Solutions of Identification
and Signature Problems. In Ed Dawson, Andrew Clark, and Colin Boyd, editors,
Advances in Cryptology — Crypto ’86, pages 186–194. Springer Verlag LNCS 263,
july 1987.

4. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

5. S. Goldwasser, S. Micali, and C. Rackoff. Knowledge Complexity of Identification
Proof Schemes. In 17th ACM Symposium on the Theory of Computing STOC,
pages 291–304. SACM, 1985.

6. Giddy J.P. and Safavi-Naini R. Automated Cryptanalysis of Transposition Ciphers.
The Computer Journal, XVII(4), 1994.

7. S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, May 1983.

8. Lars R. Knudsen and Willi Meier. Cryptanalysis of an Identification Scheme Based
on the Permuted Perceptron Problem. In Advances in Cryptology Eurocrypt ’99,
pages 363–374. Springer Verlag LNCS 1592, 1999.

9. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, Advances in Cryptology - Crypto ’96,
pages 104–113, Berlin, 1996. Springer-Verlag. Lecture Notes in Computer Science
Volume 1109.

10. Robert A J Mathews. The Use of Genetic Algorithms in Cryptanalysis. Cryptolo-

gia, XVII(2):187–201, April 1993.
11. David Pointcheval. A New Identification Scheme Based on the Perceptron Prob-

lems. In Advances in Cryptology Eurocrypt ’95. Springer Verlag LNCS X, 1995.
12. A. Shamir. An Efficient Scheme Based On Permuted Kernels. In Advances in

Cryptology — Crypto ’89, pages 606–609. Springer Verlag LNCS 435, 1997.
13. Richard Spillman, Mark Janssen, Bob Nelson, and Martin Kepner. Use of A Ge-

netic Algorithm in the Cryptanalysis of Simple Substitution Ciphers. Cryptologia,
XVII(1):187–201, April 1993.

14. Jaques Stern. A New Identification Scheme Based On Syndrome Decoding. In
Advances in Cryptology —Crypto ’93, pages 13–21. Springer Verlag LNCS 773,
1997.

15. Jaques Stern. Designing Identification Schemes with Keys of Short Size. In Crypto

’93, pages 164–173. Springer Verlag LNCS 839, 1997.
16. Forsyth W.S. and Safavi-Naini R. Automated Cryptanalysis of Substitution Ci-

phers. Cryptologia, XVII(4):407–418, 1993.

