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Abstract. As Koblitz curves were generalized to hyperelliptic Koblitz
curves for faster point multiplication by Günter,et al [10], we extend the
recent work of Gallant,et al [8] to hyperelliptic curves. So the extended
method for speeding point multiplication applies to a much larger family
of hyperelliptic curves over finite fields that have efficiently-computable
endomorphisms. For this special family of curves, a speedup of up to 55
(59) % can be achieved over the best general methods for a 160-bit point
multiplication in case of genus g =2 (3).

1 Introduction

The dominant cost operation in protocols based on the discrete logarithm prob-
lem on the Jacobians of hyperelliptic curves is point multiplication by an integer
k, namely computing kD for a point D on the Jacobian. To speed up the main
operation, a variety of techniques are now being in use by considering relevant
objects involving curves and underlying base fields. Among other things, Koblitz
[12] proposed the use of a certain family of elliptic curves, say Koblitz curves.
These curves are ones defined over the binary field but considered over a suit-
ably large extension field, with the advantage that point counting can be easily
done with the help of the Frobenius endomorphism. Along this idea, Meier and
Staffelbach [15], Müller [18], Smart [24], and Solinas [26, 27] have thoroughly
investigated elliptic curves defined over small finite fields. In addition, the idea
of Koblitz curves was generalized to hyperelliptic curves of genus 2 by Günter,
Lange and Stein [10]. We also refer the reader to [14] for a detailed investigation
on hyperelliptic Koblitz curves of small genus defined over small base fields.

Recently, another improvement on faster point multiplication was carried out
by Gallant, Lambert, and Vanstone [8] whose method is applicable to a family
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of elliptic curves having efficiently-computable endomorphisms. Their idea is to
decompose an integer k modulo n into two components whose bit-lengths are
half that of k. A precise analysis of their method showed that a speedup of
up to 50% could be achieved over the best general methods for a 160-bit point
multiplication.

The purpose of this paper is to extend the method of Gallant,et al [8] to the
hyperelliptic setting. As is the case with elliptic curves, the extended method
applies to a family of hyperellliptic curves having efficiently-computable endo-
morphisms since they also induce such endomorphisms on the Jacobians of the
hyperellliptic curves. So what should be done here is to decompose an integer k
modulo n into d components whose bit-lengths are 1/d that of n, where d is the
degree of the characteristic polynomial of an efficiently-computable endomor-
phism on the Jacobian. Simultaneous multiple point multiplication then yields a
significant speedup because of reduced bitlengths. A precise analysis shows that
a speedup of up to 55 (59) % can be achieved over the best general methods
for a 160-bit point multiplication when genus g =2 (3). The problem with this
method is how efficiently a randomly chosen k can be decomposed into a sum of
the required form. To resolve this problem we give two efficient algorithms for
decomposing k. One method is a generalization of Gallant,et al [8]. The other is
an extension of the method developed in [20].

The rest of the paper is organized as follows. In Section 2 we shall briefly sum-
marize some basics on the Jacobians of hyperelliptic curves. In Section 3, we list
up a collection of hyperellipic curves with efficient endomorphisms and provide
the characteristic polynomials of such endomorphisms. Section 4 contains how
to use such endomorphisms for decomposing k and there we apply known simul-
taneous exponentiation methods to the hyperelliptic curves and compare them.
In Section 5 we generalize two decomposing methods to hyperelliptic curves. For
security considerations, in Section 6, we touch on all known attacks to the DLP
on hyperelliptic curves. The final Section contains our conclusions to the present
work.

2 Preliminaries

2.1 Jacobians of hyperelliptic curves

We begin by introducing basic facts on the Jacobians of hyperelliptic curves over
finite fields. Let Fq be a finite field of q elements and let Fq denote its algebraic
closure. A hyperelliptic curve of genus g over Fq is given by the Weierstrass
equation of the form

X : y2 + h(x)y = f(x) (1)

where h ∈ Fq[x] is a polynomial of degree at most g and f(x) ∈ Fq[x] is a monic
polynomial of degree 2g + 1. Let K be an extension field of Fq in Fq. The set
of K-rational points on X consists of K-solutions to the equation of X together
with the point at infinity, denoted ∞.



In this Section we only mention (reduced) representations of elements on the
Jacobian of a hyperelliptic curve X. We recommend the reader to consult an
appendix in [13] for more details on the Jacobians. Indeed, the Jacobian of X
defined over K, denoted JX(K) is defined as the subgroup of JX(F) fixed by the
Galois group Aut(F/K). It is well known by the Riemann-Roch theorem that
every divisor D of degree 0 on X can be uniquely represented as an equivalence
class in JX(K) by a reduced divisor of the form

∑
miPi−(

∑
mi)O with

∑
mi ≤

g. Thus, every element D of the Jacobian can be uniquely represented by a pair
of polynomials a, b ∈ K[x] for which deg(b) < deg(a) ≤ g, and b(x)2+h(x)b(x)−
f(x) is divisible by a(x). Indeed, D is the equivalence class of the g.c.d. of the
divisors of the functions a(x) and b(x) − y. The element of JX(K) will usually
be abbreviated to [a(x), b(x)] := div(a, b).

As for addition in the Jacobian, it can be performed explicitly with Cantor’s
algorithm [4]. Here we do not go into details on the algorithms for composition
and reduction but mention only the complexity of the generic operations in the
Jacobian. Since operations in the Jacobian can be carried out using arithmetic
in K[x], the generic addition needs 17g2+O(g) operations in K whereas doubling
takes 16g2 + O(g) field operations (see [28]). Another remark to complexity is
that an inversion can be done for free, since the opposite of D = [a(x), b(x)] is
given by −D = [(a(x),−h(x)− b(x)].

2.2 Counting group order of Jacobians

For cryptographic purposes, it is essentially necessary to know the group order
of the Jacobian of a hyperelliptic curve in designing public schemes. Computing
the group order of the Jacobian is believed to be a computationally hard task
because it involves counting the number of rational points of a given hyperelliptic
curve over an extension field of a base field of degree up to genus. However, it is
rather easy to compute the group order of the Jacobians of hyperelliptic curves
with extra properties such as complex multiplication. For example, Bulher and
Koblitz [3] considered an especially simple family of hyperelliptic curves of genus
g of the form y2 + y = x2g+1 defined over the field Fp of p elements such that
2g + 1 is a prime < 9. They gave a procedure to determine the group order of
the Jacobians of such curves by simply evaluating a Jacobi sum associated to a
certain character. We mention here that these curves have efficiently-computable
endomorphisms with which we can speed up point multiplication on the Jaco-
bians(see Ex.5 in Section 3).

3 Hyperelliptic curves with efficient endomorphisms

In this Section we first collect a family of hyperelliptic curves of genus g over
Fq that have efficiently-computable endomorphisms φ. They also induce efficient
endomorphisms on the Jacobians and then we compute their characteristic poly-
nomial. Since every element of the Jacobian JX(Fq) can be uniquely represented



by a reduced divisor with at most g points, we can explicitly give induced endo-
morphisms, denoted φ also, on reduced divisors to see that they can be efficiently
computed. For simplicity, we assume for once and all that φ(∞) = ∞ for any
morphism φ involved and that ζm is a primitive mth root of unity in the prime
field Fp of p elements.
Example 1.([14]) Let X1 be a hyperelliptic curve over Fq given by (1). The
q-th power map, called the Frobenius, Φ : X1 → X1 defined by (x, y)→ (xq, yq)
then induces an endomorphism on the Jacobian. We note that the Frobenius
can be computed with no further costly arithmetic over Fqn because for a given
divisor D, computing Φ(D) is just reduced to cyclic shifting provided that an
extension field Fqn is represented with respect to a normal basis. Indeed, it is
computed by at most 2g cyclic shiftings. The characteristic polynomial of the
Frobenius Φ is given by

P (t) = t2g + a1t
2g−1 + · · ·+ agT

g + qag−1t
g−1 + · · ·+ qg−1a1t+ qg,

where a0 = 1, and iai = Sia0 +Si−1a1 + · · ·+S1ai−1 for Si := Ni− (qi+1), 1 ≤
i ≤ g and Ni = |X1(Fqi)|.
Example 2. Let p ≡ 1 (mod 4). Consider the hyperelliptic curve X2 of genus
g over the field Fp defined by

X2 : y2 = x2g+1 + a2g−1x
2g−1 + · · · a3x

3 + a1x.

Then the morphism φ on X2 defined by P = (x, y) 7→ φ(P ) := (−x, ζ4y) induces
an efficient endomorphism on the Jacobian. The characteristic polynomial of φ
on the Jacobian is given by P (t) = t2 + 1. The defining formulae for φ on the
Jacobian are given by

φ : [x2 + a1x+ a0, b1x+ b0] 7→ [x2 − a1x+ a0,−ζ4b1x+ ζ4b0]
[x+ a0, b0] 7→ [x− a0, ζ4b0]

0 7→ 0.

We notice that φ can be easily computed using at most 2 field operations in
Fp, and the Jacobian has an automorphism of order 4, which follows from the
composition of φ with the hyperelliptic involution.
Example 3. Let p ≡ 1 (mod 8). Consider the hyperelliptic curve X3 of genus
2 over the field Fp defined by

X3 : y2 = x5 + ax.

Then the morphism φ on X3 defined by P = (x, y) 7→ φ(P ) := (ζ2
8x, ζ8y) induces

an efficient endomorphism. The characteristic polynomial of φ is given by P (t) =
t4 + 1.

The formulae for φ on the Jacobian are given by

φ : [x2 + a1x+ a0, b1x+ b0] 7→ [x2 + ζ2
8a1x+ ζ4

8a0, ζ
−1
8 b1x+ ζ8b0]

[x+ a0, b0] 7→ [x+ ζ2
8a0, ζ8b0]

0 7→ 0.

It is easily seen that φ can be computed using at most 4 field operations in Fp,
and the Jacobian has an automorphism of order 8.



Example 4. Let p ≡ 1 (mod 12). Consider the hyperelliptic curve X4 of genus
3 over the field Fp defined by

X4 : y2 = x7 + ax.

Then the morphism φ on X4 defined by P = (x, y) 7→ φ(P ) := (ζ2
12x, ζ12y)

induces an efficient endomorphism on the Jacobian as follows .

φ : [x3 + a2x
2 + a1x+ a0, b2x

2 + b1x+ b0] 7→
[x3 + ζ2

12a2x
2 + ζ4

12a1x+ ζ6
12a0, ζ

−3
12 b2x

2 + ζ−1
12 b1x+ ζ12b0]

[x2 + a1x+ a0, b1x+ b0] 7→ [x2 + ζ2
12a1x+ ζ4

12a0, ζ
−1
12 b1x+ ζ12b0]

[x+ a0, b0] 7→ [x+ ζ2
12a0, ζ12b0]

0 7→ 0.
It is easily seen that φ can be obtained using at most 6 field operations

in Fp, and the Jacobian has an automorphism of order 12. The characteristic
polynomial of φ is given by P (t) = t4 − t2 + 1.
Example 5.([5],[3]) Let m = 2g+1 be an odd prime and let p ≡ 1 (mod m).
Consider the hyperelliptic curve X5 of genus g over the field Fp defined by

X5 : y2 = xm + a.

The morphism φ defined by P = (x, y) 7→ φ(P ) := (ζmx, y) induces an efficient
endomorphism on the Jaconbian. It is easily seen that φ can be obtained using
at most 2g− 1 field operations in Fp, and the Jacobian has an automorphism of
order 2m. The defining morphism for the action by ζm on the Jacobian is left to
the reader. The characteristic polynomial of φ is given by P (t) = t2g + t2g−1 +
· · ·+ t+ 1.

4 Using an efficient endomorphism and simultaneous

multi-exponentiation

4.1 Using an efficient endomorphism

LetX be a hyperelliptic curve over Fq having an efficiently-computable endomor-
phism φ on the Jacobian, JX(Fq). Let D = [a(x), b(x)] ∈ JX(Fq) be a reduced
divisor of a large prime order n. The endomorphism φ acts as a multiplication
map by λ on the subgroup < D > of JX(Fq) where λ is a root of the character-
istic polynomial P (t) of φ modulo n. In what follows, let d denote the degree of
the characteristic polynomial P (t).

The problem we consider now is that of computing kD for k selected ran-
domly from the range [1, n− 1]. Suppose that one can write

k = k0 + k1λ+ · · ·+ kd−1λ
d−1 (mod n), (2)

where ki ≈ n1/d. Then we compute

kD = (k0 + k1λ+ · · ·+ kd−1λ
d−1)D

= k0D + k1λD + · · ·+ kd−1λ
d−1D

= k0D + k1φ(D) + · · ·+ kd−1φ
d−1(D). (3)



Since φ(D) can be easily computed and the bitlengths of components are
approximately 1

d that of k, various known methods for simultaneous multiple
exponentiation can be applied to (3) to yield faster point multiplication. Thus
we might expect to achieve a significant speedup because a great number of point
doublings are eliminated at the expense of a few addition on the Jacobian.

4.2 Analysis on simultaneous multi-exponentiation

When simultaneous multi-exponentiation methods apply to hyperelliptic settings
we here focus on determining the best method by comparing running times taken
by these methods. In fact, seeking the optimal one involves various factors such as
bitlengths of components, the number of decomposed components and absolute
memory constrains.

There are two conventional methods for simultaneous multi-exponentiation:
simultaneous 2w-ary method and simultaneous sliding window method. Recently,
Möller [17] presented a method, called wNAF-based interleaving method (for
short, wNAF-IM), which is applicable to groups where inverting elements is easy
(e.g. elliptic curves, hyperelliptic curves). It is analyzed there that his method
usually wins over the conventional methods. One reason for this is that a speedup
for simultaneous multi-exponentiation is affected by storage requirements, which
are given by the formula concerning the expected number of generic operations
in the precomputation stage. By the formula in Table 1 below, the expected
number of generic operations by the wNAF-IM is linear in the number d of
decomposed components but that by other methods is more or less exponential
in d, so the wNAF-IM could be preferably chosen in practical implementations
of point multiplication on the Jaconians of hyperelliptic curves.

We now give a precise analysis of speedup by comparing the expected number
of doublings and additions taken by the three methods above. The comparison
procedure we consider here consists of two stages, the precomputation and the
evaluation. Since addition on the Jacobian takes 17g2 + O(g) operations in Fp

and doubling costs 16g2 + O(g) operations, we may assume that one addition
takes the same cost as one doubling because for security reasons, the genus g
involved is relatively small, e.g. 2 or 3(see Section 6 for security). In Table 1 we
list the expected number of generic operations by three methods. Let b be the
longest bitlength of components ki and let w be the window size.

We compare the best algorithm to compute a single multiplication kD with
that to compute a multi-exponentiation (3). In case of a single multiplication
(d = 1), the NAF sliding window method [2] is known as one with best per-
formance in general. The expected number of additions taken by this method

with window size w is estimated at b + b+1
w+ν(w) + 2w−(−1)w

3 − 2 where ν(w) =

4/3− (−1)w/(3 · 2w−2).
In Table 2 below we give the minimum of the expected numbers of additions

taken by all four methods(including a single point multiplication) for given k
and d. Table 2 provides some indication of the relative benefits of simultaneous
methods applied to our decomposition (3) to a single multiplication kD as in



Table 1. Expected number of generic operations by three methods for
∑d−1

i=0 kiDi with
multipliers up to b bits.

Precomputation stage Evaluation stage

Simultaneous

2w-ary method 2dw − 1− d b b−1
w

cw + b(1− 1
2dw )/w

Simultaneous sliding 2dw − 2d(w−1) − d (w = 1)

window method 2dw − 2d(w−1) (w > 1) b− 1 + b/(w + 1
2d
−1

)

wNAF-based 0 (w = 1)
interleaving method d2w−1 (w > 1) b+ d b

w+2

elliptic curves [8]. As shown in Table 2, the contribution to running times depends
on the bitlength b of k and on the degree d of the characteristic polynomial P (t)
of φ. It also shows that the wNAF-IM turns out to be the best algorithm except
for two cases where d = 1, denoted (∗) below. In those cases the NAF sliding
window method is the best among the methods.

Table 2. Expected number of additions to compute
∑d−1

i=0 kiφ
i(D) where ki is b bits

d = 1, b = 160 d = 2, b = 80 d = 4, b = 40 d = 6, b = 27
193.7 (∗w = 4) 120 (w = 3) 88 (w = 2) 79.5 (w = 2)

d = 1, b = 256 d = 2, b = 128 d = 4, b = 64 d = 6, b = 43
305.3 (∗w = 5) 186.7 (w = 4) 131.2 (w = 3) 118.6 (w = 3)

d = 1, b = 512 d = 2, b = 256 d = 4, b = 128 d = 6, b = 86
601.1 (w = 5) 357.3 (w = 4) 245.3 (w = 4) 213.2 (w = 3)

Table 3. The ratio of the running times of the exended method to the conventional
method.

d ratio Examples

2 0.62 Ex.2
4 0.45 Ex.1 (g=2), Ex.3 (g=2), Ex.5 (g=2)
6 0.41 Ex.1 (g=3), Ex.5 (g=3)

Table 3 contains the ratios of running times of the extended Gallant’s method
to the conventional method for a 160-bit single point multiplication. It also shows
that the extended method improves multiplication reasonably compared to the
conventional method. For example, when d = 6 and b = 27, the extended method



improves a running time up to 59 % compared with the best general methods
when d = 1 and b = 160.

5 Decomposition of an integer k

We are now in a position to decompose an integer k into a sum of the form
given by (2). To this end, we briefly describe a generalization of Gallant, et al.’s
method to the hyperelliptic setting.

5.1 A general method of Gallant et al.’s

We retain notation of Section 4.1. An extended method of Gallant et al.’s is
composed of two steps. Consider the homomorphism

f :

d−1∏

i=0

Z → Zn,

d−1∏

i=0

ai 7→

d−1∑

i=0

aiλ
i (mod n).

Firstly, we find d linearly independent short vectors vj ∈
∏d−1

i=0 Z such that
f(vj) = 0 for 0 ≤ j ≤ d− 1. As a stage of precomputations this process can be
done by the LLL algorithm, independently of k.

Secondly, one needs to find a vector in Zv0 + · · · + Zvd−1 that is close to
(k, 0, · · · , 0) using linear algebra. Then (k0, · · · , kd−1) is determined by the equa-
tion:

(k0, · · · , kd−1) = (k, 0, · · · , 0)− (bb0ev0 + · · ·+ bbd−1evd−1),

where (k, 0, 0, · · · , 0) = b0v0 + · · · + bd−1vd−1 is represented as an element in∏d−1
i=0 Q and bbe denotes the nearest integer to b. Finally, we obtain a short

vector v = (k0, · · · , kd−1) such that f(v) = f((k, 0, · · · , 0)) − f((bb0ev0 + · · · +
bbd−1evd−1)) = k and then we have (2) as desired.

The following Lemma shows that the vector v is indeed short.

Lemma 1. The vector v = (k, 0, · · · , 0)−(bb0ev0+ · · ·+bbd−1evd−1) constructed

as above has norm at most d
2 max{‖v0‖, · · · , ‖vd−1‖}.

Proof. The statement is a generalization of Lemma 1 (d=2) in [8], so the proof
proceeds in a similar way.

5.2 Another method using a division

We are now describing an alternate method for decomposing k using a division
in the ring Z[φ] generated by an efficiently-computable endomorphism φ.

Let us consider the map

g : Z[φ] →
d−1∏

i=0

Z,
d−1∑

i=0

aiφ
i 7→

d−1∏

i=0

ai.

Then f ◦ g(∑d−1
i=0 aiφ

i) =
∑d−1

i=0 aiλ
i (mod n).



Firstly, we need to find α ∈ Z[φ] with short components such that f◦g(α) = 0.

More precisely, we find a short vector v ∈
∏d−1

i=0 Z such that f(v) = 0. (Note that
in the Gallant’s method one has to find d such short vectors which are linearly
independent but here only one such vector.) Then we can obtain α = g−1(v).
Secondly, viewing an integer k as an element in Z[φ] we divide k by α using
Algorithm below and write

k = βα+ ρ

with β, ρ ∈ Z[φ]. Since f ◦ g(α) = 0 and αD = O for D ∈ JX(Fq), we compute

kD = (βα+ ρ)D = βαD + ρD = ρD.

Writing ρ =
∑d−1

i=0 kiφ
i ∈ Z[φ], the preceding equation alternately gives an

desired decomposition of an integer k as in Eqn.(3). This decomposition makes
use of the division process in the ring Z[φ], so we now describe an efficient and
practical algorithm to compute a remainder ρ of a given integer k divided by
α. Let α =

∑d−1
i=0 aiφ

i ∈ Z[φ] with its minimal polynomial g(t). Write g(t) =
t · h(t) + N for some h(t) ∈ Z[t]. It is then easy to see that N = −αh(α) and
−h(α) ∈ Z[φ]. Put α̂ = −h(α) ∈ Z[φ].

Algorithm (Divide k by α =
∑d−1

i=0 aiφ
i)

Input: k ≈ n.

Output: ρ =
∑d−1

i=0 kiφ
i.

1) Precompute α̂ = N/α in Z[φ] and put α̂ =
∑d−1

i=0 biφ
i.

2) xi = k · bi (for i = 0, , d− 1).
3) yi = bxi

N e (for i = 0, , d− 1).

4) ρ = k −∑d−1
i=0

∑d−1
j=0 aiyjφ

i+j .

Return: ρ =
∑d−1

i=0 ki φ
i.

Proof. Assume that k = βα + ρ for some β, ρ ∈ Z[φ]. Then we have k/α =
β + ρ/α. Since kα̂/αα̂ = kα̂/N, we have

k/α =

d−1∑

i=0

(kbi/N)φi.

Putting β =
∑d−1

i=0 bkbi/Ncφi gives ρ = k − αβ. ¤

Giving explicit upper bounds for components of a remainder ρ depends on
the characteristic polynomial of φ and so it is complicated to obtain good upper
bounds in general. But, for a fixed φ one can give explicit upper bounds for
components by analyzing the above algorithm further.

Now we compare two decomposition methods. For this we apply both meth-
ods to the hyperelliptic curves in Section 3. Our implementation results show
that two decompositions of an integer k ∈ [1, n] turn out to be identically same



and the bitlengths of components are approximately 1/d that of n. More pre-
cisely, for each curve in Section 3 (Ex.2 - 5), we select 100 random primes n
of size 160-bits and for each n we carried out decompositions of 105 random
integers k ∈ [1, n] by two methods and see that two decompositions coincide.
But it is expected that two decompositions might not be the same, as in elliptic
curves [20]. As for the bitlengths of components, in Table 4 we compute the
maximum of ratios of A to B where A denotes the maximum of the absolute
value of decomposed components and B denotes n1/d. These maxima tell us that
the bitlengths of components are approximately 1/d that of n because they are
< 2, which implies that A and B are within one bit.

Table 4. Numerical experiments for decomposition

Examples Characteristic polynomial of φ Maxum of ratios of A to B

Ex. 2 P (t) = t2 + 1 0.704
Ex. 3 P (t) = t4 + 1 1.082
Ex. 4 P (t) = t4 − t2 + 1 1.247
Ex. 5 (g=2) P (t) = (t5 − 1)/(t− 1) 1.477
Ex. 5 (g=3) P (t) = (t7 − 1)/(t− 1) 1.682

6 Security Considerations

We described a method for speeding up point multiplication, which is appli-
cable to hyperelliptic curves with efficiently-computable endomorphisms. Such
endomorphisms could be also helpful to obtain a speedup for attacks to the
discrete log problems on the Jacobians [9]. In this Section we shall touch on
various attacks to public-key cryptosystems based on the DLP on the Jacobians
of hyperelliptic curves. Most attacks are hyperelliptic variants extending those
to elliptic curves and standard finite fields. Adleman, DeMarris and Hwang [1]
came up with the first-published algorithm for computing DLP, which runs in
subexponential time. This algorithm applies to hyperelliptic curves over finite
fields whose genus is sufficiently large relative to the size of the underlying fields.
Later, Enge [6] improved their algorithm and precisely evaluated the running
time. Moreover Müller, Stein and Thiel [19] extends the results to real quadratic
congruence function fields of large genus.

When selecting hyperelliptic curves X/Fq of small genus < 4, one has to
avoid curves for which special attacks are known such as the Pohlig-Hellman
and the Pollard rho method. For this reason, hyperelliptic curves are believed
to be ”cryptographically good” provided that the group order of the Jacobians
is divisible by a large prime number ≈ 160-bit.

The hyperelliptic curves we have considered have a small number of automor-
phisms as in a family of hyperelliptic Koblitz curves. In applying the Pollard’s



ρ method, Duursma, Gaudry, and Morain [5] employed an equivalence relation
on points of the Jacobian via automorphisms and could speed up the attack by
a factor of

√
2l, where l is the order of an automorphism. Gaudry [9] also gave a

variant of existing index-calculus methods like [1] to achieve a more speed-up of
a factor of l2. Indeed, this method is faster than the Pollard ρ for genus > 4, and
its complexity O(q2) depends on the cardinality of the base field. So the public
schemes based on our curves are still intractable to this attack since these curves
are hyperelliptic ones of genus 2 or 3 defined over large prime fields.

We now mention other known attacks using special features on groups. Rück
[21] extended an attack on anomalous curves to hyperelliptic curves. His method
works for the groups whose order is divisible by a power of p, where p is the char-
acteristic of the base field. On the other hand, anomalous curves are investigated
by Semaev [23], Smart[25], and Satoh and Araki [22].

There is the Frey-Rück attack using Tate pairing [7]. It is an extension of an
attack using the Weil pairing on elliptic curves. In fact, these attacks are applied
to curves over Fq of which group order divides qk − 1 for some k ≤ 20.

The Weil descent attack on elliptic curves has a hyperelliptic variant. To
avoid this attack one must choose curves defined over extension fields of prime
degree for odd characteristic and of degree 6= 2l − 1 for even characteristic. For
a detailed analysis on the Weil descent we refer to [11], [16].

Finally we conclude that our hyperellipic curves of small genus < 4 are in-
tractable to all known attacks even if efficient endomorphisms may result in
speedy attacks by a factor, which depends upon the number of automorphisms
groups on the Jacobians as shown by Gaudry [9].

7 Conclusion

Motivated by the work of [8], we presented an extended method for accelerat-
ing point multiplication on a family of hyperelliptic curves having efficiently-
computable endomorphisms. One of advantages of this method is that it im-
proves a running time by 55 (59) % compared with the best general ordinary
methods for a 160-bit point multiplication when applied to such curves of g =2
(3). Another advantage is that there is a wide range of possibility of selecting
hyperelliptic curves of genus g ≤ 3 over large prime fields rather than elliptic
curves. Also we presented two algorithms for decomposing a multiplier k so that
the extended method can be applicable to such curves. Computer implementa-
tions of two algorithms showed that the bitlengths of decomposition components
are roughly equal to 1/d -bit of an integer k.
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