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Abstract. A general linear iterative cryptanalysis method for solving
binary systems of approximate linear equations which is also applicable
to keystream generators producing short keystream sequences is pro-
posed. A linear cryptanalysis method for reconstructing the secret key
in a general type of initialization schemes is also developed. A large class
of linear correlations in the Bluetooth combiner, unconditioned or con-
ditioned on the output or on both the output and one input, are found
and characterized. As a result, an attack on the Bluetooth stream cipher
that can reconstruct the 128-bit secret key with complexity about 270

from about 45 initializations is proposed. In the precomputation stage,
a database of about 280 103-bit words has to be sorted out.
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1 Introduction

BluetoothTM is a standard for wireless short-range connectivity specified by the
BluetoothTM Special Interest Group in [1]. The specification defines a stream ci-
pher algorithm E0 to be used for point-to-point encryption within the Bluetooth
network. The algorithm consists of a keystream generator, derived from the well-
known summation generator, and an initialization scheme which is based on the
keystream generator. The size of the secret key used for encryption is 128 bits,
and the initialization vector (IV ) consists of 74 bits, 26 of which are derived
from a real-time clock, while the remaining 48 are the address bits depending
on users. The internal state of the keystream generator is 132 bits long, and the
keystream sequences produced are very short, that is, at most 2745 bits for each
initialization vector. The description of the Bluetooth security protocol given in
[1] is not quite clear and, according to some interpretations, a number of security
weaknesses of the protocol are presented in [12].

The keystream generator is a binary combiner composed of four linear feed-
back shift registers (LFSR’s) of total length 128 that are combined by a nonlinear
function with 4 bits of memory which is a modified combining function of the
summation generator. This modification turns out to be important as it reduces
some correlation weaknesses of the summation generator identified in [17] and
[10]. Some further interesting improvements to this end which require minor



modifications of the combining function are proposed in [14]. However, accord-
ing to [1] and [14], the short keystream sequences should prevent the correlation
attacks based on the correlation properties of the Bluetooth combiner.

Due to a large size of the internal state, the complexity of general time-
memory or time-memory-data tradeoff attacks (e.g., see [9]) for realistic amounts
of known keystream data seems to be higher than the complexities reported
below. Besides, as such attacks aim at recovering an internal or the initial state
of the keystream generator, they are not directly applicable to Bluetooth if
the objective is to recover the secret key because of the initialization scheme
used. The basic divide-and-conquer attack on the Bluetooth combiner directly
follows from the similar attack [3] on the summation generator (also see [12]).
In such an attack, 89 bits of the initial states of the three shortest LFSR’s
along with 4 initial memory bits are guessed. This allows to recover the output
sequence of the longest LFSR from the keystream sequence. Altogether, about
132 keystream bits are needed to identify the correct guess. The same attack
applies to the initialization scheme, so that the secret key can be reconstructed
in about 293 steps from just one IV , where the step complexity is the same as in
the exhaustive search method. If one guesses 56 bits of the two shortest LFSR’s
and applies a sort of the branching method [9] for producing a system of linear
equations, then the initial states of the other two LFSR’s can be recovered in
about 284 steps, and some optimizations are possible [4]. The secret key can be
obtained in a similar way.

The main objective of this paper is to identify a large class of linear correla-
tions in the Bluetooth combiner which, in spite of the short keystream sequences,
enable one to reconstruct not only the LFSR initial states, but also the secret key
from a relatively small number of IV ’s. More precisely, we consider the uncondi-
tioned linear correlations, the linear correlations conditioned on the output, and
the linear correlations conditioned on both the output and one guessed input.
The resulting system of linear equations holding with probabilities different from
one half can then be solved by a general linear iterative cryptanalysis method
similar to iterative probabilistic decoding algorithms used in fast correlation at-
tacks. The secret key can be recovered by a related linear cryptanalysis method
from a number of IV ’s. The total complexity is about 270 steps, with the step
complexity comparable to one of the exhaustive search method, the required
number of IV ’s is about 45, and the precomputation stage consists in sorting
out a database of about 280 103-bit words.

Description of the Bluetooth stream cipher is provided in Section 2. The lin-
ear correlations are explained and characterized in Section 3, the general method
for solving binary systems of approximate linear equations and its application
to the Bluetooth keystream generator are presented in Section 4, and a linear
cryptanalysis method for initialization schemes is proposed in Section 5. Opti-
mal choices of parameters for concrete attacks are discussed in Section 6 and
conclusions are given in Section 7. Analogous linear correlations computed for
the modified Bluetooth combiner [14] are displayed in the Appendix.



2 Description of Bluetooth Stream Cipher

The description is based on [1], but only the details relevant for our linear crypt-
analysis method will be presented. The main component of the Bluetooth stream
cipher algorithm is the keystream generator (Bluetooth combiner) which is de-
rived from the well-known summation generator with four input LFSR’s. The
LFSR lengths are 25, 31, 33, and 39 (128 in total) and all the feedback polyno-
mials are primitive and have 5 nonzero terms each. All the LFSR’s are regularly
clocked and their binary outputs are combined by a nonlinear function with 4 bits
of memory. Let xi = (xit)

∞
t=0 denote the output sequence of LFSRi, 1 ≤ i ≤ 4,

where the LFSR’s are indexed in order of increasing length. The internal mem-
ory of the combiner at time t consists of 4 memory bits Ct = (ct, ct−1), where 2
carry bits ct = (c0t , c

1
t ) are defined in terms of 2 auxiliary carry bits st = (s0

t , s
1
t ).

Let z = (zt)
∞
t=0 denote the output sequence of the combiner. Then the output

sequence of the combiner is defined recursively by

zt = x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t ⊕ c0t (1)

c0t+1 = s0
t+1 ⊕ c0t ⊕ c0t−1 ⊕ c1t−1, c1t+1 = s1

t+1 ⊕ c1t ⊕ c0t−1 (2)

(s0
t+1, s

1
t+1) =

⌊

x1
t + x2

t + x3
t + x4

t + 2c1t + c0t
2

⌋

(3)

with integer summation in the last equation, where the initial 4 memory bits
(c00, c

1
0, c

0
−1, c

1
−1) have to be specified. Note that in the summation generator the

memory consists of only 2 bits of the carry st, i.e., ct = st.

Due to frequent resynchronizations, the maximal keystream sequence length
produced from a given initial state of the keystream generator is only 2745 bits.
The initial state consists of 128 bits defining the initial LFSR states and 4 initial
memory bits. They are produced by an initialization scheme from (at most) 128
secret key bits and the known 74-bit IV consisting of 48 address bits depending
on users and of variable 26 bits derived from a real-time master clock. The secret
key itself is derived from some secret and some known random information by
another algorithm, which is irrelevant for our cryptanalysis.

The initialization scheme is the Bluetooth combiner initialized with some
secret key bits and some IV bits, while the initial 4 memory bits are all set to 0.
The remaining secret key bits and IV bits are added modulo 2, one at a time,
to the feedback bits of individual LFSR’s, for a number of times depending on
the LFSR. The details are not important, except for the fact that the LFSR
sequences in the initialization scheme linearly depend on the secret key and IV .
The combiner is clocked 200 times and the last produced 128 output bits are
permuted in a specified way to define the LFSR initial states, while the last 4
memory bits are used as the initial 4 memory bits for keystream generation.



3 Linear Correlations in Bluetooth Combiner

The basis of the linear cryptanalysis method to be developed are linear relations
among the input bits to the Bluetooth combiner that hold with probabilities dif-
ferent from one half, in the probabilistic model in which the input sequences are
modeled as purely random, i.e., as mutually independent sequences of indepen-
dent and balanced (uniformly distributed) binary random variables. Such linear
relations are called linear correlations since they are directly or indirectly depen-
dent on the known output sequence. The first point to analyze is the asymptotic
distribution of the 4 memory bits in this probabilistic model, if the initial 4
memory bits are either fixed or purely random. In the summation generator,
due to the fact that the nonlinear function (3) is not balanced, it follows that
the 2 carry bits are not balanced asymptotically, and this is the main source of
a number of correlation weaknesses derived and exploited in [17] and [10]. How-
ever, in the case of Bluetooth, due to the introduced linear functions (2), Ct+1

is a balanced function of Ct and Xt = (x1
t , x

2
t , x

3
t , x

4
t ) and hence Ct is balanced

for every t if it is balanced for t = 0. Moreover, this also holds asymptotically,
when t increases, if the initial memory bits, C0, are fixed, because the underlying
Markov chain is ergodic, and the convergence to the stationary distribution is
very fast.

Consider a block ofm consecutive output bits, Zm
t = (zt, zt−1, · · · , zt−m+1) as

a function of the corresponding block of m consecutive inputs Xm
t = (Xt, Xt−1,

· · · , Xt−m+1) and the preceding memory bits Ct−m+1. Assume that Xm
t and

Ct−m+1 are balanced and mutually independent. Then, according to [7], ifm ≥ 5,
then there must exist linear correlations between the output and input bits, but
they may also exist if m ≤ 4. As the correlations are time invariant, we introduce
the notation Zm = Fm(Xm, C), where Zm = (zj)

m−1
j=0 and Xm = (Xj)

m−1
j=0 . By

virtue of the linear output function (1), it follows that Fm(Xm, C) is a balanced
function that is also balanced for any fixed C. The input block Xm of 4m bits
can be rearranged into Xm = (Xm

i )4i=1, where Xm
i = (xij)

m−1
j=0 is the i-th input

block of m bits, corresponding to the output of LFSRi. Then (1) implies that
Fm(Xm, C) is balanced for any fixed Xm

i and, also, for any fixed Xm
i and C

combined.

Let f and g be two Boolean functions of an n-bit input vector which is
assumed to be uniformly distributed. Then the correlation coefficient between f
and g conditioned on a subset X ⊆ {0, 1}n is defined as

c(f, g | X ) = Pr(f(X) = g(X) |X ∈ X )− Pr(f(X) 6= g(X) |X ∈ X )

=
1

|X |

∑

X∈X

(−1)f(X)⊕g(X) =
1

|X |

∑

X∈X

(−1)f(X)(−1)g(X). (4)

The correlation coefficients conditioned on X between f and all linear functions
l are thus determined by the Walsh transform of a real-valued function defined
as (−1)f(X) for X ∈ X and as 0 otherwise. They can be computed by the fast
Walsh transform algorithm of complexity O(n2n).



All the correlations of interest to be described below correspond to (4) and
were feasible to compute exhaustively for m ≤ 6. All significant correlation
coefficients were also tested by computer simulations on sufficiently long output
sequences. It turns out that form ≤ 3 the correlation coefficients are equal to zero
in all the cases. For 4 ≤ m ≤ 6, it turns out that relatively large absolute values of
the correlation coefficients along with the associated input linear functions can be
characterized in terms of the underlying conditions. In addition, it also turns out
that the Boolean functions specifying the signs of the correlation coefficients have
relatively simple characterizations. The Boolean sign function is here defined as
sign(c) = 0 for c > 0 and sign(c) = 1 for c < 0.

3.1 Unconditioned Linear Correlations

The first type of correlations to be considered are the correlations between linear
functions of input bits and linear functions of output bits, as introduced in [7].

Namely, let W ·Xm =
⊕4

i=1

⊕m−1
j=0 wijx

i
j and v · Zm =

⊕m−1
j=0 vjzj denote two

such linear functions defined by a matrix W and a vector v, respectively. We
want to find all W and v such that the correlation coefficient c(W ·Xm,v ·Zm)
is relatively large in absolute value. Define the (column) weights of W as wj =
∑4

i=1 wij , 0 ≤ j ≤ m−1. Then the main property, observed in [14], which follows
from the symmetry of the combiner output and next-state functions with respect
to 4 input variables, is that the correlation coefficient depends on v and only on
the weights of W, i.e., on the weight vector w = (wj)

m−1
j=0 .

4-bit case There are 96 pairs of input/output linear functions that are mu-
tually correlated, with nonzero correlation coefficients ±1/16. The output and
input linear functions respectively have the weight patterns (1, v1, v2, 1) and

(4, w1, w2, 4) such that (w1)2 6= v1, where (w1)2
def
= w1 mod 2. Each of 2 output

linear functions with v2 = 0 is correlated to 16 = 8 × 2 input linear functions
with w2 ∈ {0, 4}. Each of 2 output linear functions with v2 = 1 is correlated
to 32 = 8 × 4 input linear functions with w2 = 3. One of these 96 pairs was
theoretically found out in [14]. For all the pairs,

sign(c) = v1 ⊕ (bw1/2c)2 ⊕ bw2/4c. (5)

5-bit case There are 8 nonzero correlation coefficients {±25/256,±5/256,
±1/64,±1/256}. The largest absolute value is attained by the following 16 pairs
of input/output linear functions: each of 2 output linear functions with pat-
tern (1, v1, 1, 1, 1) is correlated to 8 input linear functions with weight pattern
(4, w1, 4, 4, 4) such that (w1)2 6= v1. For such pairs, the sign function is given by
the first two terms on the right-hand-side of (5).

6-bit case There are 12 nonzero correlation coefficients {±25/256,±25/1024,
±5/256, ±5/1024, ±1/256,±1/1024}. The largest absolute value is attained by
the following 16 pairs of input/output linear functions: each of 2 output linear
functions with pattern (1, v1, 0, 0, 0, 1) is correlated to 8 input linear functions
with weight pattern (4, w1, 0, 0, 0, 4) such that (w1)2 = v1. For such pairs, the
sign function is given by the second term on the right-hand-side of (5).



3.2 Linear Correlations Conditioned on Output

The second type of correlations to be considered are the correlations between
linear functions of input bits and the all-zero function when conditioned on the
output bits. Namely, for every output Zm, we would like to find all W such
that the conditioned correlation coefficient c(W ·Xm, 0 | Fm(Xm, C) = Zm) is
relatively large in absolute value. One can also prove that for any given Zm,
the conditioned correlation coefficient depends only on the weight vector w. The
conditioned correlation coefficients are generally larger than the unconditioned
ones, because they fully exploit the information contained in the known output
sequence. Recall that Zm = (z0, z1, · · · , zm−1).

4-bit case For each output value Z4, there are 96 input linear functions with
nonzero correlation coefficients, equal to±1/16, with weight pattern (4, w1, w2, 4)
where w1 is arbitrary and w2 ∈ {0, 3, 4}. For such functions,

sign(c) = (1⊕ z1)(1⊕ (w1)2)⊕ (bw1/2c)2 ⊕ bw2/4c ⊕ z0 ⊕ z2(w2)2 ⊕ z3. (6)

5-bit case For each output value Z5, there are 12 nonzero correlation co-
efficients with 6 different absolute values. The largest absolute value 29/256 is
attained by 8 input linear functions with weight pattern (4, w1, 4, 4, 4) such that
(w1)2 = z1. The second largest absolute value 21/256 is attained by 8 input
linear functions with weight pattern (4, w1, 4, 4, 4) such that (w1)2 6= z1. For all
16 functions,

sign(c) = (1⊕ z1)(1⊕ (w1)2)⊕ (bw1/2c)2 ⊕ z0 ⊕ z2 ⊕ z3 ⊕ z4. (7)

6-bit case For each output value Z6, there are 100 nonzero correlation coef-
ficients with 50 different absolute values. Except for the value 83/1024, cor-
responding to another type of input linear functions, the largest 7 absolute
values are attained by exactly 16 input linear functions with weight pattern
(4, w1, 0, 0, 0, 4) and depend on (w1)2 ⊕ z1 ⊕ z4 and (z2, z4) in a way shown in
the following table. For such functions,

sign(c) = (bw1/2c)2 ⊕ z0 ⊕ z1(w1)2 ⊕ z5. (8)

(w1)2 ¬(z1 ⊕ z4) z1 ⊕ z4

(z2, z4) (0,0) (1,1) (1,0) (0,1) (0,0) (1,0) (1,1) (0,1)

|c| 139
1024

129
1024

119
1024

113
1024

79
1024

79
1024

73
1024

69
1024

3.3 Linear Correlations Conditioned on Output and One Input

The third type of correlations to be considered are the correlations between linear
functions of 3 inputs and the all-zero function when conditioned on the output
and one assumed input. More precisely, with the notation Xm

2−4 = (Xm
i )4i=2, let

W·Xm
2−4 =

⊕4
i=2

⊕m−1
j=0 wijx

i
j denote such a linear function of 3 inputs. For every



assumed input Xm
1 and every possible output Zm, we would like to find all W

such that the conditioned correlation coefficient c(W·Xm
2−4, 0|X

m
1 , Fm(Xm, C) =

Zm) is relatively large in absolute value. One can similarly prove that for any
assumed Xm

1 and any given Zm, the conditioned correlation coefficient depends

only on the weight vector w = (wj)
m−1
j=0 , where now wj =

∑4
i=2 wij , 0 ≤ j ≤ m−

1. These correlation coefficients are generally larger than the ones conditioned
only on the output, because of the information provided by one known input.
Recall that Zm = (z0, z1, · · · , zm−1) and Xm

1 = (x1
0, x

1
1, · · · , x

1
m−1).

4-bit case For each input value X4
1 , there are 4 nonzero correlation coeffi-

cients ±1/4 and ±1/8. The absolute value 1/4 is attained by an average of 2 (out
of 8) input linear functions with weight pattern (3, w1, 3, 3) such that z2 6= x1

2

and (w1)2 6= z1 ⊕ x1
1. For such functions,

sign(c) = 1⊕ bw1/2c ⊕ z0 ⊕ z3 ⊕ x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ z1x1. (9)

The absolute value 1/8 is attained for every output value Z4 by 16 (out of 32)
input linear functions with weight pattern (3, w1, w2, 3) such that (w1)2 6= z1⊕x

1
1

and (w2)2 = 0. For such functions,

sign(c) = bw1/2c ⊕ z0 ⊕ z2bw2/2c ⊕ z3 ⊕ x0 ⊕ x1 ⊕ x2bw2/2c ⊕ x3 ⊕ z1x1. (10)

So, per each X4
1 and Z4, |c| = 1/4 is on average attained by 2 out of 8 input

linear functions and |c| = 1/8 is attained by 16 out of 32 input linear functions.
5-bit case For each input value X5

1 , there are 12 nonzero correlation coeffi-
cients with 6 different absolute values. The largest 3 absolute values are attained
for every output value Z5 by 4 (out of 8) input linear functions with weight pat-
tern (3, w1, 3, 3, 3) such that (w1)2 6= z1⊕x1

1. The dependence of |c| on (X5
1 , Z

5)
along with the average number α of the corresponding input linear functions are
shown in the following table. For the remaining 4 input linear functions such
that (w1)2 = z1 ⊕ x1

1, |c| = 1/32 for every (X5
1 , Z

5). For all 8 functions,

sign(c) = 1⊕ bw1/2c ⊕ (w1)2 ⊕ z0 ⊕ z1 ⊕ z1(w1)2 ⊕ z2 ⊕ z3 ⊕ z4

⊕ x0 ⊕ x1(w1)2 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ z1x1. (11)

|c| α (z2 ⊕ x1
2, z3 ⊕ x1

3)

9/32 1 (0,0)
3/16 2 (0,1) or (1,0)
1/8 1 (1,1)

6-bit case For each input value X6
1 , there are 50 nonzero correlation co-

efficients with 25 different absolute values. The most significant absolute val-
ues are attained by 4 (out of 8) input linear functions with weight pattern
(3, w1, 0, 0, 0, 3) such that (w1)2 = z1 ⊕ x1

1, but some large absolute values are
also achieved by the remaining 4 input linear functions such that (w1)2 6= z1⊕x

1
1.



For all 8 functions,

sign(c) = (w1)2 ⊕ bw1/2c ⊕ z0 ⊕ z1 ⊕ z1(w1)2 ⊕ z5 ⊕ x0 ⊕ x1(w1)2 ⊕ x2(w1)2

⊕ x4(w1)2 ⊕ x5 ⊕ z1x1 ⊕ z1x2 ⊕ z1x4 ⊕ z4x2(w1)2 ⊕ z4x4(w1)2 ⊕ x1x2 ⊕ x1x4

⊕ x2x4(w1)2 ⊕ z1z4x2 ⊕ z1z4x4 ⊕ z1x2x4 ⊕ z4x1x2 ⊕ z4x1x4 ⊕ x1x2x4. (12)

The dependence of |c| on (X6
1 , Z

6) along with the average number α of the
corresponding input linear functions are shown in the following table for |c| > 1/8
and an average number 4.125 of such functions. For an average number 3.875 of
remaining input linear functions, |c| < 1/8. The displayed 7 values along with
21/128 and 19/128, corresponding to other input linear functions, are the largest
possible.

|c| α conditions functions

9/32 1 z2 = x1
2, z4 = x1

4 (w1)2 = z1 ⊕ x1
1

13/64 1/2 z2 = x1
2, z4 6= x1

4 = 1 (w1)2 = z1 ⊕ x1
1

3/16 9/8 z2 6= x1
2, (z4 = x1

4 or z4 6= x1
4 = x1

2 = 1, z3 = x1
3) (w1)2 = z1 ⊕ x1

1

11/64 5/8 z4 6= x1
4, (z2 = x1

2, x
1
4 = 0 or z2 6= x1

2 = x1
4 = 1, z3 6= x1

3) (w1)2 = z1 ⊕ x1
1

5/32 1/8 z2 6= x1
2, z4 6= x1

4, x
1
2 = x1

4 = 0, z3 = x1
3 (w1)2 = z1 ⊕ x1

1

9/64 5/8 z2 6= x1
2, z4 6= x1

4, x
1
2 = x1

4 = 0, z3 6= x1
3 (w1)2 = z1 ⊕ x1

1

z4 6= x1
4, z2 = x1

2, z3 = x1
3 (w1)2 6= z1 ⊕ x1

1

17/128 1/8 z4 6= x1
4, z2 6= x1

2 = x1
4 = 1, z3 = x1

3 (w1)2 6= z1 ⊕ x1
1

4 Linear Iterative Cryptanalysis of Keystream Generator

The objective of the linear cryptanalysis of the Bluetooth keystream generator
is to reconstruct 128 bits of the LFSR initial states from a given segment of the
keystream sequence of length at most 2745 bits, by using the linear correlations
described in Section 3. Accordingly, the starting point of the cryptanalysis is
a set of linear equations in the initial state bits which hold with probabilities
different from one half. The aim is to find a solution to this system that is
consistent with the given probabilities.

4.1 Solving Approximate Linear Systems

Let x = (xj)
k
j=1 be a vector of k binary variables and let y = (yi)

n
i=1 be a vector

of n, n ≥ k, binary variables that are defined as linear functions of x, that is,
yi = li(x), 1 ≤ i ≤ n. In matrix notation, y = GTx, where G is an k×n matrix
whose columns correspond to linear functions li, and vectors are represented as
one-column matrices. It is assumed that G has full rank k (linearly independent
rows), which means that the linear transform defined by GT is injective, so that
y uniquely determines x.

It is further assumed that y is known only probabilistically, in terms of the
marginal probabilities Pr(yi = 0) = pi, 1 ≤ i ≤ n. More precisely, a probabilistic



model is assumed in which the variables yi, 1 ≤ i ≤ n, are mutually independent.
Since in this case they can take arbitrary values, define an event L that y belongs
to the range of the linear transform determined by GT, i.e., that yi are linearly
dependent according to GT, i.e., that the linear system y = GTx has a (unique)
solution in x. Now, in this model the most likely solution to the linear system is
the one that maximizes the conditioned block probability

Pr(x|L) = Pr(y = GTx|L)

=
Pr(y = GTx)

Pr(L)
=

1

Pr(L)

n
∏

i=1

p
1−li(x)
i (1− pi)

li(x). (13)

It follows that Pr(L) =
∑

x∈{0,1}k
∏n

i=1 p
1−li(x)
i (1− pi)

li(x). Of course, 2k steps
are required to find the solution.

The problem is in fact directly related to a decoding problem for the binary
linear (n, k) block code C with a generator matrix G on a time-varying memo-
ryless binary symmetric channel (BSC) with error probabilities 1−pi, 1 ≤ i ≤ n.
Namely, in a probabilistic model in which the codewords are equiprobable, if the
all-zero word is observed at the output of this BSC, then the posterior proba-
bility of an information word x is the same as the conditioned probability (13).
However, our model is more appropriate as it directly deals with the problem
considered and as such does not involve any communication channel (e.g., sym-
metry is not needed).

Another approach is to find a solution that maximizes each of the condi-
tioned bit probabilities Pr(xj |L), 1 ≤ j ≤ k. This requires only k steps, but
such probabilities have to be computed, and that requires 2n−k steps if the
well-known Hartmann-Rudolph algorithm [13] is applied. For linear codes, this
algorithm minimizes the decoding error probability for individual symbols rather
than blocks of symbols. It can also be used for computing the conditioned bit
probabilities p̂i = Pr(yi = 0|L), 1 ≤ i ≤ n, which are important for iterative
algorithms. In our problem, k is large and the probabilities pi are rather close to
one half, so that the decision error probabilities can be small only if n−k is also
large. Therefore, the Hartmann-Rudolph algorithm is computationally infeasible
and numerical approximations are required.

Let H denote a parity-check matrix of the code C, i.e., a generator matrix
of its dual code Cd. H is an (n − k) × n matrix of full rank n − k such that
HGT = 0. Recall that Cd is a binary linear (n, n − k) code consisting of all
the binary vectors v = (vi)

n
i=1 that are orthogonal to each codeword y from C

(v ·y = v1y1⊕· · ·⊕vnyn = 0). The dual codewords represent the linear relations
among the codeword bits and are hence called the parity checks. Instead of taking
into account all 2n−k parity checks as in the Hartmann-Rudolph algorithm, one
can only consider numerically more important parity checks having a relatively
low weight, which is defined as the number of nonzero terms minus one.

Let Vi be a set of parity checks v involving the i-th codeword bit yi, i.e.,
such that vi = 1. Let ci = 2pi − 1 and ĉi = 2p̂i − 1 denote the corresponding
unconditioned and conditioned correlation coefficients of yi, respectively. Then,



according to [11], we get an approximate expression

ĉi = /ci +
∑

v∈Vi

n
∏

j=1: vj=1,j 6=i

cj/ (14)

where the clipping function /(·)/ ensures that |ĉi| ≤ 1. Interestingly, this ex-
pression can also be obtained as the limit form, when all ci tend to zero, of the
well-known expression (e.g., see [18])

1− ĉi
1 + ĉi

=
1− ci
1 + ci

∏

v∈Vi

1−
∏n

j=1: vj=1,j 6=i cj

1 +
∏n

j=1: vj=1,j 6=i cj
(15)

which is used if the parity checks from each Vi are orthogonal, that is, if the
i-th bit is the only bit that they share in common. Expression (14) appears to
be more appropriate as the orthogonality is not required. In both expressions,
the product term

∏n
j=1: vj=1,j 6=i cj represents the correlation coefficient of the

binary sum of all the bits yj other than yi from the parity check v involving
yi. The absolute value of this correlation coefficient is a measure of information
about yi contained in the considered parity check v. Accordingly, low-weight
parity checks are more informative than the others.

The most effective way is to use (14) iteratively, in each iteration improving
the conditioned correlation coefficients ĉi. The iterations are useful because (14)
is only an approximate expression and because hard decisions based on condi-
tioned bit probabilities generally do not result in codewords. Instead of directly
recycling (14), by substituting ĉi from the current iteration for ci in the next
iteration (e.g., see [16]), one can also use a more sophisticated and more effec-
tive belief propagation recycling [6] (e.g., see [15], [5], and [11]). According to
both experimental and theoretical [11] arguments, the correlation coefficients
will converge in a relatively small number of iterations to values ±1 for most
coordinates, and, in the case of success, the final hard decisions on individual
bits will result in a binary word at a small Hamming distance from a codeword.
A simple, information set decoding technique will then yield this codeword along
with the corresponding information word x, which is the desired solution to the
approximate linear system under consideration.

It is important to point out the conditions for success for both the approaches
described above. In accordance with the capacity argument, the decision error
probability of the block-based approach using (13) can be made arbitrarily close
to zero if

n
∑

i=1

c2i ≥ k. (16)

This means that we can reliably distinguish a correct solution from the remaining
2k − 1 incorrect solutions if (16) is satisfied. On the other hand, provided that
|ci| = c, 1 ≤ i ≤ n, it is theoretically argued in [11] that the average bit-
decision error probability of the iterative approach using (14) will be close to



zero if
∑

w Mwc
w−1 > 1, where Mw is the average number per bit of the parity

checks of weight w that are used in (14). In the limit, when c tends to zero, this
condition coincides with the similar condition from [18] corresponding to (15)
which is both theoretically derived and experimentally verified (see also [2]).
Anyway, both conditions are also supported by numerous experimental results
on fast correlation attacks on regularly clocked LFSR’s (e.g., see [10]).

We will work with a stronger condition, resulting in higher complexity esti-
mates,

∑

w

Mw cw ≥ 1 (17)

where the exponent w − 1 is conservatively replaced by w. The new condition
can be given another interpretation, directly in terms of (14) or (15). Namely, if
we assume that Mw is exactly the number of parity checks of weight w that are
used for the i-th bit, then (14) reduces to

ĉi = /ci +
∑

w

(m+
w −m−w)c

w/ (18)

where m+
w and m−w denote the numbers of parity checks of weight w with the

positive and negative sign of the product, respectively. Now, if yi = 0 or yi = 1,
then the expected value of m+

w−m
−
w is equal to +Mwc

w or −Mwc
w, respectively.

So, the contribution of the parity checks of weight w can be regarded (statisti-
cally) significant for the iterative process to converge to the most likely (correct)
values of yi for each 1 ≤ i ≤ n if Mwc

w ≥ 1. Accordingly, by combining the con-
tributions of parity checks of different weights we get the condition (17). This
condition demonstrates the significant advantage of iterative over one-step algo-
rithms which when applied to individual bits, in light of (16), will be successful
if
∑

w Mwc
2w ≥ 1.

4.2 Application to Bluetooth

The main approach to be pursued here is one in which the initial state of the
shortest LFSR, LFSR1, is guessed, so that linear correlations conditioned on both
the output and one input can be utilized. This is needed in order to minimize
the precomputation complexity to be given below. Let n = αn0 be the number
of linear equations chosen out of those resulting from the 4-bit, 5-bit, and 6-bit
linear correlations described in Section 3. Here, α is the average number of chosen
equations per output bit and n0 = 2740 is the maximum number of output bits
that can be used if 6-bit linear correlations are exploited. For each output bit, the
average number of α equations are chosen from a possibly larger set of β = γα
equations that is independent of the observed 6-bit output segment and of the
known 6-bit input segment resulting from the guessed initial state of LFSR1.
By expressing each LFSR bit involved as a linear function of the initial state
bits, each obtained linear equation becomes a linear equation in the unknown
103=128-25 initial state bits of all the LFSR’s but the shortest.



The correlation coefficients associated with these linear equations depend on
the known output segment, of maximal length 2745 bits, and on the guessed in-
put segment of the same length. According to Section 3, the linear equations can
be grouped in several types corresponding to 4-bit, 5-bit, and 6-bit linear corre-
lations. For each such group, there are several absolute values of the correlation
coefficients, each appearing with a given probability. Altogether, let the absolute
value µj appear with probability νj , where νj = αj/α and αj is the average num-
ber of linear equations with the absolute value of the correlation coefficient equal
to µj . For each output bit, the equations chosen and the absolute values and the
signs of the associated correlation coefficients depend on the known output and
guessed input. Two average values of the correlation coefficient magnitudes are
important for measuring the success of the linear cryptanalysis to be applied.
One, which is related to the iterative bit-based approach and (14) and (17), is
the weighted geometric mean µ =

∏

j µ
νj
j . Note that µ ≤ µ̄ =

∑

j νjµj . The
other, which is related to the block-based approach and (16), is the expected
value of the squares µ̄2 =

∑

j νjµ
2
j .

For the iterative approach, it is necessary to find the linear dependencies
among the obtained linear equations (codeword bits) that involve only a rela-
tively small number of linear equations, that is, to determine the corresponding
low-weight parity checks. The weights to be used should result in numbers of
parity checks that should be sufficient for success according to the condition
(17). The number of parity checks of a given weight, w, per codeword bit is a
characteristic of the produced linear system (linear code), which depends on the
observed output and one guessed input, and can be modeled by assuming that
the system is randomly generated as the expected value

Mw = 2−103

(

n− 1

w

)

≈ 2−103n
w

w!
(19)

where the approximation error is negligible if w ¿ n.
Consequently, if we utilize all the parity checks of weight at most w, the

success condition (17), with the geometric mean of the correlation coefficient
magnitudes, becomes

w
∑

j=2

nj

j!
µj ≥ 2103 (20)

(parity checks of weight 1 are impossible for the problem considered). As the
term with the maximal weight, w, is dominant, we finally get the condition

w (log2 n0 + log2 α− log2

1

µ
) ≥ 103 + log2 w! (21)

which can be solved numerically to give the minimal required weight w. This con-
dition is conservative because we neglected the contribution of terms with weight
lower than w and because Mw is expected to be larger than (19) due to the specific
structure of the obtained linear equations for the Bluetooth keystream generator



(i.e., each parity check gives rise to more parity checks through appropriate phase
shifts).

As the iterative algorithm has to be run for each of 225 guesses about the
LFSR1 initial state, its complexity can be expressed as

C = 225 · n ·
1

µw
= 225+log2 n0+log2 α+w log2

1
µ (22)

where a computational step consists of all the computations per bit for a number
of iterations, which on average is not greater than about 10. In each iteration,
the computations are predominantly determined by the number of real multi-
plications needed to compute (14) for every bit and for parity checks of weight
w. This number is given as 3n/µw, in view of a simple fact that only 3(w − 1)
real multiplications are needed to compute all w + 1 products of w elements
out of a set of w+1 elements. Accordingly, a computational step approximately
consists of at most 30 real multiplications, where an 8-bit precision will suffice.
As a real product of two 8-bit words can be performed by an average of 3 real
additions, each requiring about 8 · 3 = 24 binary operations, the step consists of
about 2160 binary operations. This is comparable with one step of the exhaustive
search method which consists of about 128 · 15 = 1920 binary operations.

The next point to be explained is how to generate all the parity checks of
weight at most w for a possibly larger set of γn linear equations. This can be done
in precomputation time, by computing and sorting all the linear combinations
of d(w + 1)/2e linear equations, altogether about (γn)d(w+1)/2e/d(w + 1)/2e! of
them. The matches obtained by sorting directly give all the linear combinations
of at most 2d(w + 1)/2e linear equations that evaluate to zero identically (e.g.,
see [8]). More precisely, we have to sort out only

D ≈
γd(w+1)/2e

d(w + 1)/2e!

(

2103/w(w!)1/w
1

µ

)d(w+1)/2e

≈
(w!)d(w+1)/2e/w

d(w + 1)/2e!
2103d(w+1)/2e/w+d(w+1)/2e(log2 γ+log2

1
µ

) (23)

randomly chosen linear combinations, represented as 103-bit words. The total
obtained number of matches per bit, i.e., the total number of parity checks per
each equation is then γw/µw. They are all stored as the final result of precom-
putation.

Now, given an output segment and each guessed input, we have to filter 1/µw

parity checks out of a set of γw/µw collected parity checks, for each of n linear
equations. If γ > 1, then γw/µw parity checks can be sorted out, with respect
to n0 bit positions and β indexes of linear equations per each bit position, so
that the filtering takes only about 1/µw steps. The complexity of filtering is then
given by (22), but the corresponding step complexity is negligible in comparison
with one of the iterative algorithm.

After the iterative algorithm has converged to probabilities close to 0 or 1,
if the guess about the LFSR1 initial state was correct, then the 103 bits of



the remaining LFSR initial states, along with the initial 4 memory bits, can be
reconstructed by information set decoding (e.g., by looking for error-free sets of
103 linearly independent equations), with complexity much smaller than (22).

5 Linear Cryptanalysis of Initialization Scheme

The objective of the linear cryptanalysis of the Bluetooth initialization scheme
is to reconstruct 128 bits of the secret key from a given number of 128-bit (or
132-bit) outputs of the Bluetooth initialization scheme obtained from the same
secret key and different IV ’s. Such outputs can be obtained by the linear iter-
ative cryptanalysis method described in Section 4. As the initialization scheme
is essentially the same as the keystream generator, for each IV we will again
use the linear correlations described in Section 3 to produce another approxi-
mate system of linear equations. Other approaches, possibly requiring a smaller
number of IV ’s, may also exist (e.g., see [4]).

The main point facilitating the linear cryptanalysis is that the secret key
and IV are linearly combined together to form the initial state of the Bluetooth
keystream generator used for initialization. Therefore, each equation linear in
LFSR bits can be expressed as the binary sum of an equation linear in secret
key bits and an equation linear in IV bits which itself can be evaluated as IV
is known. If the same linear equation in LFSR bits is used with different, say q,
IV ’s, one thus effectively obtains q independent observations of the same linear
function, say y, of secret key bits. If the correlation coefficient associated with the
i-th equation is ci and if si is the value of the linear function of the correspond-
ing IVi, then the correlation coefficient associated with the i-th observation is
(−1)sici, 1 ≤ i ≤ q. In view of (15), the combined correlation coefficient, ĉ, of y
is then determined by

1− ĉ

1 + ĉ
=

q
∏

i=1

(

1− ci
1 + ci

)(−1)si

(24)

or, approximately, for small ci, by

ĉ = /

q
∑

i=1

(−1)sici/. (25)

Assume that |ci| = c, 1 ≤ i ≤ q. Then, if y = 0 or y = 1, the expected value of
ĉ is equal to +qc2 or −qc2, respectively. So, the combined correlation coefficient
will be close to ±1 if q ≥ 1/c2. In general, in view of (16), it will be close to ±1
if

q
∑

i=1

c2i ≥ 1. (26)

This condition determines the minimal q required for reconstructing the correct
value of y with a small probability of decision error.



To minimize the required number of IV ’s, we will again use linear correlations
conditioned on the output and one input, which has to be guessed. Assuming
that the sizes of the secret subkeys controlling indivudual LFSR’s are the same
as their respective lenghts, we have to guess 25 secret key bits controlling LFSR1.
Let an average number of α out of a set of β = γα linear equations be chosen for
each of n0 = 123 available output bits, provided that 6-bit linear correlations are
exploited. For q IV ’s, each of the resulting βn0 linear functions of the remaining
103 secret key bits is then treated in the way explained above. Note that each of
the functions will on average appear q/γ instead of q times. Then the condition
(26) reduces to

q ≥ γ
1

µ̄2
(27)

where µ̄2 =
∑

j νjµ
2
j is the mean square value of the used correlation coefficients

µj appearing with probabilities νj . The linear correlations to be used should be
chosen so as to minimize q. The resulting βn0 linear equations in 103 secret key
bits which hold with probabilities close to 1 can then be solved by information
set decoding if the guess about the 25 secret key bits is correct. As the complexity
of reconstructing the secret key from given q outputs of the initialization scheme
is much smaller than the complexity of reconstructing these outputs, the total
complexity is determined by the latter, and is q times larger than (22).

6 Optimal Complexities

There are many possible choices of the linear correlations described in Section
3 to be used in the linear iterative cryptanalysis of the keystream generator in
order to reconstruct the LFSR initial states. The objective is to minimize the
computation complexity C given by (22) and the precomputation complexity D
given by (23). However, this is not possible to achieve simultaneously, as there
is a tradeoff between the two criteria.

In general, C is minimal if one uses the linear correlations conditioned on
the output, described in Section 3.2, but D is then relatively large. In this case,
we do not have to guess one input and the complexity analysis is the same as in
Section 4.2 except that the number of LFSR initial state bits to be reconstructed
is now 128 instead of 103. For example, if we choose to use the largest 4 6-bit
correlation coefficients and the corresponding 8 input linear functions, from the
condition (21) get w = 15 and hence C ≈ 260 and D ≈ 298.5. By guessing one
input we generally decrease D and increase C. Two illustrative examples are
explained in more detail below.

First, choose the 2 largest 5-bit and the 3 largest 6-bit conditioned correlation
coefficients to work with. In this case, we get α = (1+2)+(1+1/2+9/8) = 5.625,
β = 8 + 8 = 16, γ = 16/5.625 ≈ 2.8444, and

µ =

(

(

9

32

)2(
13

64

)1/2(
3

16

)25/8
)1/5.625

≈ 0.2181. (28)



Then (21) yields w = 11 and hence we get C ≈ 263.07 and D ≈ 282.68.

Second, choose the largest 2, 3, and 7 conditioned correlation coefficients from
4-bit, 5-bit, and 6-bit linear correlations to work with, respectively. In this case,
we get α = (2+16)+(1+2+1)+(1+1/2+9/8+5/8+1/8+5/8+1/8) = 26.125,
β = (8 + 32) + 8 + 8 = 56, γ = 56/26.125 ≈ 2.1435, and

µ =

(

(

9

32

)2(1

4

)2(13

64

)1/2( 3

16

)25/8(11

64

)5/8( 5

32

)1/8( 9

64

)5/8( 17

128

)1/8(1

8

)17
)1/26.125

≈ 0.1504. (29)

Then (21) yields w = 9 and hence we get C ≈ 265.73 and D ≈ 279.74.

There are also different possible choices of the linear correlations to be used
in the linear cryptanalysis of the initialization scheme in order to reconstruct the
secret key. The objective is to minimize the required number q of IV ’s given by
(27). To this end, the 25 secret key bits controlling the shortest LFSR are guessed.
It is slightly better to work with 6-bit than 5-bit linear correlations conditioned
on the output and one input. If we use the 7 largest 6-bit conditioned correlation
coefficients, we get γ = 8/4.125 ≈ 1.9394 and

µ̄2 =
1

4.125

(

(

9

32

)2

+
1

2

(

13

64

)2

+
9

8

(

3

16

)2

+
5

8

(

11

64

)2

+
1

8

(

5

32

)2

+
5

8

(

9

64

)2

+
1

8

(

17

128

)2
)

≈ 0.04251. (30)

Then (27) yields q ≈ 45.2 ≈ 25.51, so that the total complexity of the secret key
reconstruction increases to C ≈ 268.58 and C ≈ 271.24 for the two cases described
above, respectively.

7 Conclusions

The developed linear cryptanalysis method shows that correlation attacks may
also be applicable to stream ciphers producing very short keystream sequences
which are reinitialized frequently by using a cryptographically strong initializa-
tion scheme. The complexity analysis concentrates on mathematical rather than
practical implementation arguments. The obtained attack complexities for the
Bluetooth stream cipher are overestimated as they are based on a conservative
assumption about the underlying parity-check weight distribution. It is in prin-
ciple possible that the complexity can be further decreased by exploiting m-bit
linear correlations for m > 6 if they are feasible to compute. It may also be
possible that the actual precomputation complexity is lower than predicted.

Consequently, at least from the theoretical standpoint, there is a need to re-
design the Bluetooth stream cipher, maybe by using the improvement suggested
in [14]. This modified Bluetooth stream cipher appears to be more resistant to
the linear cryptanalysis, but might not be the optimal choice (see the Appendix).



Appendix

A Linear Correlations in Modified Bluetooth Combiner

We exhaustively computed all the m-bit linear correlations for m ≤ 6 in the modi-
fied Bluetooth combiner proposed in [14]. The distributions of the largest correlation
coefficients are determined and displayed here.

The only modification relates to the linear update functions for the 4 memory bits.
Namely, instead of (2), we now have

c0t+1 = s0t+1 ⊕ c0t ⊕ c0t−1, c1t+1 = s1t+1 ⊕ c1t ⊕ c1t−1. (31)

The stationary distribution of the 4 memory bits remains to be uniform.
First of all, there are no nonzero correlation coefficients for m ≤ 4. The largest

absolute values of the correlation coefficients, |c|, and the (average) numbers, α, of
linear functions attaining them are shown in the following tables. In the last table
we also show the total numbers, β, of linear functions out of which the desired α are
chosen. In this respect, note that for each m, each smaller set is contained in the next
larger. For m = 5, there are no other nonzero correlation coefficients. For m = 6, there
are also 46080 and 57600 pairs of input/output linear functions with |c| = 1/512 and
|c| = 1/1024, respectively, whereas α = 65024 for 1/1024 ≤ |c| ≤ 13/1024, conditioned
on output, and α = 1260 for 1/64 ≤ |c| ≤ 3/64, conditioned on output and one input,
and there are no other nonzero correlation coefficients. A general conclusion is that
the absolute values of the correlation coefficients are smaller than in the Bluetooth
combiner, but their numbers are considerably larger.

Unconditioned Linear Correlations

m 5 6

|c| 5
128

1
64

1
128

25
1024

5
512

5
1024

1
256

α 256 1536 3840 256 3072 7680 9216

Linear Correlations Conditioned on Output

m 5 6

|c| 7
128

3
128

1
128

33
1024

25
1024

21
1024

15
1024

α 128 768 3200 64 128 256 64

Linear Correlations Conditioned on Output and One Input

m 5 6

|c| 3
16

1
8

1
16

9
64

3
32

1
16

α 8 16 120 4 16 16

β 64 128 512 64 128 128
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