
Efficient Generic Forward-Secure Signatures

With An Unbounded Number Of Time Periods

Tal Malkin1, Daniele Micciancio2,?, and Sara Miner2,??

1 AT&T Labs Research
180 Park Avenue, Florham Park, NJ 07932, USA.

E-mail: tal@research.att.com.
2 University of California, San Diego

Department of Computer Science and Engineering, Mail Code 0114
9500 Gilman Drive, La Jolla, CA 92093-0114, USA.

E-mail: {daniele, sminer}@cs.ucsd.edu.

Abstract. We construct the first efficient forward-secure digital signa-
ture scheme where the total number of time periods for which the public
key is used does not have to be fixed in advance. The number of time
periods for which our scheme can be used is bounded only by an expo-
nential function of the security parameter (given this much time, any
scheme can be broken by exhaustive search), and its performance de-
pends (minimally) only on the time elapsed so far. Our scheme achieves
excellent performance overall, is very competitive with previous schemes
with respect to all parameters, and outperforms each of the previous
schemes in at least one parameter. Moreover, the scheme can be based
on any underlying digital signature scheme, and does not rely on spe-
cific assumptions. Its forward security is proven in the standard model,
without using a random oracle. As an intermediate step in designing
our scheme, we propose and study two general composition operations
that can be used to combine any existing signature schemes (whether
standard or forward-secure) into new forward-secure signature schemes.

1 Introduction

The standard notion of digital signature security is extremely vulnerable to leak-
age of the secret key, which, over the lifetime of the scheme, may be quite a
realistic threat. Indeed, if the secret key is compromised, any message can be
forged. All future signatures are invalidated as a result of such a compromise,
and, furthermore, no previously issued signatures can be trusted. Once a leak-
age has been identified, some key revocation mechanism may be invoked, but
this does not solve the problem of forgeability for past signatures. Asking the
signer to reissue all previous signatures is very inefficient, and, moreover, requires

? Supported in part by NSF Career Award CCR-0093029
?? Supported in part by a Graduate Diversity Fellowship from the San Diego Super-
computer Center, and Mihir Bellare’s 1996 Packard Foundation Fellowship in Science
and Engineering



trusting the signer. For example, it is very easy for a dishonest signer to leak
his secret key in order to repudiate a previously signed document. Furthermore,
changing the schemes keys very frequently is also not a practical solution, since
frequently registering new public keys and maintaining them in a place that is
both publicly accessible and trusted is a difficult task.
To mitigate the consequences of possible key leaks, the notion of forward

security for digital signatures was initially proposed by Anderson [1] and for-
malized by Bellare and Miner [3]. The basic idea is to extend a standard digital
signature algorithm with a key update algorithm, so that the secret key can be
changed frequently, while the public key stays the same. The resulting scheme is
forward-secure if the knowledge of the secret key at some point in time does not
help forge signatures relative to some previous time period. Thus, if the secret
key is compromised during time period t, then the key can be revoked without
invalidating signatures issued during earlier time periods.
Since the introduction of the concept of forward security, several such schemes

have been suggested. These schemes exhibit varying performance both in terms
of space and time. Typically, these schemes achieve efficiency in some parame-
ters at the price of making other parameters significantly worse than in standard
signature schemes. For example, some schemes have faster signature generation
and verification algorithms, but slower key generation and update procedures,
while other schemes have the opposite behavior. In other cases, time improve-
ments are obtained at the cost of larger signatures or larger secret and public
keys. Moreover, in essentially all previous schemes, although the number of time
periods can be arbitrarily large, its value must be set in advance, and passed as a
parameter during the key generation process. The performance of the algorithms
then depends on the security parameter as well as the a priori maximum number
of time periods T . So, setting T to an unnecessarily large number results in a
considerable efficiency loss.
Clearly, there is a trade-off between the efficiency parameters, and which

scheme is most practical depends on the requirements of the specific application.
Consider, for example, a scenario where keys are updated once a day. Then, a
slower key update algorithm might be acceptable, if this helps make signature
verification faster or signatures themselves shorter. On the other hand, consider
an electronic checkbook (e-check) application where the time period corresponds
to the check serial number, rather than physical time. If your electronic wallet
is stolen (with the current e-check secret key in it), you want to revoke all com-
promised checks without invalidating the checks that were legitimately issued.
This can be achieved if the secret key is updated after signing every check. In
this case, fast key update is as important as fast signature generation, as the
two algorithms are always used together.

1.1 Our Results

In this paper, we design a new tree-like digital signature scheme which we call the
MMM scheme. Our construction uses the idea of Merkle trees [10], which were
suggested for use in the forward security context by Krawczyk [9]. Our scheme



is a generic construction, namely it can be based on any underlying signature
scheme, and does not rely on specific computational assumptions like discrete
log or factoring. Moreover, the security of MMM can be proved in the standard
complexity model, without resorting to the random oracle methodology. This
scheme is very efficient in all parameters (simultaneously), and outperforms all
previous constructions in at least some parameters (the price is never more than
a constant increase in other parameters, and in most cases there is no price at all).
In fact, our scheme is asymptotically essentially optimal, while in practice it is
competitive even with standard signature schemes. For example, signing requires
a single signature in the underlying scheme, and verifying requires little more
than two verifications of the underlying scheme. (More performance details are
given later.) Furthermore, the MMM scheme is the first efficient forward-secure
scheme which does not require its maximal number of time periods to be fixed
in advance. Instead, the user can keep calling the update procedure indefinitely.
The only (theoretical) barrier to the number of time periods is exponential in the
security parameter, and therefore cannot be feasibly reached. Unlike all previous
schemes, the efficiency parameters of the MMM scheme do not depend at all on
the maximal number of time periods, but rather on the number of time periods
elapsed so far (and this dependence is minimal). To summarize, the significance
of our scheme stems from the following properties:

– Practical: MMM has excellent performance for practical parameters. This
is further improved by the fact that the maximal number of time periods
is not a relevant parameter. Any standard signature scheme can be used
as a building block, providing trade-offs between the parameters, thus al-
lowing greater flexibility in accommodating the requirements of particular
applications, and meeting practical constraints.

– Strong security guarantee: The scheme is secure under the minimal
necessary assumption, namely that (standard) digital signature schemes exist
(which is equivalent to the existence of one-way functions [15]). This security
is proved without relying on the random oracle model.

As an intermediate step in developing the MMM scheme, we propose and study
two general composition operations that can be used to combine any existing
signature schemes (whether standard or forward-secure) into new forward-secure
schemes. We prove their security in the standard complexity model, based on the
security of the underlying schemes, and without requiring any additional assump-
tion.1 To obtain our main result, we then extend these composition operations
to generate the MMM construction. Separately, in Section 5, we present several
additional constructions (some new and some already known) derived via these
composition operations, which illustrate some of the efficiency tradeoffs possible.

1 We also use pseudo-random generators [4, 16] and universal one way (a.k.a., target
collision resistant) hash functions [13], but their existence is known to be equivalent
to the existence of digital signature schemes.



1.2 Related Work

Recently, several forward-secure signature schemes have been proposed in the
literature. Some of the first solutions described in [1] had the undesirable prop-
erty that keys or signature size were linear in the (maximal) number of time
periods T . (For example, one can generate T different secret/public key pairs
using a conventional signature scheme, and delete a secret key from memory
each time the update algorithm is invoked.) Subsequent efforts found schemes
where the size parameters (key and signature size) were independent of, or at
most logarithmic in, the number of time periods, possibly at the price of slower
signing, verifying or update algorithms. (E.g., the solutions proposed by Bellare
and Miner [3] and Abdalla and Reyzin [2] had signing and verification time linear
in T .) Here, “size independent of T” means that the size depends only on the
value of the security parameters. However, it should be noted that the security
parameters must be superlogarithmic in T to avoid exhaustive search attacks,
so having no explicit dependency on log T does not necessarily give shorter keys.
For a fair comparison of different schemes, the actual dependency of the space
and time complexity of all algorithms on the security parameters must be taken
into account.
In this section, we briefly highlight these dependencies for all previously pro-

posed schemes. We use two different security parameters, as follows:

– l: a security parameter such that exhaustive search over l-bit strings is in-
feasible. This is the security parameter of conventional (symmetric) crypto-
graphic operations, e.g., the seed length of pseudo-random generators, or the
output length of cryptographic hash functions.

– k: a security parameter such that k-bit numbers are hard to factor, or such
that more generally common number theoretic problems (such as inverting
the RSA function) become infeasible.

It is important to distinguish between the two values because private key cryp-
tography is typically much more efficient than public key. Factoring can be
solved in sub-exponential time (exp(k1/3 log2/3 k)), so asymptotically one needs
k ≈ O(l3) to be much bigger than l. In practice, k = 1000 and l = 100 are
acceptable values. In the analysis of all constructions we assume that modular
multiplications of k-bit numbers are performed in k2 time2 and hash functions
and pseudo-random generators run in l2 time. For k = 1000 and l = 100 this
means that a block cipher application is 100 times faster than a modular arith-
metic operation.
In the tables below, we omit small constant factors and some of the lower

order terms from the running time, e.g., if an algorithm requires one modu-
lar exponentiation plus one hashing, we simplify the running time expression
O(k3) + O(l2), and write only the most significant term O(k3). The only as-
sumptions used in these simplifications are that log T = o(l) and l = o(k).

2 Although faster multiplication algorithms are known, we feel that our assumptions
accurately represent the relationship between the speeds of private and public key
applications in practice.



The previous schemes we analyze below can be divided into two categories:
those which are generic constructions built using any standard signature scheme
as a black box, and those based on specific number theoretic assumptions, e.g.,
hardness of factoring large integers.

Generic constructions. Generic constructions are those proposed by Ander-
son [1], the tree scheme of Bellare and Miner [3], and the Krawczyk variant of the
Anderson scheme with reduced secret storage [9]. Their performance is summa-
rized in Figure 1. As usual, T stands for the total number of time periods in the
scheme. When a standard signature scheme is required, we assume key genera-
tion, signing and verifying can all be performed in O(lk2) time, and public keys,
secret keys and signatures are O(k) bits long. For example, this is the perfor-
mance of the signature schemes of Guillou and Quisquater [7], and of Micali [11].
Note that we have broken up the storage required of the signer into “Secret key
size” and “Non-secret storage”, to better illustrate the differences between these
schemes. This was indeed the main improvement of Krawczyk scheme, which
otherwise is essentially the same as the one originally proposed by Anderson.
However, it should be remarked that even the non-secret storage must still be
secure in the sense that it must be stored in (publicly readable) tamper-proof
memory. Changing or altering the non-secret storage would disrupt the signing
algorithm, making signature generation impossible. For simplicity, in the rest of
this paper we will drop the distinction between secret and non-secret storage.

Anderson Binary Tree (BM) Krawczyk

Key gen time lk2T lk2 log T lk2T

Signing time lk2 lk2 lk2

Verification time lk2 lk2 log T lk2

Key update time (∗) O(1) lk2 lk2

Secret key size kT k log T k

Non-secret storage kT k log T kT

Public key size k k k

Signature size k k log T k

Fig. 1. Comparing parameters of generic constructions [1, 3, 9]. (∗)The running time
of the Binary Tree update algorithm is amortized over all update operations. If no
amortization is used, the worst running time can be bigger by a factor of log T .

As shown in Figure 1, the Binary Tree scheme has much faster key generation,
and smaller secret/non-secret key storage than Anderson and Krawczyk schemes,
with the linear dependency on T replaced by a logarithmic function. In exchange,
the price paid is a slower verification procedure and longer signatures, which both
increase by a factor log T . For a detailed description of the schemes the reader
is referred to the original papers [1, 3, 9].
The above constructions are generic, meaning they may be instantiated with

any signature scheme. Their proofs of security rely only on the security of the



underlying signature scheme (in particular, none of these security proofs rely on
random oracles).3

Constructions based on specific security assumptions. Number theo-
retic schemes were proposed by Bellare and Miner [3], Abdalla and Reyzin [2],
and very recently (and independently of our work), by Itkis and Reyzin [8]. All
these are proven to be secure in the random oracle model, assuming that factor-
ing is hard (for [3, 2]) or that taking any root modulo a composite is hard (for
[8]). The performance of these schemes is summarized in Figure 2.

BM AR IR IR’

Key gen time lk2T lk2T k5 + (k + l3)lT k5 + T log4 T + k2l + klT

Signing time (T + l)k2 lk2T k2l k2l

Verification time (T + l)k2 lk2T k2l k2l

Key update time lk2 lk2 (k2 + l3)lT (k2l + l2 + log4 T ) log T
Secret key size lk k k (1 + log T )k
Public key size lk k k k

Signature size k k k k

Fig. 2. Comparing parameters of schemes built on specific security assumptions [3, 2,
8]. IR’ denotes the Itkis-Reyzin variant using the two optimizations from [8].

Except for the key generation and key update time, the Itkis-Reyzin (IR)
scheme is essentially optimal among the number theoretic schemes. However,
key update is very slow (linear in T ), making it impractical for some appli-
cations (e.g., the e-check application described in the introduction). Itkis and
Reyzin [8] also suggest a variant of their scheme where the update time is only
proportional to log T , but the secret key size increases by a factor log T , thus
matching generic constructions like the binary tree scheme. (In fact, generic
constructions have potentially smaller keys because they can be based on any
signature scheme with possibly shorter keys than factoring based ones.) Inter-
estingly, the seemingly “optimal” (i.e., independent of T ) verification time of
the IR scheme, is not necessarily better than other schemes in which this time
is proportional to log T . For example, by properly instantiating the binary tree
scheme with a basic signature algorithm with fast verification procedure (e.g.,
Rabin’s signature scheme [14] which has verification time k2), one can obtain a
forward-secure signature scheme where verification takes only O(k2 log T ), beat-
ing the O(lk2) running time of the IR scheme because log T = o(l). (In the full
version of this paper [12], we show a different tree construction, in which even
faster verification times are possible.)

3 Of course, when instantiated with a specific base signature scheme which requires
other assumptions, such as a random oracle, the resulting forward-secure scheme
also requires the same assumptions.



Comparison to Our Results. All previous known schemes (with the exception of
the very inefficient “long signature scheme” described in [3]) require the total
(maximal) number of time periods T to be fixed in advance and passed as a
parameter to the key generation algorithm. The value of T then contributes
to the overall performance of these schemes (at least proportionally to log T ,
but in most cases linearly for some parameters). We propose a new scheme,
MMM, whose performance avoids any dependence on T , and depends only on the
number of time periods elapsed so far (even this dependence is minimal). In fact,
T need never be fixed. In addition, MMM also combines the best of both types of
previous constructions in terms of efficiency and security. Indeed, we construct
it based on generic assumptions, yet we achieve competitive performance and
stronger security guarantees, even when compared to the best previous schemes
which used specific number theoretic assumptions.

In the left half of Figure 3, we demonstrate the efficiency of the scheme
when instantiated with the Guillou-Quisquater signature scheme.4 In the right
half of that same figure, we select specific parameter values, and show an actual
efficiency comparison between our scheme and the best previous schemes in each
category, namely the two Itkis-Reyzin schemes, and the Bellare-Miner binary tree
scheme. Relative to IR, note that we achieve the same or better improvements
over the binary tree scheme, without paying the price that IR pays in other
parameters. Also note that while we instantiated t = 1000 in MMM (the same
value as the instantiated maximal T in the other schemes), most of the time
t will be much smaller, implying better performance. More details about the
performance of our scheme can be found in Section 4.

2 Definitions

As formalized in [3], a key-evolving signature scheme S consists of four algo-
rithms: a key generation algorithm KeyGen, a secret key evolution algorithm
Update, a signature generation algorithm Sign, and a signature verification al-
gorithm Verify. It differs from a standard digital signature scheme in that the
secret key is subject to an update (or evolution) algorithm, and the time for
which the scheme is in use is divided into time periods. The public and secret
keys are denoted pk and sk respectively, and the secret key sk changes via each
invocation of the key update algorithm. We write sk(j) when we want to empha-
size that a particular value of the secret key is relative to the jth time period.
It is important to notice that the public key for the scheme remains constant

4 In order to compare a generic construction with a construction using specific security
assumptions, we need to select a specific base scheme for the generic construction.
Here, GQ is a good selection for comparison, as it is efficient, and it is the one
underlying the Itkis-Reyzing constructions as well. Because the GQ scheme is proven
secure in the random oracle model, the proof of forward security of the resulting
scheme also requires random oracles. This particular example does not change the
fact that our security proof does not need them itself.



MMM

Key gen time k2l2

Signing time k2l

Verification time k2l + l2 log l
Key update time (∗) k2l + (k + l2) log t
Secret key size k + l log l
Public key size l

Signature size k + l log l

MMM IR IR’ B.T.

Key gen time 1010 1015 1015 109

Signing time 108 108 108 108

Verification time 108 108 108 109

Key update time 108 1011 109 108

Secret key size 103 103 104 104

Public key size 102 103 103 103

Signature size 103 103 103 104

Fig. 3. Analyzing the MMM scheme instantiated with GQ. We first present an asymp-
totic analysis. Then, assuming parameter values k = 1000, l = 100, and T = 1000,
we compare estimated times and sizes for MMM with the IR schemes and the Bellare-
Miner binary tree scheme. In the case of MMM, we provide worst-case values, by setting
t = 1000. (∗) The running time of the update algorithm is amortized. The worst case
update may take tlk2. (Later, we provide another version of our scheme which achieves
uniformly fast update time, at the price of additional l log2 t+ k log l in the secret key
size.)

throughout, and each signature is verified using the same public key pk, regard-
less of which sk(j) was used to generate it.
For a key-evolving signature scheme to be forward-secure, it must be com-

putationally infeasible for an adversary, even after learning the secret key of the
scheme for a particular time period, to forge a signature on a new message for a
time period earlier than the secret key was leaked. Bellare and Miner formalized
the adversary model for forward-secure signature schemes, and the experiment
used to define the insecurity function for a scheme. The reader is referred to [3]
for details.
Typically, the total number of time periods T for a particular instantiation

of a forward-secure signature scheme must be fixed in advance, and passed as
a parameter to the key generation algorithm KeyGen. Moreover, T is usually
included in the public key pk, secret keys sk(j), and signatures σ, as it is required
by the update, signing and verification algorithms. The secret keys sk(j) and
signatures σ also include the current or issuing time period t. In this paper,
we use the convention that both T and t are passed as external parameters to
Update, Sign and Verify, instead of being included in the key and signature
strings. This is to avoid unnecessary duplications when signature schemes are
combined using our composition operations. However, most update, sign and
verify algorithms need t (and perhaps even T ) to work properly, and therefore
these values should be thought as integral parts of keys and signatures. Below,
we summarize the general input and output parameters of each algorithm of a
forward-secure digital signature scheme. We note that for the MMM scheme in
particular, an input T is not needed for any of its algorithms, and thus can be
omitted below.

– The key generation algorithm KeyGen takes as input the total number of
time periods T , and outputs a pair (pk, sk(0)) of public and secret keys.



– The key update algorithm Update takes as input T , the current time period
t, and the secret key sk(t) for time period t, and changes sk(t) into sk(t+1). If
t+ 1 = T then Update completely erases the secret key sk, and returns the
empty string.

– The signing algorithm Sign takes as input T , the current time period t, the
corresponding secret key sk(t), and a message M , and outputs a signature
(σ, t) on M .

– The verification algorithm Verify takes as input T , pk, M , σ, and t, and
accepts if and only if σ is a valid signature tag for message M and secret key
sk(t). Note that here t represents the time period during which σ was issued,
which is not necessarily the current one.

Additionally, all algorithms implicitly take as input one or more security param-
eters.

3 Composition Methods

In this section, we describe two general composition methods that can be used
to combine both standard and forward-secure signature schemes into forward-
secure schemes with more time periods. These are methods which have been used
implicitly in previous constructions (e.g., in [10, 3], see Sect. 5), and we formalize
them here. Although these compositions are interesting in their own right, we
present them here as a means to lead into our main construction, which can
be found in Section 4. To illustrate the flexibility afforded by these composition
operations, however, we present additional constructions in Section 5.

In order to unify the presentation, we regard standard signature schemes as
forward-secure signature schemes with one time period, namely T = 1. Let Σ0

and Σ1 be two forward-secure signature schemes with T0 and T1 time periods
respectively. We consider two methods to combine Σ0 and Σ1 into a new forward-
secure signature scheme Σ with a larger number of time periods T . The first
composition method results in a new scheme Σ = Σ0⊕Σ1 with T = T0+T1 time
periods. The second composition method results in a new scheme Σ = Σ0 ⊗Σ1

with T = T0 · T1 time periods. We call these operations the “sum” and the
“product” compositions, respectively. In the following two subsections, we give
descriptions of the operations, and give theorems analyzing their security and
performance.

Note that the sum and product procedures make use of specialized versions
of the key generation algorithms KeyGeni (i = 0, 1) that produce only the secret
or the public key of the original schemes. These specialized versions are called
SKeyGeni and PKeyGeni respectively. As we shall see, the diversification of
KeyGen to PKeyGen and SKeyGen plays a critical role for the performance
of forward-secure signature schemes obtained by the iterated application of the
basic composition operations.



3.1 The “Sum” Composition

Given any two schemes Σ0 and Σ1 as described above, we define a new scheme
Σ = Σ0 ⊕ Σ1 (called the sum of Σ0 and Σ1) with T = T0 + T1 time periods.
The public key for the sum scheme pk is the (collision-resistant) hash of the
public keys pk0 , pk1 of the two constituent schemes. The composition works by
first expanding a random seed r into a pair of seeds (r0, r1) using a length-
doubling pseudorandom generator, and generating keys for both Σ0 and Σ1

using pseudorandom seeds r0 and r1 respectively. Then, the secret key for the
Σ1 scheme is deleted, while its public key and the randomness r1 are saved.
(Deleting the second secret key, and later recomputing it using the seed r1, is
essential to keep the size of the secret key small when the composition operation
is iterated many times.) Signatures are generated using secret keys from the Σ0

scheme during the first T0 time periods. Then the Σ1 key generation process is
run again with the random string r1, to produce the same secret key obtained
earlier. (Notice that the public key will also be the same.) From this point
forward, the Σ0 secret key is deleted and only the Σ1 keys are used. Signatures
during any time period include the public keys for both schemes, so that the tag
generated can be checked against the relevant public key, and so the authenticity
of the signature can be checked against the hash value of both public keys,
which was published. The details of the scheme are given in Figure 4. We denote
the composition of the sum algorithm with itself iteratively to achieve T time
periods, by S⊕log T (since it looks like a tree with log T levels). This scheme will
later be used (with varying T ’s) to construct the MMM scheme (and it is further
discussed in Section 5).

Algorithm KeyGen(r):
(r0, r1)← G(r)
(sk0 , pk0 )← KeyGen0

(r0)
pk1 ← PKeyGen1

(r1)
pk ← Hash(pk0 , pk1 )

Return (〈sk0 , r1, pk0 , pk1 〉
︸ ︷︷ ︸

sk

, pk)

Algorithm Update(t,

sk

︷ ︸︸ ︷

〈sk′, r1, pk0 , pk1 〉)
If (t+ 1 < T0)
Then sk′ ← Update

0
(t, sk′)

Else If (t+ 1 = T0)
Then sk′ ← SKeyGen

1
(r1); r1 ← 0

Else sk′ ← Update
1
(t− T0, sk

′)
End

Algorithm Sign(t,

sk

︷ ︸︸ ︷

〈sk′, r1, pk0 , pk1 〉,M )
If (t < T0)
Then σ′ ← Sign

0
(t, sk′,M )

Else σ′ ← Sign
1
(t− T0, sk

′,M )
Return (〈σ′, pk0 , pk1 〉

︸ ︷︷ ︸

σ

, t)

Algorithm Verify(pk,M ,

σ
︷ ︸︸ ︷

〈σ′, pk0 , pk1 〉, t)
If (Hash(pk0 , pk1 ) = pk)
Then If (t < T0)

Then Verify
0
(pk0 ,M , σ, t)

Else Verify
1
(pk1 ,M , σ, t− T0))

Else Reject

Fig. 4. The algorithms defining the sum composition.



Security Analysis. Here we state a claim about the security of the sum composi-
tion. We assume only that the underlying signature schemes are forward-secure,
and that the hash function Hash used in the construction is collision-resistant.
In reality, the weaker assumption of a target-collision-resistant hash function
would result in a secure construction, but we make the stronger assumption
here to simplify the discussion. The proof of the following theorem can be found
in the full version of this paper [12].

Theorem 1. Let Σ0 be a key-evolving signature scheme with T0 time periods,
forward-secure against any adversary running in time m0 and making at most
q0 signature queries. Similarly, let Σ1 be a key-evolving signature scheme with
T1 time periods, forward-secure against any adversary running in time m1 and
making at most q1 signature queries. Let KGi, SGi, VFi and UPi be the key
generation, signature, verification and (amortized) key update time of Σi for
i = 0, 1. Assume Hash is a collision-resistant hash function. Then Σ0 ⊕Σ1, the
sum composition of Σ0 and Σ1, is a new forward-secure scheme such that for
any running time m, and number of signature queries up to q:

InSecfs(Σ0 ⊕Σ1,m, q) ≤ InSecfs(Σ0,m0, q0) + InSecfs(Σ1,m1, q1)

where both of the following hold:

m = max{(m0 − q · SG1 − T1 ·UP1 −KG1), (m1 − q · SG0 − T0 ·UP0 −KG0)}
q ≤ max{q0, q1}

The theorem above demonstrates that the sum composition is security-preserving.
That is, the sum of two schemes will have roughly the same security as the in-
dividual schemes’ security, relative to the resulting number of time periods.

Performance Analysis. We now give an analysis of key and signature sizes, as well
as running times for the sum composition. The relations below can be verified
by inspection of Figure 4.

Theorem 2. Let SKi, PKi and SIGi be the secret key, public key and signature
sizes for the forward-secure signature scheme Σi for i = 0, 1. Then, the key and
signature sizes of the sum scheme Σ0 ⊕Σ1 are:

PK = l

SK = max(SK0,SK1) + PK0 + PK1 + l

SIG = max(SIG0,SIG1) + PK0 + PK1

Theorem 3. Let KGi, SGi, VFi and UPi be the key generation, signature, veri-
fication and (amortized) key update time of the forward-secure signature scheme



Σi for i = 0, 1. Then the running times of the sum scheme Σ0 ⊕Σ1 are: 5

KG = KG0 +KG1 + l2

SG = max{SG0,SG1}

VF = max{VF0,VF1}+ l2

UP = (SKGtime1 + (T0 − 1)UP0 + (T1 − 1)UP1)/(T0 + T1 − 1)

Note that the update algorithm is usually very fast, but its worst case can be
quite slow, as it includes key generation for Σ1. This can be amortized, and, at
a small price, made uniformly small. In this case, the update algorithm will be
more complex, as partial computation of a future update will be performed at
each stage. We discuss this below.

Amortized Update Algorithm.While the amortized update time in the sum
construction is quite good, the worst case update time can be very bad (linear
in T ). This bad case happens when the left child is finished (at time T0), and
a new secret key for the right child needs to be generated. To make the update
procedure uniformly fast, we can distribute the computation of this key over the
time periods of the left child, so that by the time the left child is finished, the key
for the right child is ready. Distributing the work (time) is straight-forward, but
space becomes an issue, since the intermediate results of the computation need
to be kept. So, the space necessary to generate the secret key for the right child
will be added to size of the secret key of the scheme. When composing the sum
algorithm with itself to achieve T time periods, the space required to generate
the initial secret key for the right child is logarithmic. This means that, after
iterating, the total secret key size will be the size of the original secret key (say
k), plus O(l log2 T ). The other parameters of S⊕log T (see full version [12]) do not
change, and the update time becomes efficient even in the worst case.

3.2 The “Product” Composition

Beginning with any Σ0 and Σ1 as described in the beginning of Section 3, we
now define a new scheme Σ = Σ0 ⊗Σ1 (called the product of Σ0 and Σ1) with
T = T0 · T1 time periods. The idea is to combine signatures of Σ0 and Σ1 in a
chaining construction. In the process, we will generate several instances of the
Σ1 scheme, one for every time period of Σ0, so as to achieve forward security.
Specifically, for each time period in the Σ0 scheme, which we will call an epoch,
an instance of the Σ1 scheme is generated, and the public key of the Σ1 scheme
is signed using the Σ0 scheme. The public key of the entire scheme is simply the
public key of the Σ0 scheme, and a signature on a particular messageM includes
the signing time period, the public key of an instantiation of the Σ1 scheme, the
Σ0 scheme signature on the Σ1 public key, and the Σ1 signature on the message.
The scheme is precisely defined in Figure 5.

5 As explained in Section 1.2, we assume that a call to a hash function or PRG
takes time O(l2). Also, the update time here is the result of amortized analysis; it
represents the average case.



Algorithm KeyGen(r)
(r0, r1)← G(r)
(r′1, r

′′
1 )← G(r1)

(sk0 , pk)← KeyGen0
(r0)

(sk1 , pk1 )← KeyGen1
(r′1)

σ ← Sign
0
(0, sk0 , pk1 )

sk0 ← Update0(0, sk0 )
Return (〈sk0 , σ, sk1 , pk1 , r

′′

1 〉
︸ ︷︷ ︸

sk

, pk)

Algorithm Update(t,

sk

︷ ︸︸ ︷

〈sk0 , σ, sk1 , pk1 , r〉)
If (t+ 1 6= 0 mod T1)
Then Update

1
(t mod T1, sk1 )

Else (r′, r)← G(r)
(sk1 , pk1 )← KeyGen1

(r′)
σ ← Sign

0
(b t

T1
c, sk0 , pk1 )

sk0 ← Update0(b
t
T1
c, sk0 )

End

Algorithm Sign(t,

sk

︷ ︸︸ ︷

〈sk0 , σ0, sk1 , pk1 , r〉,M )
σ1 ← Sign1

(sk1 ,M , t mod T1)
Return (〈pk1 , σ0, σ1〉

︸ ︷︷ ︸

σ

, t)

Algorithm Verify(pk,M ,

σ
︷ ︸︸ ︷

〈pk1 , σ, σ
′〉, t)

v0 ← Verify0(pk,pk1 , σ, b
t
T1
c)

v1 ← Verify1(pk1 ,M , σ′, t mod T1)
Return (v0 ∧ v1)

Fig. 5. The algorithms defining the product composition.

Security Analysis. Next, we give a security claim about the product composition,
assuming only that the underlying signature schemes themselves are forward-
secure. Its proof can be found in the full version of this paper [12].

Theorem 4. Let Σ0 be a forward-secure signature scheme with T0 time periods,
and let Σ1 be a forward-secure signature scheme with T1 time periods. Let KGi,
SGi, VFi and UPi be the key generation, signature, verification and (amortized)
key update time of Σi for i = 0, 1. Then Σ0⊗Σ1, the product composition of Σ0

and Σ1, is a new forward-secure scheme such that for any running time m, and
number of signature queries up to q:

InSecfs(Σ0 ⊗Σ1,m, q) ≤ InSecfs(Σ0,m0, q0) + T0 · InSecfs(Σ1,m1, q1)

where both of the following hold:

m ≤ max {(m0 − q · SG1 − T0 · (KG1 +T1 ·UP1)),
(m1 − q · SG1 − T0 · (KG1 + SG0 +UP0 +T1 ·UP1))}

q ≤ max {T0, q1}

The above theorem demonstrates that a scheme generated using the product
composition will have roughly the same insecurity as the underlying two schemes,
relative to the resulting number of time periods. That is, the product construc-
tion is security-preserving.

Performance Analysis. For the product construction, we now give an analysis of
key and signature sizes, as well as running times. The relations can be verified
by inspection of Figure 5.



Theorem 5. Let SKi, PKi and SIGi be the secret key, public key and signature
sizes for the forward-secure signature scheme Σi for i = 0, 1. Then, the key and
signature sizes of the product scheme Σ0 ⊗Σ1 are:

PK = PK0

SK = SK0 + SK1 + PK1 + SIG0 + l

SIG = SIG0 + SIG1 + PK1

Theorem 6. Let KGi, SGi, VFi and UPi be the key generation, signature, ver-
ification and (amortized) key update time of the forward-secure scheme Σi for
i = 0, 1. Then the running times of the product scheme Σ0 ⊗Σ1 are: 6

KG = KG0 +KG1 + SG0 +UP0 + 2l
2

SG = SG1

VF = VF0 +VF1

UP = (T0(T1 − 1)UP1 + (T0 − 1)(l
2 +KG1 + SG0 +UP0))/(T0T1 − 1)

≤ UP1 + (l
2 +KG1 + SG0 +UP0 −UP1)/T1

4 The MMM Scheme

Here we present a new scheme obtained by the iterated application of the sum
composition operation together with an asymmetric variant of the product con-
struction. This scheme makes use of Merkle tree-type certification chains [10],
combined with ideas from the binary tree scheme of Bellare and Miner [3]. The
main feature of the MMM scheme is that the number of time periods is essen-
tially unbounded: the number of available time periods is limited only by the
security offered by security parameter l, i.e., we cannot use more than 2l time pe-
riods because otherwise the scheme can be broken. Moreover, the scheme exhibits
excellent performance, with almost instantaneous key generation, and update,
signing and verification speed that depend on the current time period t, instead
of being functions of the maximum time period T . This way, the performance
of the signing, verifying and update operations in the initial time periods is the
same as if we had chosen a small bound on T in one of the previously known
schemes. Performance degrades only slightly if a large number of time periods is
used, and still remains competitive with all previously known schemes.
The idea is the following. We start from a regular, non-forward-secure, digital

signature scheme S and build a forward-secure signature scheme L = S⊕log l with l
time periods, iterating the sum composition log l times. We then take the product
of L with another scheme of the form S⊕i , but with a twist (see later). Remember,
in the product construction we build a tree where the top part is given by an
instance of the L scheme, and at every leaf of L we attach an instance of the S⊕i

6 As explained in Section 1.2, we assume that a call to a hash function or PRG
takes time O(l2). Also, the update time here is the result of amortized analysis; it
represents the average case.



scheme. The twist here is that we use a different i for every leaf (see Figure 6),
S⊕0 for the first epoch, S

⊕

1 for the second, and so on up to S
⊕

l−1 for the last epoch.

We see that the total number of available time periods is T =
∑l−1

i=0 2
i = 2l − 1;

that is, practically unbounded, because 2l must be much bigger than T anyway
to avoid exhaustive search attacks.

L

S
⊕

1

l

log l

T = 2l − 1

1
2

23 = 8

22 = 4

2l−1

S
⊕

l−1

S
⊕

3

S
⊕

2

S
⊕

0

l

Fig. 6. The MMM construction, which uses an asymmetric product composition.

Security Analysis. Because of space limitations, a formal analysis of security is
omitted in this extended abstract. The security of the MMM scheme follows from
the security of the underlying composition operations, which we have shown to
be security-preserving. However, because in the MMM scheme, the number of
time periods is not fixed in advance, the insecurity will grow linearly not with
T , the total number of periods in the scheme, but rather with t, the number of
periods in the scheme thus far, or equivalently the number of update requests
made by the adversary. (Since the adversary is constrained to be polynomial
time, this number is always bounded by a polynomial, and the new scheme is
guaranteed to satisfy asymptotic security.)

Performance Analysis. We now analyze the performance of the MMM scheme.7

7 A summary of its performance when instantiated with the GQ scheme was given in
Section 1.2.



Key sizes. The public key is just a hash value (l bits), while the secret key has
roughly the same size as a digital signature: O(k + (log l + log t)l) bits.

Signature size. During time period t, each signature consists of log l hash
values, a public key and a digital signature for the top level tree, and log t hash
values, a public key and a digital signature for the bottom level tree. So, the
total size of the signature is 4k + (log l + log t)l bits. For typical values of the
security parameters, this exceeds the length k of a regular digital signature only
by a constant factor.

Signature generation time. Signing only requires computing a signature
using the secret key at the leaf node corresponding to the current time period.
So, it is as efficient as in standard signature schemes.

Verification time. Verification consists of 2 regular signature verifications,
and log l+log t hash function evaluations. If the Guillou-Quisquater [7] signature
scheme is used, this is 4k2l + (log l + log t)l2 = O(k2l), i.e., just twice as much
as the regular signature scheme.

Update time. Update consists of updating within the subtree Si, or, between
subtrees, it consists of generating the initial keys for the next subtree Si+1, and
updating the key of L. If we proceed in a straight forward manner, amortized
analysis of the update time after t periods yields O(log t(k+ l2)+k2l). The worst
case, however, is proportional to tlk2, since in the beginning of a new epoch we
need to generate keys for a new subtree Si+1 where i = log t. As was discussed
earlier, this update can be amortized across many time periods to achieve uni-
formly fast update, at the cost of larger secret keys. A similar amortization is
described in detail by Merkle [10], so we give only a brief description here. The
idea is to distribute the computation of this secret/public key pair across the 2i

time periods of the Si scheme. It is easy to see that the dominant part of the
Si+1 key generation is the generation of the 2

i+1 keys associated to the leaves
of the tree. If at each update operation of the Si subtree we generate two leaves
for the Si+1 scheme, then by the time the ith epoch is over, the key for the new
epoch will be ready. The price paid for uniformly fast update is adding the space
required to generate the initial keys for the next subtree to the size of the secret
key. This results in an addition of O(l log2 t+ k log l) to the secret key size.

This brief analysis shows that the MMM scheme is competitive with all other
existing schemes with respect to all parameters and has the added advantage of
a practically unbounded number of time periods. Moreover, MMM outperforms
each of the previously proposed schemes in at least one parameter. For example,
when compared to the recent scheme of [8], we see that our scheme has much
faster key generation and update procedures, while increasing the other param-
eters only by a small constant factor. Even when [8] is implemented using their
“pebbling” technique, our update procedure is superior because it requires log t
hash function computations as opposed to log t modular exponentiations, and
secret key is also much shorter, being only O(k+ l log t) instead of O(k log t). It
should be noted that since our scheme is generic, we can get different performance
trade-offs by changing the underlying signature scheme. (Similar trade-offs are



possible also for the binary tree scheme, or the scheme of Krawczyk [9], but not
for the number theoretic constructions of [3, 2, 8].) For example, if the Rabin
signature scheme is used, the verification time drops to O(k2), outperforming
all non-generic schemes. The price in this example is making signature gener-
ation slightly slower, going from O(k2l) to O(k3). Similarly, signature size can
be reduced by choosing an underlying signature scheme with short signatures,
possibly at the expense of signing or verification time.

5 Alternate Constructions

We used the sum and product composition operations discussed in Section 3 to
generate the MMM construction above. Here, we briefly mention several other
constructions possible using these operations, in order to highlight that different
performance tradeoffs can be achieved by selecting the proper base schemes and
the proper sequence of composition operations. (In fact, we can even achieve
previously known schemes using our composition operations, as mentioned be-
low.) In the full version of this paper [12], we analyze the following constructions
in more detail:

– BM ⊗ BM (where BM denotes the main scheme of Bellare and Miner)
– the iterated product S⊗log log T

, exactly the binary tree scheme of Bellare and
Miner

– the iterated sum S⊕log T

– IR⊕
10
(where IR denotes the standard construction of Itkis and Reyzin)

Acknowledgments

We thank Michel Abdalla and Leo Reyzin for helpful discussions regarding previ-
ous works, and comments on earlier drafts. We are also grateful to the anonymous
reviewers for their detailed comments.

References

1. R. Anderson. Two remarks on public-key cryptology. Manuscript, Sep. 2000. Rel-
evant material presented by the author in an invited lecture at the Fourth ACM
Conference on Computer and Communications Security (Apr. 1997).

2. M. Abdalla and L. Reyzin. A new forward-secure digital signature scheme. In Ad-
vances in Cryptology - Asiacrypt 2000, LNCS 1976 (Dec. 2000), pp. 116-129.

3. M. Bellare and S. Miner. A forward-secure digital signature scheme. In Advances
in Cryptology - CRYPTO ’99, LNCS 1666 (Aug. 1999), pp. 431-448.

4. M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudorandom bits. SIAM Journal of Computing 13(4)(Nov. 1984), pp. 850-864.

5. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the ACM, 33(4)(Oct. 1986), pp. 281–308. Preliminary version in the
Proceedings of the IEEE Symposium on the Foundations of Computer Science,
1984, pp 464–479.



6. S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal of Computing 17(2)(Apr. 1988),
pp. 281–308.

7. L.C. Guillou and J.J. Quisquater. A “paradoxical” identity-based signature scheme
resulting from zero-knowledge. In Advances in Cryptology - CRYPTO ’88, LNCS
403 (Aug. 1988), pp. 216–231.

8. G. Itkis and L. Reyzin. Forward-secure signatures with optimal signing and veri-
fying. In Advances in Cryptology - CRYPTO ’01, LNCS 2139 (Aug. 2001), pp.
332–354.

9. H. Krawczyk. Simple forward-secure signatures from any signature scheme. In Sev-
enth ACM Conference on Computer and Communications Security (Nov. 2000),
pp. 108–115.

10. R. C. Merkle. A certified digital signature. In Advances in Cryptology - CRYPTO
’89, (Aug. 1989), pp. 218–238.

11. S. Micali. A secure and efficient digital signature algorithm. Technical Report
MIT/LCS/TM-501, Massachusetts Institute of Technology, March 1994.

12. T. Malkin, D. Micciancio and S. Miner. Efficient generic forward-secure signatures
with and unbounded number of time periods. Full version of this paper, available
at http://eprint.iacr.org/2001/034/.

13. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the ACM Symposium on Theory of Computing,
1989, pp. 33–43.

14. M. Rabin. Digital signatures and public key functions as intractable as factoriza-
tion. MIT Laboratory for Computer Science Report TR-212, January 1979.

15. J. Rompel. One-way functions are necessary and sufficient for secure signatures. In
Proceedings of the ACM Symposium on Theory of Computing, 1990, pp. 387–394.

16. A. Yao. Theory and applications of trapdoor functions. In Proceedings of the IEEE
Symposium on the Foundations of Computer Science, 1982, pp. 80–91.


