
Efficient Binary Conversion for Paillier
Encrypted Values

Berry Schoenmakers1 and Pim Tuyls2

1 Dept. of Mathematics and Computing Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

berry@win.tue.nl
2 Philips Research Labs

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
pim.tuyls@philips.com

Abstract. We consider the framework of secure n-party computation
based on threshold homomorphic cryptosystems as put forth by Cramer,
Damg̊ard, and Nielsen at Eurocrypt 2001. When used with Paillier’s
cryptosystem, this framework allows for efficient secure evaluation of
any arithmetic circuit defined over ZN , where N is the RSA modulus of
the underlying Paillier cryptosystem.

In this paper, we extend the scope of the framework by considering the
problem of converting a given Paillier encryption of a value x ∈ ZN

into Paillier encryptions of the bits of x. We present solutions for the
general case in which x can be any integer in {0, 1, . . . , N − 1}, and for
the restricted case in which x < N/(n2κ) for a security parameter κ. In
the latter case, we show how to extract the ` least significant bits of x
(in encrypted form) in time proportional to `, typically saving a factor
of log2 N/` compared to the general case.

Thus, intermediate computations that rely in an essential way on the
binary representations of their input values can be handled without en-
forcing that the entire computation is done bitwise. Typical examples
involve the relational operators such as < and =. As a specific scenario
we will consider the setting for (approximate) matching of biometric
templates, given as bit strings.

1 Introduction

We consider secure n-party computation in the framework based on threshold
homomorphic cryptosystems, as put forth by Cramer, Damg̊ard, and Nielsen
[CDN01]. To evaluate a given n-ary function f securely, one expresses f as an
arithmetic circuit C composed of elementary gates, such as addition gates and
multiplication gates. Given ciphertexts [[x1]], . . . , [[xn]], the gates are evaluated
one by one, ultimately resulting in a ciphertext [[f(x1, . . . , xn)]]. Here, [[x]] de-
notes a probabilistic encryption of x in the underlying threshold homomorphic
cryptosystem, which will be the Paillier cryptosystem [Pai99] throughout most of
this paper. The homomorphic property ensures that evaluation of addition gates

is essentially for free, as addition may simply be done by multiplying two cipher-
texts. For multiplication gates, however, one needs a joint protocol involving at
least one threshold decryption in the underlying cryptosystem.

An important feature of this type of protocols for secure computation is that
the communication complexity, which is the dominating complexity measure, is
O(nk|C|) bits, where k is a security parameter, and |C| is the number of (mul-
tiplication) gates of circuit C. Moreover, if Paillier is used as the underlying
cryptosystem, the result of [CDN01] is particularly efficient in handling arith-
metic with large numbers. Each arithmetic gate handles integer values modulo
N , where N is the RSA modulus used for Paillier, at a cost independent of the
size of these integers.

Arithmetic circuits for functions that also involve some bit-oriented steps
tend to be inefficient, as can be seen from the following simple but somewhat con-
trived example. Consider the function ws(x1, . . . , xn) which outputs the Ham-
ming weight of the binary representation of the sum

∑n
i=1 xi of the inputs xi,

which are assumed to be from a bounded range, 0 ≤ xi < 264 say. Lacking an
efficient secure conversion of an integer value into its binary presentation, the
natural thing to do would be to require that the inputs xi are given bitwise
(hence as 64 encrypted bits each), and perform the entire computation bitwise.
This way, however, no advantage is taken from the potential of arithmetic cir-
cuits.

In this paper, we address this shortcoming by means of efficient protocols
for securely converting an integer into its binary representation. Such a protocol
can be viewed as a new type of gate, next to the addition/subtraction gates
and multiplication/division gates that are already known from [CDN01]. We
call it the BITREP gate. So, on input [[x]], 0 ≤ x < 2m, a BITREP gate outputs
[[x0]], . . . , [[xm−1]], of course, without leaking any information on x.

A moment’s thought will reveal that an efficient BITREP gate is only feasible
if a cryptosystem such as Paillier is used as the underlying cryptosystem. For
instance, the approach of [ST04], which is based on the homomorphic ElGamal
cryptosystem, cannot lead to an efficient BITREP gate: given [[x]], 0 ≤ x < 2m,
extracting x cannot be done in time polynomial in m, as it involves solving
a discrete log problem even when one knows the private key for [[·]] (if [[x]] =
(gr, hrgx), one needs to recover x from gx). For a Paillier ciphertext of the form
gxrN mod N2, there is no such contradiction as x can be recovered efficiently if
one knows the private key.

As a related problem, we will also provide an efficient protocol for computing
the least significant bits of an encrypted value, called an LSB gate. Clearly, a
cascade of LSB gates can also be used to implement a BITREP gate, but our
solutions for these gates will be of independent interest. The complexity of the
LSB gate is independent of m, for input [[x]], 0 ≤ x < 2m, under a mild restriction
on m in terms of N , such as m+100 < log2 N (in general, m+κ+log2 n < log2 N ,
for a security parameter κ).

As a further motivation for studying these problems we like to point out the
following application. Consider a constrained device which must send a certain

number of bits (ranging from a few hundred to a few thousand), which will be
processed further as inputs to a secure computation. The obvious approach of
sending a separate Paillier encryption for each of these many bits, however, may
be completely infeasible. Given the BITREP gate, it suffices if the device packs
the bits into one or more large integers, and sends these out using a single Paillier
encryption per integer.

A particularly interesting case of this scenario can be seen in the context
of biometric authentication. A tamper-resistant measuring device will obtain a
biometric sample, e.g., an IrisCoder consisting of 512 bytes, which it sends out
using a couple of Paillier encryptions. At the server side, the BITREP gate may
then be applied to obtain the encrypted bits, which are subsequently used to
evaluate securely whether the sample matches a stored (encrypted) biometric
template, which was previously obtained during enrollment. In such a system,
biometric details are never exposed in the clear, except in the measuring device
during capture. The relevance of such an approach has been argued, e.g. in
[DRS04,TG04,KAMR04].

Our Contributions

We present new n-party protocols for several variants of the problem of securely
computing the binary representation of an integer value. In each case we make
essential use of the Paillier cryptosystem (or variations thereof). The most gen-
eral solution, which we call the BITREP gate, handles input values that can
be any integer in {0, . . . , N − 1}, where N is an RSA modulus of k = log2 N
bits. The broadcast complexity of the BITREP gate ranges between O(nk2) and
O(n2k2 log k) depending on which subprotocols are used (e.g., for the generation
of jointly random bits).

Since k is large, ranging from 1024 to 2048 say, the cost of the BITREP gate
is high even if the actual inputs are known to lie in a much smaller range than
{0, . . . , N − 1}. Therefore, we also consider the case that the input values are
from a limited range {0, . . . , 2m − 1}, m < k − κ− log2 n, where κ is a security
parameter to be set such that 2−κ is negligible. In this case, we show how to
reduce the broadcast complexity by a factor of k/m compared to the general
case. The bound on m is not a severe restriction as typically κ + log2 n is much
smaller than k.

Finally, again for input values in {0, . . . , 2m − 1}, m < k − κ − log2 n, we
show how to extract the least significant bit in time independent of m (LSB
gate). More generally, we show how to extract the ` least significant bits in time
proportional to ` (LSBs gate). The broadcast complexity is reduced accordingly,
by a factor k/` compared to the general solution, independent of m.

Apart from these new protocols (which rely on a special application of O(1)
interval proofs), we also show how to integrate the security proofs for these new
gates in the framework of [CDN01]. First, we observe that the security proof of
[CDN01] actually achieves a tight reduction, namely that a distinguisher of the
simulated vs. real protocol is transformed into a distinguisher for the underlying
cryptosystem without loss in success probability. Secondly, the proof of [CDN01]

is modular in the sense that a statistically indistinguishable simulation is given
for each of the basic gates separately: e.g., the multiplication gate is simulated
given inputs [[x]], [[y]] and corresponding output [[xy]].

To retain the tightness and modularity, however, we need to state the security
for a gate such as a BITREP gate in a particular way. It turns out to be impossible
to simulate our BITREP gate given only input [[x]] and corresponding outputs
[[x0]], . . . , [[xm−1]]. The reason is that the protocol for the BITREP gate produces
additional encryptions such as [[x0x1]] and encryptions of other monomials as
intermediate results, which cannot be computed by the simulator! This is an
interesting phenomenon and we show how to extend the framework of [CDN01]
to handle it. The LSB gate can easily be simulated, though, given just the input
[[x]] and corresponding output [[x0]].

We also highlight some applications of the new gates. A similar tradeoff as
mentioned above for biometric authentication is possible in the context of elec-
tronic voting protocols, where one would like to minimize the effort required of
the voter in casting an encrypted ballot (e.g., when the voter’s client software
needs to run on a simple mobile phone). This problem has already been con-
sidered in [DJ02], where incidentally Paillier encryption is used as well. Using a
BITREP gate one gets an interesting alternative to [DJ02]. To vote for a single
candidate x, 0 ≤ x < 2m say, one simply lets the voter release an encryption
[[x]]. To tally these votes we use the radix M representation of [CFSY96], where
M is an integer larger than the number of voters. A vote x will thus contribute
Mx to the final tally, represented as an integer in radix M . To compute this
exponentiation securely, one first computes [[x0]], . . . , [[xm−1]] from [[x]], using the
BITREP gate. Noting that Mx0 = 1+x0(M − 1) and so on, it follows that [[Mx]]
can be computed securely, using O(m) multiplication gates. The so-obtained en-
cryptions [[Mx]] (for all voters) are then multiplied together and one gets, upon
decryption, the election result in radix M representation.

Related Work

Independent of our work, the problem of securely computing the bits of an
integer value has been studied recently by Damg̊ard et al. [DFK+06]. An obvious
difference is they consider the unconditional setting, whereas we consider the
cryptographic model. This is reflected by the use of sharings (for an underlying
linear secret sharing scheme) in their case vs. the use of encryptions (for an
underlying threshold homomorphic cryptosystem) in our case.

The shared values as well as the shares and the arithmetic circuit in [DFK+06]
are all defined over Fp, for a prime p, where the security of the protocol does not
depend on the size of p. Prime p can thus be chosen freely to fit an application.
For example, to make things practical, one may use moderately large primes p of
64 bits say (e.g., to ensure that inputs of a reasonable size can be handled and,
also, to easily exclude some failure events that happen with O(1/p) probability).
In our case, however, the arithmetic circuit will be defined over ZN , where N
is the RSA modulus of a Paillier cryptosystem. Necessarily, the number N is
therefore very large, say 1024 upto 2048 bits.

The protocol of [DFK+06] for handling input values in {0, . . . , p−1} and our
protocol for handling input values in {0, . . . , N−1} (the BITREP gate) follow the
same pattern. The emphasis in [DFK+06] is on constant round complexity (which
is achieved by solving various subproblems in constant rounds). In this paper,
we focus on techniques for handling inputs from a restricted range efficiently,
to limit the consequences of the fact that all arithmetic is done modulo N ,
where N is necessarily large: informally, to extract the ` least significant bits,
the complexity of our protocol is independent of the size of the gap N − 2`.

The problem of securely computing the bits of an integer value has also
been considered by Algesheimer et al. [ACS02], in the unconditional setting, but
restricted to the passive case. Their approach follows a more complicated pattern,
involving an addition circuit for securely adding n numbers bitwise (rather than
just 2 numbers as we and [DFK+06] do), which does not readily seem to extend
to the problems and solutions considered in this paper and in [DFK+06].

2 Preliminaries

In this section, we introduce some notation and present the basic tools that we
need throughout the paper.

We assume the framework for secure computation based on threshold homo-
morphic cryptosystems of [CDN01], used with the Paillier cryptosystem. This
framework allows one to securely evaluate arithmetic circuits, composed of sev-
eral types of basic gates, as listed below. For simplicity, we assume that the
parties P1, . . . , Pn evaluating the circuit coincide with the parties running the
underlying (t + 1, n)-threshold Paillier cryptosystem. Here, t denotes the max-
imum number of statically, but actively corrupted parties tolerated by the cir-
cuit evaluation protocol. If a party fails to complete a step during any of the
(sub)protocols (e.g., if a proof fails), then that party is simply discarded and
the (sub)protocol is rerun by the remaining parties; we will not describe this
explicitly for the protocols in this paper.

The bounds on t are as in previous papers. For 0 ≤ t < n/2, the case of a
dishonest minority, robustness is achieved directly using the protocol of [CDN01].
For n/2 ≤ t < n, the case of a dishonest majority, the protocol of [CDN01] can
be extended in a modular way to achieve various degrees of fairness: the new
property of “resource-fairness‘”, as introduced and studied in [GMPY06]), can
be achieved under additional intractability assumptions such as the strong-RSA
assumption; also, as described in [ST04], a strictly weaker form of fairness can
be achieved without requiring additional assumptions, using a simple gradual
release approach.

2.1 Paillier Cryptosystem

The Paillier cryptosystem is a probabilistic, additively homomorphic encryption
scheme, known to be semantically secure under the Decisional Composite Residu-
osity Assumption [Pai99]. Several variations and generalizations of the basic Pail-
lier cryptosystem have been proposed since, see, e.g., [FPS00,DJ01,CS02,DJ03].

Below, we summarize the threshold variant of a generalized Paillier cryptosys-
tem, as introduced in [DJ01, Section 4.1], but any other variant providing thresh-
old decryption can be used as well for our purposes.

The public key consists of an RSA modulus N = pq of bit length k (security
parameter), where p, q are safe primes, p = 2p′ + 1 and q = 2q′ + 1. The set of
plaintexts is given by the additive group ZNs , and an encryption of a message
x ∈ ZNs takes the form [[x]] = (N + 1)xrNs

mod Ns+1 for random r ∈ Z∗
Ns+1

(case s = 1 corresponds to the basic Paillier cryptosystem).
The private key is given by the unique value d ∈ ZτNs satisfying d = 0 mod τ

and d = 1 mod Ns, where τ = p′q′. In the threshold case, polynomial shares di

for i = 1, . . . , n of d are generated and distributed parties P1, . . . , Pn. Decryption
of a ciphertext [[x]] is done by means of a (t, n)-threshold decryption protocol
requiring the cooperation of t or more parties, 1 ≤ t ≤ n. We refer to [DJ01]
for further details, noting that it is also proved that, given a ciphertext and the
corresponding plaintext, the decryption protocol can be simulated statistically
indistinguishable for an active, static adversary corrupting at most t parties.

Throughout this paper, the results are described for the case s = 1, as in
the original Paillier cryptosystem, such that the plaintext space is simply the
additive group ZN (but the results can readily be extended to the case s > 1).
In this case, the cryptosystem is additively homomorphic over ZN : given [[x]]
and [[y]] with x, y ∈ ZN we have [[x + y]] = [[x]][[y]], where multiplication of
ciphertexts is done modulo N2. Note that this implies that, for any c ∈ ZN ,
[[cx]] = [[x]]c mod N2.

2.2 Efficient Proofs

In order to withstand active attacks, we use several standard types of zero-
knowledge proofs (Σ-protocols). We will assume the random oracle model, so
that all the proofs are non-interactive and can be simulated easily. We use stan-
dard proofs for proving plaintext knowledge, equality of plaintexts, and that a
plaintext is a bit for given Paillier encryptions.

In particular, we will use efficient range proofs by which a party that gener-
ated a Paillier encryption [[x]] can prove that x belongs to given interval using
O(1) modular exponentiations only. Although the hidden constant is quite large,
the O(1) methods certainly pay off for intervals of length 2100 and up, as we
need (hence, the size of the non-interactive versions of these proofs is O(k) for
security parameter k, in the random oracle model). Efficient proofs for showing
that a committed integer value belongs to a given interval were introduced in
[Bou00], and later refined in [Lip03]. The underlying integer commitment scheme
of [FO97,DF02] relies on the strong RSA assumption. By proving equality of such
a committed value and an encrypted value (see, e.g., [DJ02]), one can thus prove
that an encrypted value belongs to a given interval.

2.3 Basic Gates and Circuits

In this section, we briefly describe the secure subprotocols (gates and circuits)
we need for our protocols. The distinction between gates and circuits may be
somewhat arbitrary.

We describe the standard gates for multiplication and inversion modulo N ,
followed by two gates (or circuits) for jointly generating random values. Finally,
we describe circuits for the bitwise operations used in our protocols. These are
the basic arithmetic operators for addition and subtraction of integers, and the
basic relational operators for comparison of integers.

The exact details of these gates and circuits are immaterial to the validity
of our constructions, but we do give an indication of the broadcast and round
complexities.

Multiplication and Inversion Gates The general multiplication gate devel-
oped in [CDN01] allows n parties to compute an encryption [[xy]] given encryp-
tions [[x]] and [[y]], where x, y ∈ ZN , in a constant number of rounds.

In case one of the inputs, say input x, is private to one of the parties, say
party Pi, the following simplified multiplication protocol can be used, requiring
no interaction at all. Party Pi computes [[xy]] directly from [[y]] using the homo-
morphic property [[xy]] = [[y]]x. Party Pi also generates a Σ-proof showing that
it computed [[xy]] correctly w.r.t. [[x]] and [[y]]. We will refer to this gate as a
private-multiplier gate.

An inversion gate allows n parties to compute an encryption [[x−1]] given
encryption [[x]], with x ∈ Z∗

N , in a constant number of rounds [CDN01].
The broadcast complexity is O(nk) bits for a multiplication gate and an

inversion gate, and O(k) bits for a private-multiplier gate.

Random Invertible Element Gates All parties choose a random element
ri ∈R Z∗

N and broadcast an encryption [[ri]] together with a Σ-proof for knowl-
edge of the plaintext ri. Finally, [[r]] = [[

∑n
i=1 ri]] is publicly computed. Note that

this gate fails with negligible probability.
The broadcast complexity is O(nk) bits.

Random-Bit Gates We list three protocols for jointly generating encrypted
random bits. Each protocol starts the same. For i = 1, . . . , n, party Pi generates
a uniformly random bit bi ∈ {0, 1} and broadcasts [[bi]] together with a Σ-proof
to show knowledge of bi and that bi is indeed a bit. To combine bits [[bi]] into a
joint random bit [[b]], with b = ⊕n

i=1bi, we mention three options:

– use of an unbounded fan-in multiplication gate to compute [[b]] in constant
rounds, see [CDN01];

– use of O(n) multiplication gates to compute [[b]] in O(log n) rounds;
– use of O(n) private-multiplier gates to compute [[b]] in O(n) rounds.

The broadcast complexity is O(n2k) bits for the first two options (but the hidden
constant is significantly higher for the constant rounds protocol), and O(nk)
bits for the last option. Note that the joint random bits can be computed in
preprocessing, if so desired, creating an opportunity to use more rounds for a
lower broadcast complexity (and for a lower computational complexity too).

Addition and Subtraction Circuits Given encrypted bit representations
[[x0]], . . . , [[xm−1]] and [[y0]], . . . , [[ym−1]] of two numbers x, y, an addition circuit
essentially computes the bits of x+y, given by [[z0]], . . . , [[zm−1]], [[cm−1]] as follows:

zi = xi + yi + ci−1 − 2ci

c−1 = 0, ci = xiyi + xici−1 + yici−1 − 2xiyici−1.

A similar circuit can be used for subtraction.
Depending on the scenario such a circuit can be refined in various ways. We

mention two extreme options. One can optimize for broadcast complexity and
use O(m) rounds to compute an addition with broadcast complexity O(mnk)
bits. At the other extreme, one can optimize for round complexity and use O(1)
rounds as shown in [DFK+06]; their O(1)-depth circuit for bitwise addition can
also be used in the threshold homomorphic setting, resulting in a broadcast
complexity of O(m log mnk) bits.

Equality and Comparison Circuits Let [C] denote the Iverson bracket de-
fined by [C] = 1 if C ⇔ true and [C] = 0 otherwise. Given encrypted bit rep-
resentations [[x0]], . . . , [[xm−1]] and [[y0]], . . . , [[ym−1]] of two numbers x, y, equality
and comparison circuits compute [[[x = y]]] or [[[x < y]]], respectively. A O(log m)-
depth circuit for equality is straightforward, leading to round complexity of
O(log m) and broadcast complexity of O(mnk) bits. Interestingly, O(1) rounds
and O(mnk) bits are also achievable as shown in [DFK+06]; again their methods
carry over to the threshold homomorphic setting.

3 LSB Gate

We present a protocol for securely computing the least significant bit, which on
input [[x]], outputs an encryption [[x0]]. To obtain a particularly efficient solution,
we assume that x is a bounded value, that is, 0 ≤ x < 2m where the value of m is
restricted as a function of N , the number of parties n, and a security parameter
κ. The parameter κ is chosen such that 2−κ is negligible. The restriction on m
is that m + κ + log2 n < log2 N . In practice this is not a severe restriction. For
example, if N is a 1024-bit modulus, κ = 100, and n = 16, then m is bounded
above by 920.

3.1 Protocol

The idea is to jointly generate a random value [[r]] and to decrypt [[x + r]] such
that (i) y = x+ r is statistically indistinguishable from random and (ii) [[x0]] can

be recovered from y0 and [[r0]]. To this end, the random value r will be generated
in the form r = r0 + 2r∗, where r0 is a bit and r∗ is an integer value from a
sufficiently large range.

LSB Gate

1. The parties jointly generate a random bit [[r0]], using a
random-bit gate. In parallel, each party Pi chooses r∗,i ∈R

{0, . . . , 2m+κ−1 − 1} and broadcasts [[r∗,i]] accompanied with a
range proof that the encryption is correctly formed. The encryp-
tion [[r∗]] with r∗ =

∑n
i=1 r∗,i is publicly computed.

2. The encryption [[x]][[r0]][[r∗]]2 is formed and jointly decrypted to
reveal the value y = x + r, where r = r0 + 2r∗.

3. The output is [[r0 ⊕ y0]], which can be computed publicly from
[[r0]] and y0, as r0 ⊕ y0 = r0 + y0 − 2r0y0.

The broadcast complexity incurred by the range proofs in the first step of the
protocol is limited to O(nk) bits, assuming an efficient range proof is used,
as mentioned in Section 2.2. The broadcast complexity of the entire protocol
depends on the broadcast complexity of the random-bit gate used for generating
[[r0]], and varies between O(n2k) bits (and O(1) round complexity) and O(nk)
bits (and O(n) round complexity).

We note that once x0 is computed, the next bit of x can be computed by
applying the protocol to [[x∗]], with x∗ = (x − x0)/2. Indeed, the homomorphic
property implies [[x∗]] = ([[x]]/[[x0]])1/2, where 1/2 = (N + 1)/2 is the inverse of 2
modulo N . This way all of the bits of x can be recovered.

3.2 Security

The value output by the protocol is correct because y0 = x0⊕r0, as the addition
y = x + r is computed over the integers (the limited size of x and r ensures that
0 ≤ x + r < N).

Next, we show that the protocol can be simulated, assuming that the random-
bit gate can be simulated when given an output [[r̃0]]. Of course, the bit r̃0 should
be distributed uniformly.

Theorem 1. On input [[x]] and [[x0]], where 0 ≤ x < 2m, the LSB gate can be
simulated in a statistically indistinguishable manner.

Proof. Let x∗ = (x− x0)/2. Then [[x∗]] = ([[x]]/[[x0]])1/2.
To argue that no additional information on x is leaked we present the fol-

lowing simulation of the protocol. The simulation takes as input encryptions [[x]]
and [[x0]]. Given this information, the simulator is able to generate a complete
transcript for the protocol, for which the distribution is exactly the same as in
real executions of the protocol. Note that we have to ensure that the simulator
“knows” the plaintext for the joint decryption step in the middle of the protocol,
as the simulator for the threshold decryption protocol needs both a ciphertext
and the corresponding plaintext as input.

Assume w.l.o.g. that parties P1, . . . , Pt are corrupted. The simulator chooses
ỹ0 ∈R {0, 1}. We use the simulator for the random-bit gate to obtain a simulation
for output [[r̃0]] with r̃0 = x0 ⊕ ỹ0. This encryption can be computed from the
given encryption [[x0]], using ỹ0. In parallel, the simulator lets the adversary
run the first step of the protocol for parties P1, . . . , Pt, each time rewinding
the proofs of knowledge used to extract the values r∗,1, . . . , r∗,t. Subsequently,
the simulator runs the first step of the protocol for parties Pt+1, . . . , Pn−1 as
in the real protocol, resulting in the values r∗,t+1, . . . , r∗,n−1. For party Pn,
however, the simulator first generates s ∈R {0, . . . , 2m+κ−1− 1}, and sets r̃∗,n =
s−x∗− (x0 + r̃0− ỹ0)/2. Then [[r̃∗,n]] can be computed using [[x0]] and [[x∗]]. The
range proof for [[r̃∗,n]] is generated using the simulator for these proofs. Finally,
the simulator sets r̃∗ =

∑n−1
i=1 r∗,i + r̃∗,n.

As a result, we have that

[[x+r̃0+2r̃∗]] = [[x+r̃0+2
n−1∑
i=1

r∗,i+2s−2x∗−(x0+r̃0−ỹ0)]] = [[ỹ0+2(
n−1∑
i=1

r∗,i+s)]],

for which the simulator knows the decryption, as required.
By construction, the values are all consistent. We need to argue that all

the probability distributions for these values are correct too. Clearly, the values
for parties P1, . . . , Pn−1 follow the right distribution. Since ỹ0 is a uniformly
random bit, so is r̃0. Finally, the distribution of r∗,n = s−x∗−(x0 + r̃0− ỹ0)/2 is
statistically indistinguishable from the uniform distribution on {0, . . . , 2m+κ−1−
1}, because s ∈R {0, . . . , 2m+κ−1 − 1} and the term x∗ + (x0 + r̃0 − ỹ0)/2 =
x∗ + x0(1− ỹ0) is much smaller than it (bounded above by 2m). More precisely,
the statistical distance is bounded by 2−κ+1 (see Appendix A).

4 LSBs Gate

Next, we consider the more general case of extracting the ` least significant bits
of x rather than just the least significant one. We describe the protocol for the
case that all of the bits of x are computed (case ` = m); the case ` < m can be
handled by combining the techniques of this section and the previous section.

4.1 Protocol

Let m + κ + log2 n < log2 N , as before. On input [[x]], where 0 ≤ x < 2m,
the following protocol computes [[x0]], . . . , [[xm−1]] securely. The idea is to jointly
generate a random value [[r]] and to decrypt [[x + r]] such that (i) y = x + r
is statistically indistinguishable from random and (ii) [[x0]], . . . , [[xm−1]] can be
recovered from y0, . . . , ym−1 and [[r0]], . . . , [[rm−1]]. To this end, the value r will
be generated in the form r =

∑m−1
j=0 rj2j + 2r∗, where r0, . . . , rm−1 are bits and

r∗ is an integer value from a sufficiently large range.
For technical reasons, we will actually compute y = x − r in (i) and use an

addition circuit to perform step (ii).

LSBs Gate

1. The parties jointly generate random bits [[r0]], . . . , [[rm−1]], us-
ing m random-bit gates. In parallel, each party Pi chooses
r∗,i ∈R {0, . . . , 2m+κ−1 − 1} and broadcasts [[r∗,i]] accompanied
with a range proof that the encryption is correctly formed. The
encryption [[r∗]] with r∗ =

∑n
i=1 r∗,i is publicly computed.

2. The encryption [[x − r]] is formed and jointly decrypted to re-
veal the signed value y = x − r ∈ (−n/2, n/2), where r =∑m−1

j=0 rj2j + r∗2m. The signed value y is computed such that
y ≡ x− r (mod n).

3. Let y0, . . . , ym−1 denote the binary representation of y mod
2m. An addition circuit for inputs y0, . . . , ym−1 (public) and
[[r0]], . . . , [[rm−1]] is used to produce an output of m encrypted
bits (ignoring the final carry bit, hence computing modulo 2m).

Note that the probability that y ≥ 0 at step 2 is negligible.
The broadcast complexity of the protocol depends on the broadcast com-

plexity of the random-bit gate used for generating [[r0]], . . . , [[rm−1]], and varies
between O(mn2k) bits (and O(1) round complexity) and O(mnk) bits (and O(n)
round complexity).

4.2 Security

The main proof obligation is to show that the protocol can be simulated. We
would like to do so given just a matching pair of inputs and outputs, which in
this case consists of the encryptions [[x]] and [[x0]], . . . , [[xm−1]]. Unfortunately,
such a simulation will not succeed for the LSBs protocol because the protocol is
releasing additional encryptions apart from the encrypted bits of x. The problem
lies in the addition circuit, as used in the final step of the protocol.

The problem is that an addition circuit (see Section 2.3) releases encrypted
carry bits, next to the encrypted output bits. Even with full knowledge of r, these
encrypted carry bits can, in general, not be computed from [[x0]], . . . , [[xm−1]], as
this would imply that encryptions such as [[x0x1]], or other encrypted monomials,
can be computed in polynomial time. What is more, the number of monomials
that are possibly needed in a simulation is equal to 2m, hence exponential m.

We observe, however, that to prove simulatability in the framework of [CDN01]
it suffices to perform a simulation for input/output pairs of a special form. This
is a consequence of the fact that the security proof of [CDN01] (full version) cen-
ters around the construction of the so-called YADb distribution, which is defined
as a function of an encrypted bit [[b]].

In terms of the YADb distribution, the structure of the security proof is as
follows, following an ideal/real approach. The YAD0 distribution is identical to
the distribution in the ideal case, whereas the YAD1 distribution is statistically
indistinguishable from the distribution in the real case. Consequently, if an ad-
versary is able to distinguish the ideal/real cases, it follows that the adversary
is able to distinguish the YAD0 distribution from the YAD1 distribution. But

the choice between these two distributions is entirely determined by the value
of the encrypted bit b. Hence, a distinguisher for the ideal/real cases implies
a distinguisher for the underlying cryptosystem, and it does so in a tight way
(without loss in success probability for the distinguisher).

The special form for the input/output pairs is given by [[x̃]] = [[(1−b)x+bx′]],
where x and x′ are given in the clear, but bit b is only given as an encryption
[[b]]. The values x and x′ correspond to the values arising in the YAD0 case and
the YAD1 case, respectively, and are both known to the simulator. The x-values
correspond to fake values used to set up a consistent simulated view (b = 0)
and the x′-values correspond to the values used to set up a consistent real view
(b = 1).

Thus, the security is stated in a less general way, but still sufficiently general
to match the (adapted) framework of [CDN01]. Stating the security of a gate
(or, sub-circuit) in this way allows one to capture the security in a modular way,
while retaining the tightness of the overall reduction. Clearly, this idea is more
widely applicable, beyond the gates we are considering in this paper.

Theorem 2. Given input values x, x′ with 0 ≤ x, x′ < 2m and an encryption
[[b]] with b ∈ {0, 1}, the LSBs gate can be simulated statistically indistinguishably
for input [[x̃]] = [[(1− b)x + bx′]].

Proof. The goal is to generate a simulated transcript for input [[x̃]] = [[(1 −
b)x + bx′]], which is to the adversary statistically indistinguishable from a real
transcript. The values of x, x′ and [[b]] are available to the simulator.

Assume w.l.o.g. that parties P1, . . . , Pt are corrupted. Pick r̃0, . . . , r̃m−1 ∈R

{0, 1} and simulate the generation of these random bits. The simulator ex-
tracts/generates the values r∗,i for the corrupted/honest parties Pi (1 ≤ i < n).
The simulator chooses s ∈R {0, . . . , 2m+κ−1} and sets r∗,n = s−x−

∑m−1
j=0 r̃j2j

and r′∗,n = s − x′ −
∑m−1

j=0 r̃j2j . The distributions will be statistically close to
the uniform distribution on {0, . . . , 2m+κ − 1}.

By construction, the simulator knows how to decrypt x − r and x′ − r′,
where r =

∑m−1
j=0 r̃j2j + r∗2m and r′ =

∑m−1
j=0 r̃j2j + r′∗2

m, and where r∗ =∑n−1
i=1 r∗,i + r∗,n and r′∗ =

∑n−1
i=1 r∗,i + r′∗,n

To complete the proof we need to assign the correct values to all the wires
in the addition circuit, consistent with either b = 0 or b = 1. In both cases,
the first input to the addition circuit is s0, . . . , sm−1. The second input is either
r0, . . . , rm−1 or r′0, . . . , r

′
m−1, and the corresponding output is x0, . . . , xm−1 or

x′0, . . . , x
′
m−1. Now, for each wire, two values can be computed from these values.

If values v and v′ are thus computed for such a wire, we assign the encryption
[[(1− b)v + bv′]] to the wire.

This leads to a consistent assignment of encryptions to all of the wires. And,
therefore the simulators for the multiplication gates constituting the addition
circuit can be used to complete the simulation.

The values generated by the simulator are all consistent. Moreover, the dis-
tribution of −s is statistically indistinguishable from the value of y used in the
real protocol.

5 BITREP Gate

In this section we consider the case that x is any value in the range [0, N), where
N is the value of the Paillier modulus. We first present a protocol for jointly
generating a random value r ∈R [0, N), given by its bits [[r0]], . . . , [[rm−1]], with
m denoting the bit length of N . Subsequently, we present the BITREP gate,
which converts [[x]] into [[x0]], . . . , [[xm−1]].

The protocol for generating a random value r ∈R [0, N) uses the basic pro-
tocol for jointly generating m random bits between parties P1, . . . , Pn. We then
test whether the integer represented by these m bits is in the range [0, N):

1. The parties jointly generate random bits [[r0]], . . . , [[rm−1]], using m random-
bit gates.

2. A comparison circuit for encrypted inputs [[r0]], . . . , [[rm−1]] and public inputs
N0, . . . , Nm−1, denoting the bits of N , is used to compute [[[r < N]]], where
r =

∑m−1
j=0 rj2j .

3. The value [[[r < N]]] is decrypted to see if r is in range; if not, go back to the
first step.

The average number of iterations is bounded above by 2.
The protocol for converting [[x]] into [[x0]], . . . , [[xm−1]], where 0 ≤ x < N , now

runs as follows.

BITREP Gate

1. The parties generate encrypted bits [[r0]], . . . , [[rm−1]] of a random
number 0 ≤ r < N .

2. The parties compute [[x]]
∏m−1

j=0 [[rj]]2
j

and perform a threshold
decryption to obtain y = x + r mod N , 0 ≤ y < N .

3. Using a subtraction circuit with y0, . . . , ym−1 and
[[r0]], . . . , [[rm−1]] as inputs, the parties determine the bit
representation [[z0]], . . . , [[zm]] of the value z = x or z = x − N ,
where zm is a sign bit.

4. The parties reduce the value of z modulo N , by adding Nzm to z
using an addition circuit with inputs [[(Nzm)0]], . . . , [[(Nzm)m−1]]
and [[z0]], . . . , [[zm−1]].

Note that the equality y = x + r holds in Zn but not necessarily in Z. But if
y 6= x + r over the integers, then it follows that y = x + r −N must hold over
the integers, since 0 ≤ x < N and 0 ≤ r < N . In step 3, the case z = x occurs
exactly when y = x + r over the integers, and the case z = x−N occurs when
y = x + r −N .

The security is proved similar as in the previous section.

Theorem 3. Given input values x, x′ with 0 ≤ x, x′ < N and an encryption [[b]]
with b ∈ {0, 1}, the BITREP gate can be simulated statistically indistinguishably
for input [[x̃]] = [[(1− b)x + bx′]].

6 Applications

The result of [CDN01] shows how to efficiently evaluate arithmetic circuits com-
posed of addition/subtraction gates and multiplication/division gates defined
over ZN . This way large numbers can be handled, practically independent of the
size of the numbers. This contrasts favorably with approaches based on Boolean
circuits, where arithmetic is done in a bitwise fashion. However, as argued in the
introduction, the potential of arithmetic circuits is limited when some (inher-
ently) bitwise operations are required as well. Without binary conversion gates,
one is forced to perform the entire computation using a (large) Boolean circuit.

The relational operators such as < and = are typically handled by represent-
ing the numbers in binary form. Another important example is exponentiation,
where one wishes to compute [[xy]] securely, given [[x]] and [[y]]. Using a method of
repeated squaring one may compute [[xy]] using O(m) multiplication gates, once
[[y]] is converted into binary, given by its encrypted bits [[y0]], . . . , [[ym−1]], say.

As an interesting application we close this paper with a discussion of private
biometric authentication. This topic received quite some attention during the last
years, see e.g., [DRS04,TG04,KAMR04]. The goal of private biometric authenti-
cation is to identify or authenticate people based on their physical characteristics
(fingerprint, iris, . . .) without revealing any information on these personal char-
acteristics to the verifier or an attacker. This problem has been investigated
in the information theoretical setting by several authors [TG04,DRS04]. They
gave general constructions (using “helper data” and “fuzzy extractors” resp.).
At the same time, it was shown that perfect privacy cannot be achieved from an
information theoretic point of view. It is therefore natural to explore whether
a full privacy preserving and efficient biometric authentication scheme can be
constructed in the cryptographic setting. Below, we briefly describe how this is
achieved.

The heart of the system is formed by a set of servers which correspond to
the parties P1, . . . , Pn sharing the private key for a threshold Paillier cryptosys-
tem. These servers will match encrypted biometric templates as obtained during
enrollment of the users against encrypted biometric templates as measured by
sensors as part of an authentication protocol. Since the sensors are typically
lightweight devices, the goal is to minimize the computational load for the sen-
sors.

Authentication of a user will succeed if the biometric template Y = (y1, . . . , ym)
measured by a sensor is sufficiently close to the biometric template X = (x1, . . . , xm)
obtained during enrollment. For instance, assuming that the biometric templates
are actually bit strings in {0, 1}m, a possible similarity measure is the Hamming
distance between the bit strings: if dH(X, Y) < T , where T is a predetermined
threshold, then X and Y are said to match.

The BITREP gate can now be used as follows. To minimize the work for
the sensor we let the sensor first convert the measured biometric template Y to
an integer y ∈ {0, . . . , 2m − 1}, using an obvious mapping. The sensor is then
required to release the encrypted value [[y]] together with the claimed identifier
for the person being authenticated. At the server side, the encrypted bits of

Y are recovered using a BITREP gate (or, an LSBs gate if appropriate), before
running a secure matching protocol on the encrypted bits of X and Y .

Acknowledgements We would like to thank the anonymous referees for their
helpful comments.

References

[ACS02] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation modulo
a shared secret with application to the generation of shared safe-prime prod-
ucts. In Advances in Cryptology—CRYPTO ’02, volume 2442 of Lecture
Notes in Computer Science, pages 417–432, Berlin, 2002. Springer-Verlag.

[Bou00] F. Boudot. Efficient proofs that a committed number lies in an interval. In
Advances in Cryptology—EUROCRYPT ’00, volume 1807 of Lecture Notes
in Computer Science, pages 431–444, Berlin, 2000. Springer-Verlag.

[CDN01] R. Cramer, I. Damg̊ard, and J.B. Nielsen. Multiparty computation
from threshold homomorphic encryption. In Advances in Cryptology—
EUROCRYPT ’01, volume 2045 of Lecture Notes in Computer Sci-
ence, pages 280–300, Berlin, 2001. Springer-Verlag. Full version
eprint.iacr.org/2000/055, October 27, 2000.

[CFSY96] R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority
secret ballot elections with linear work. In Advances in Cryptology—
EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science,
pages 72–83, Berlin, 1996. Springer-Verlag.

[CS02] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Advances in
Cryptology—EUROCRYPT ’02, volume 2332 of Lecture Notes in Computer
Science, pages 45–64, Berlin, 2002. Springer-Verlag.

[DF02] I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment
scheme based on groups with hidden order. In Advances in Cryptology—
ASIACRYPT ’02, volume 2501 of Lecture Notes in Computer Science, pages
125–142, Berlin, 2002. Springer-Verlag.

[DFK+06] I. Damg̊ard, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft. Unconditionally
secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. In Proc. 3rd Theory of Cryptography Conference,
TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 285–
304, Berlin, 2006. Springer-Verlag.

[DJ01] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In Public Key
Cryptography—PKC ’01, volume 1992 of Lecture Notes in Computer Sci-
ence, pages 119–136, Berlin, 2001. Springer-Verlag.

[DJ02] I. Damg̊ard and M. Jurik. Client/server tradeoffs for online elections.
In Public Key Cryptography—PKC ’02, volume 2274 of Public Key
Cryptography—PKC ’, pages 125–140, Berlin, 2002. Springer-Verlag.

[DJ03] I. Damg̊ard and M. Jurik. A length-flexible threshold cryptosystem with
applications. In ACISP 2003, volume 2727 of Lecture Notes in Computer
Science, pages 350–364, Berlin, 2003. Springer-Verlag.

[DRS04] Y. Dodis, M. Reyzin, and A. Smith. Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data. In Advances in
Cryptology—EUROCRYPT ’04, volume 3027 of Lecture Notes in Computer
Science, pages 523–540, Berlin, 2004. Springer-Verlag.

[FO97] E. Fujisaki and T. Okamoto. Statistical zeroknowledge protocols to prove
modular polynomial relations. In Advances in Cryptology—CRYPTO ’97,
volume 1294 of Lecture Notes in Computer Science, pages 16–30, Berlin,
1997. Springer-Verlag.

[FPS00] P.-A. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context
of voting or lotteries. In Financial Cryptography 2000, volume 1962 of
Lecture Notes in Computer Science, pages 90–104, Berlin, 2000. Springer-
Verlag.

[GMPY06] J. Garay, P. MacKenzie, M. Prabhakaran, and K. Yang. Resource fair-
ness and composability of cryptographic protocols. In Proc. 3rd Theory
of Cryptography Conference, TCC 2006, volume 3876 of Lecture Notes in
Computer Science, pages 404–428, Berlin, 2006. Springer-Verlag.

[KAMR04] F. Kerschbaum, M.J. Atallah, D. M’Räıhi, and J.R. Rice. Private finger-
print verification without local storage. In Proceedings of the first Inter-
national Conference on Biometric Authentication, volume 3072 of Lecture
Notes in Computer Science, pages 387–394, Berlin, 2004. Springer-Verlag.

[Lip03] H. Lipmaa. On diophantine complexity and statistical zero-knowledge ar-
guments. In Advances in Cryptology—ASIACRYPT ’03, volume 2894 of
Lecture Notes in Computer Science, pages 398–415, Berlin, 2003. Springer-
Verlag.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in Cryptology—EUROCRYPT ’99, volume 1592 of
Lecture Notes in Computer Science, pages 223–238, Berlin, 1999. Springer-
Verlag.

[ST04] B. Schoenmakers and P. Tuyls. Practical two-party computation based on
the conditional gate. In Advances in Cryptology—ASIACRYPT ’04, volume
3329 of Lecture Notes in Computer Science, pages 119–136, Berlin, 2004.
Springer-Verlag.

[TG04] P. Tuyls and J. Goseling. Capacity and examples of template protecting
biometric authentication systems. In Proceedings of Biometric Authentica-
tion Workshop, volume 3087 of Lecture Notes in Computer Science, pages
158–170, Berlin, 2004. Springer-Verlag.

A Statistical Distance

We use elementary results on statistical distance in our proofs. As an illustration
we prove the following one.

Lemma 1. Let M and K be positive integers, M ≤ K. Let random variable
X take on values in {0, . . . ,M − 1}, and let random variable U be uniform on
{0, . . . ,K − 1}. Then ∆(U,X + U) ≤ (M − 1)/K, and this upper bound is tight.

Proof. For any w we have that Pr[X + U = w] =
∑M−1

a=0 Pr[X = a]Pr[U =
w − a], hence that 0 ≤ Pr[X + U = w] ≤ 1/K, and, if M − 1 ≤ w < K, that

Pr[X + U = w] = 1/K. Thus,

∆(U,X + U) = 1
2

∑M+K−2
w=0 |Pr[U = w]− Pr[X + U = w]|

≤ 1
2

(∑M−2
w=0 |1/K − 0|+

∑K−1
w=M−1 |1/K − 1/K|+

∑M+K−2
w=K |0− 1/K|

)
= (M − 1)/K.

Take X = M − 1 (constant) to conclude that this bound is tight.

Hence, ∆(U,X + U) is small if K � M . For instance, if K is exponential in
a security parameter k and M is polynomial in k, then the statistical distance
is negligible in k. In particular, if M = 2m and K = 2m+κ, then ∆ < 2−κ.

