
Differential-Linear Cryptanalysis of Serpent?

Eli Biham,1 Orr Dunkelman,1 Nathan Keller2

1Computer Science Department, Technion.
Haifa 32000, Israel

{biham,orrd}@cs.technion.ac.il
2Mathematics Department, Technion.

Haifa 32000, Israel
nkeller@tx.technion.ac.il

Abstract. Serpent is a 128-bit SP-Network block cipher consisting of
32 rounds with variable key length (up to 256 bits long). It was selected
as one of the 5 AES finalists. The best known attack so far is a linear
attack on an 11-round reduced variant.

In this paper we apply the enhanced differential-linear cryptanalysis to
Serpent. The resulting attack is the best known attack on 11-round
Serpent. It requires 2125.3 chosen plaintexts and has time complexity
of 2139.2. We also present the first known attack on 10-round 128-bit
key Serpent. These attacks demonstrate the strength of the enhanced
differential-linear cryptanalysis technique.

1 Introduction

Serpent [1] is one of the 5 AES [13] finalists. It has a 128-bit block size and accepts
key sizes of any length between 0 and 256 bits. Serpent is an SP-Network with
32 rounds and 4-bit to 4-bit S-boxes.
Since its introduction in 1997, Serpent has withstood a great deal of cryptan-

alytic efforts. In [8] a modified variant of Serpent in which the linear transforma-
tion of the round function was modified into a permutation was analyzed. The
change weakens Serpent, as this change allows one active S-box to activate only
one S-box in the consecutive round. In Serpent, this is impossible, as one active
S-box leads to at least two active S-boxes in the following round. The analysis
of the modified variant presents an attack against up to 35 rounds of the cipher.
In [9] a 256-bit key variant of 9-round Serpent1 is attacked using the amplified

boomerang attack. The attack uses two short differentials – one for rounds 1–4
and one for rounds 5–7. These two differentials are combined to construct a 7-
round amplified boomerang distinguisher, which is then used to mount a key
recovery attack on 9-round Serpent. The attack requires 2110 chosen plaintexts
and its time complexity is 2252 9-round Serpent encryptions.

? The work described in this paper has been supported by the European Commission
through the IST Programme under Contract IST-1999-12324.

1 We use n-round Serpent when we mean a reduced version of Serpent with n rounds.



In [4] the rectangle attack is applied to attack 256-bit key 10-round Serpent.
The attack is based on an 8-round distinguisher. The distinguisher treats those
8 rounds as composed of two sub-ciphers: rounds 1–4 and rounds 5–8. In each
sub-cipher the attack exploits many differentials. These 4-round differentials are
combined to create an 8-round rectangle distinguisher. The attack requires 2126.8

chosen plaintexts and 2217 memory accesses2 which are equivalent to 2208.8 10-
round Serpent encryptions3.
The 10-round rectangle attack was improved in [6] and the improved attack

requires 2126.3 chosen plaintexts, with time complexity of 2173.8 memory accesses
(2165 10-round Serpent encryptions). Thus, using the rectangle attack, it is also
possible to attack 192-bit key 10-round Serpent. A similar boomerang attack,
which requires almost the entire code book is also presented in [6].
The best known attack so far against Serpent can attack up to 11 rounds.

The attack [5] is based on linear cryptanalysis [11]. It requires data complexity
of 2118 known plaintexts and time complexity of 2214 memory accesses (2205.7

11-round Serpent encryptions).
In this paper we combine the differential and the linear results on Serpent

to present an attack on 11-round Serpent which has a significantly lower time
complexity. The attack is based on the differential-linear technique [10]. The
technique was later enhanced and improved in [7]. This technique combines a
differential characteristic (or several differential characteristics) together with a
linear approximation to construct a chosen plaintext distinguisher. This result
sheds more light on the applicability and the power of the enhanced differential-
linear technique.
The data complexity of our attack is 2125.3 chosen plaintexts and the time

complexity is about 2139.2 11-round Serpent encryptions. Therefore, the attack
is faster than exhaustive search even for 192-bit keys 11-round Serpent. We
use the same techniques to present a 10-round attack on Serpent that requires
2107.2 chosen plaintexts and 2125.2 10-round Serpent encryptions. This is the first
known attack on a 128-bit key 10-round Serpent faster than exhaustive search.
We organize this paper as follows: In Section 2 we give the basic description

of Serpent. In Section 3 we briefly describe the differential-linear technique. In
Section 4 we present the differential-linear attack on 11-round Serpent and on
10-round Serpent. We summarize our results and compare them with previous
results on Serpent in Section 5. In the appendices we describe the differential
characteristic and the linear approximation which are used in the attacks.

2 A Description of Serpent

In [1] Anderson, Biham and Knudsen presented the block cipher Serpent. It has
a block size of 128 bits and accepts 0–256 bit keys. Serpent is an SP-network

2 In [4] a different number is quoted, but in [6] this mistake was mentioned, and the
true time complexity of the algorithm was computed.

3 The conversion was done according to the best performance figures, presented in
[12], assuming one memory access is equivalent to 3 cycles.

2



block cipher with 32 rounds. Each round is composed of key mixing, a layer of
S-boxes and a linear transformation. There is an equivalent bitsliced description
which makes the cipher more efficient, and easier to describe.
In our description we adopt the notations of [1] in the bitsliced version. The

intermediate value of the round i is denoted by B̂i (which is a 128-bit value).
The rounds are numbered from 0 to 31. Each B̂i is composed of four 32-bit words
X0, X1, X2, X3.
Serpent has 32 rounds, and a set of eight 4-bit to 4-bit S-boxes. Each round

function Ri (i ∈ {0, . . . , 31}) uses a single S-box 32 times in parallel. For example,
R0 uses S0, 32 copies of which are applied in parallel. Thus, the first copy of
S0 takes the least significant bits from X0, X1, X2, X3 and returns the output to
the same bits. This can be implemented as a boolean expression of the 4 words.
The set of eight S-boxes is used four times. S0 is used in round 0, S1 is used

in round 1, etc. After using S7 in round 7 we use S0 again in round 8, then S1

in round 9, and so on. In the last round (round 31) the linear transformation is
omitted and another key is XORed.
The cipher may be formally described by the following equations:

B̂0 := P

B̂i+1 := Ri(B̂i) i = 0, . . . , 31

C := B̂32

where

Ri(X) = LT (Ŝi(X ⊕ K̂i)) i = 0, . . . , 30

Ri(X) = Ŝi(X ⊕ K̂i)⊕ K̂32 i = 31

where Ŝi is the application of the S-box S(i mod 8) thirty two times in parallel,
and LT is the linear transformation.
Given the four 32-bit words X0, X1, X2, X3 := Ŝi(B̂i ⊕ K̂i), they are linearly

mixed by the following linear transformation:

X0 := X0 <<< 13

X2 := X2 <<< 3

X1 := X1 ⊕X0 ⊕X2

X3 := X3 ⊕X2 ⊕ (X0 << 3)

X1 := X1 <<< 1

X3 := X3 <<< 7

X0 := X0 ⊕X1 ⊕X3

X2 := X2 ⊕X3 ⊕ (X1 << 7)

X0 := X0 <<< 5

X2 := X2 <<< 22

B̂i+1 := X0, X1, X2, X3

where <<< denotes bit rotation to the left, and << denotes bit shift to the left.

3



The key scheduling algorithm of Serpent is defined for 256-bit keys. Shorter
keys are padded by a single bit of 1 followed by as many bits of 0’s required to
have a total length of 256 bits. This value is loaded into a linear feedback shift
register, that outputs blocks of 128 bits. Each block passes through a layer of
S-boxes (different layer for each block). This process is repeated until 33 subkeys
of 128 bits each are derived. The subkeys are linearly independent, but knowing
the subkey which enters an S-box (for any round, for any S-box), we can invert
the relevant S-box used in the key schedule and obtain 4 linear equations on the
key.

3 Differential-Linear Cryptanalysis

Differential cryptanalysis [3] analyzes ciphers by studying the development of
differences during encryption. The attack is a chosen plaintext attack based
on a differential distinguisher which uses pairs of plaintexts. The distinguisher
exploits the fact that for the attacked cipher, the probability that an input
difference ΩP (i.e., difference between two inputs) results in an output difference
ΩT is higher than for a random permutation. Linear cryptanalysis [11] analyzes
the cipher by studying approximate linear relations. The attack is based on
building a distinguisher which exploits the fact that for the attacked cipher, the
probability that a given input mask λP and a given output mask λT are related
is different than 1/2 (the probability for a random permutation).
In 1994, Langford and Hellman [10] showed that both kinds of analysis can

be combined together by a technique called differential-linear cryptanalysis. The
attack uses a differential characteristic that induces a linear relation between two
intermediate encryption values with probability one. In [7] Biham, Dunkelman
and Keller extended this technique to the cases where the probability of the
differential part is smaller than 1.
We use notations based on [2, 3] for differential and linear cryptanalysis,

respectively. In our notations ΩP , ΩT are the input and output differences of
the differential characteristic, and λP , λT are the input and output subsets
(denoted by bit masks) of the linear characteristic.
Let E be a block cipher which can be described as a cascade of two sub-

ciphers – E0 and E1, i.e., E = E1 ◦E0. Langford and Hellman suggested to use
a truncated differential ΩP → ΩT for E0 with probability 1. To this differential
they concatenate a linear approximation λP → λT with probability 1/2 + q or
with bias q. Their attack requires that the bits masked in λP have a constant
and known difference in ΩT .
If we take a pair of plaintexts P1 and P2 that satisfy P1 ⊕ P2 = ΩP , then

after E0, λP ·E0(P1) = λP ·E0(P2) (or the opposite if the scalar product ΩT ·λP

is 1). This follows from the fact that E0(P1) and E0(P2) have a fixed difference
in the masked bits according to the output difference.
Recall that the linear approximation predicts that λP · P = λT ·E1(P ) with

probability 1/2+q. Hence, λP ·E0(P1) = λT ·E1(E0(P1)) with probability 1/2+q,
and λP · E0(P2) = λT · E1(E0(P2)) with probability 1/2 + q. As the differential

4



predicts that λP · E0(P1) = λP · E0(P2), then with probability 1/2 + 2q
2, λT ·

C1 = λT · C2 where C1 and C2 are the corresponding ciphertexts of P1 and P2,
respectively (i.e., Ci = E1(E0(Pi)).
This fact allows constructing differential-linear distinguishers, based on en-

crypting many plaintext pairs, and checking whether the ciphertexts agree on
the parity of the output subset. The data complexity of the distinguishers is
O(q−4) chosen plaintexts, when the exact number of plaintexts is a function of
the desired success rate, and of the number of possible subkeys.
In [7] Biham, Dunkelman and Keller proposed a way to deal with differentials

with probability p 6= 1. In case the differential is satisfied (probability p), the
above analysis remains valid. In case the differential is not satisfied (probability
1− p) we assume a random behavior of the input subset parities (and therefore,
also the output subset parities). The probability that a pair with input difference
ΩP will satisfy λT · C1 = λT · C2 is in that case p(1/2 + 2q

2) + (1 − p) · 1/2 =
1/2 + 2pq2.
Furthermore, in [7] it was shown that the attack can still be applicable if

the product ΩT · λP = 1. In this case, the analysis remains valid, but instead of
looking for the instances for which λT ·C1 = λT ·C2, we look for the cases when
λT ·C1 6= λT ·C2. As the analysis remains the same given a pair of plaintexts with
the input difference ΩP , the probability that the pair disagrees on the output
subset parity is 1/2 + 2pq2. Another interesting result is that we can use the
attack even when ΩT · λP is unknown, as long as it remains constant (this is
the case, when the difference passes an unknown constant linear function). The
data complexity of the enhanced differential-linear attack is O(p−2q−4).

4 Attacking 11-Round Serpent

We now present our differential-linear attack on 11-round Serpent. The 11 rounds
that we attack are rounds 1–11 of Serpent (i.e., starting at the second round of
Serpent). The attack is based on building a 9-round differential-linear distin-
guisher for rounds 2–10, and retrieving 48 bits of the subkeys of rounds 1 and
11.
The 9-round differential-linear characteristic is based on a 3-round differential

with probability 2−6 and a 6-round linear approximation with a bias of 2−27.
There are 5 active S-boxes before the 3-round differential, and 7 active S-boxes
after the 6-round linear approximation.
In the key recovery attack we are only interested in the input difference of the

differential and in the output mask of the linear approximation. To present these
values we adopt the notations from [4, 5, 9]. The figures describe data blocks by
rectangles of 4 rows and 32 columns. The rows are the bitsliced 32-bit words,
and each column forms the input of an S-box. The upper row represents X0,
while the lower row represents X3, and the rightmost column represents the
least significant bits of the words.
In the description of differentials a thin arrow represents a probability of

1/8 for the specific S-box (given the input difference, the output difference is

5



Fig. 1. Differential and Linear Representation Example

Fig. 2. The Input Difference of the 9-Round Distinguisher

achieved with probability 1/8), and a fat arrow stands for probability 1/4. If
there is a difference in a bit, its entry is filled. An example for our notation can
be found in Figure 1. The input difference 1 in the first S-box (S-box 0; related
to the least significant bits of the 4 words X0, X1, X2, and X3) causes an output
difference 3 with probability 1/4, and input difference 3 in S-box 30 causes an
output difference 1 with probability 1/8.

In the description of linear approximations a filled entry represents the subset
of bits participating in the approximation, a thin arrow represents a bias of 1/8,
and a fat arrow represent a bias of 1/4. Thus, we can treat Figure 1 as an example
for a linear approximation: Bit 0 of the input of S-box 0 has the same parity as
the subset {0, 1} of the S-box’s output with probability 1/2 ± 1/4 (or a bias of
1/4), and the parity of bits 0 and 1 of the input of S-box 30 has the same value
as bit 1 of the output of the S-box with probability 1/2± 1/8 (a bias of 1/8).

The 3-round differential is based on the best known 4-round differential char-
acteristic of Serpent, taken from [4]. It starts in round 2 with two active S-boxes,
and ends after round 4. Note, that we could have taken a differential with higher
probability of 2−5, but in exchange we would get 9 active S-boxes in the round
before the distinguisher, instead of only 5. When we experimentally verified this
result we have found out that there are other differentials which also predict
the difference in the bits of λP . Summing all these differentials, we get that the
probability that λP · ΩT = 0 is 1/2 + 2

−7. Hence, we use in our attack and
analysis p = 2−7. We present the input difference in Figure 2.

The 6-round linear approximation is based on one of the two best known
6-round linear approximations of Serpent, taken from [5]. It starts in round 5,
with 2 active S-boxes, and ends in round 10 with 5 active S-boxes and has a
bias of 2−27. The output masks can be computed once 7 S-boxes in round 11 are

6



Fig. 3. The Output Mask of the 9-Round Distinguisher

partially decrypted. We present the output mask of the linear approximation in
Figure 3.
In the basic 11-round attack, the attacker encrypts many plaintext pairs

with a plaintext difference that might lead to the desired input difference, and
partially decrypts the ciphertext pairs. Then, the attacker checks whether the
partially decrypted values agree on the parity of the output mask. As stated
before, the probability that the partially decrypted ciphertexts agree on the
output subset mask is 1/2+2pq2. Therefore, if the attack uses N plaintext pairs
it is expected that about N(1/2+2pq2) of them agree on the parity of the output
subset.
For the analysis stage of the attack, we define a random variable for each

subkey candidate. The variable counts how many pairs agree on the parity of
the output mask after the partial decryption. As there are 248 possible subkeys
in the 12 S-boxes, there are 248 − 1 wrong subkeys. We assume that all random
variables related to the wrong subkeys behave like a normal random variable
with a mean value of N/2 and a variance of N/4. The right subkey’s random
variable is also a normal random variable, but with mean of N(1/2 + 2pq2) and
a variance of about N/4.
The attack succeeds if the random variable related to the right subkey has

the highest value (or among the top fraction). Our analysis shows that for 2124.3

pairs, the random variable related to the right subkey has probability 72.1% to
be the highest of all random variables.
To optimize the data and time complexity of the attack, we use structures

of chosen plaintexts. Each structure contains 220 chosen plaintexts, which vary
on the input of the 5 active S-boxes in round 1. We use the following algorithm
for the attack:

1. Select N = 2125.3 plaintexts, consisting of 2105.3 structures, each is chosen
by selecting:
(a) Any plaintext P0.
(b) The plaintexts P1,. . . ,P220−1 which differ from P0 by all the 2

20 − 1
possible (non-empty) subsets of the twenty bits which enter the 5 active
S-boxes in round 1.

2. Request the ciphertexts of these plaintext structures (encrypted under the
unknown key K).

3. For each value of the 20 bits of K1 entering these 5 S-boxes:
(a) Initialize an array of 228 counters to zeroes.
(b) Partially encrypt each plaintext the 5 active S-boxes in round 1 and find

the pairs which satisfy the difference ΩP before round 2.

7



(c) Given those 2124.3 pairs, perform for each ciphertext pair:

i. Try all the 228 possible values of the 28 bits of subkey K11 that enter
the 7 active S-Boxes in round 11.

ii. For each value of the subkey, partially decrypt the ciphertexts through
the 7 active S-boxes in round 11, and compute the parity of the sub-
set of bits in λT after round 10.

iii. If the parities in both members of the pair are equal, increment the
counter in the array related to the 28 bits of the subkey.

(d) The highest entry in the array should correspond to the 28 bits of K11
entering the 7 active S-boxes in round 11.

4. Each trial of the key gives us 20 + 28 = 48 bits of the subkeys (20 bits in
round 1 and 28 bits in round 11), along with a measure for correctness. The
correct value of the 48 bits is expected to be the most frequently suggested
value (with more than 72.1% success rate).

5. The rest of the key bits are then recovered by auxiliary techniques.

The time complexity of a naive implementation is 2125.3 ·248 ·12/352 = 2172.4

11-round Serpent encryptions. The memory requirements of this algorithm are
mostly for keeping the plaintexts, but we can handle each structure indepen-
dently from other structures, thus, 228 counters (of 20 bits each) would suffice.
Hence, the memory complexity of the attack is 230 bytes.

The time complexity of the attack can be improved to 2125.3 · 220 · 5/352 =
2139.2 11-round Serpent encryptions. We note that for each guess of the subkey
of round 11 we perform 2125.3 decryptions. However, there are only 228 possi-
ble values of the 28 bits which we actually decrypt. The improvement is based
on keeping a precomputed table that holds for any possible value of the 28 ci-
phertext bits (which enter the 7 active S-boxes) and any possible value of the
corresponding 28-bit subkey, the parity of the partially decrypted value. The op-
timized Step 3(b) of the attack counts over all pairs how many times each of the
256 possibilities of the 56 bits (28 bits from each of the two ciphertexts) entering
the 7 active S-boxes n round 11 occurs. After counting the occurrences, we find
how many pairs agree on the output subset parity, and how many disagree, for
this subkey guess.

This is the first theoretical attack on 11-round Serpent with 192-bit keys.
It requires 2125.3 chosen plaintexts, and has time complexity of 2139.2 11-round
Serpent encryptions. The memory requirement of the attack is 260 bytes of RAM.

We can attack 10-round Serpent by reducing the distinguisher to 8 rounds.
We remove the last round of the linear approximation to get a 5-round linear
approximation with bias q = 2−22. The data complexity of the attack drops
to 2107.2 chosen plaintexts. The time complexity of the attack in this case is
2107.2 · 220 · 5/320 = 2125.2 10-round Serpent encryptions. This is the first known
attack against 10-round Serpent with 128-bit key. Note, that in this attack we
retrieve only 40 subkey bits, as there are only 5 active S-boxes in the last round
(round 10). The rest of the bits can be found by exhaustive search with time
complexity of 2128−40 = 288 10-round Serpent encryptions.

8



5 Summary

In this paper we present the best published attack on 11-round Serpent. The
attack is applicable against up to 11-round Serpent with keys of sizes 140–256
bits. It is faster than exhaustive search, and has a success rate of 72.1%. The
attack requires 2125.3 chosen plaintexts. Its best time complexity is 2139.2 11-
round Serpent encryptions, using 260 bytes of RAM for the analysis. We also
present an attack on 10-round Serpent requiring 2107.2 chosen plaintexts and
whose time complexity is 2125.2 10-round Serpent encryptions. We summarize
our new attacks, and previously published attacks against Serpent in Table 1.

Rounds Type of Attack Key Sizes Complexity
Data Time Memory

6 Differential [9] all 283CP 290 244

Differential [9] all 271CP 2103 279

Differential [9] 192 & 256 241CP 2163 249

7 Differential [9] 256 2122CP 2248 2130

Differential [4] all 284CP 278.9 256

8 Amp. Boomerang [9] 192 & 256 2128CP 2163 2137

Amp. Boomerang [9] 192 & 256 2110CP 2175 2119

Differential [4] 256 284CP 2206.7 289

9 Amp. Boomerang [9] 256 2110CP 2252 2212

10 Rectangle [4] 256 2126.8CP 2207.4 2131.8

Rectangle [4] 256 2126.8CP 2205 2196

Rectangle [6] 192&256 2126.3CP 2165 2131.8

Boomerang [6] 192&256 2126.3ACPC 2165 289

Enhanced Diff.-Lin. (this paper) all 2105.2CP 2123.2 240

11 Linear [5] 256 2118KP 2205.7 2183

Enhanced Diff.-Lin. (this paper) 192 & 256 2125.3CP 2172.4 230

Enhanced Diff.-Lin. (this paper) 192 & 256 2125.3CP 2139.2 260

Complexity is measured in encryption units. Memory is measured in bytes.
CP - Chosen Plaintexts, KP - Known Plaintexts,
ACPC - Adaptive Chosen Plaintexts and Ciphertexts.

Table 1. Summary of Attacks on Serpent with Reduced Number of Rounds

References

1. Ross Anderson, Eli Biham, Lars R. Knudsen, Serpent: A Proposal for the Advanced
Encryption Standard, NIST AES Proposal, 1998.

2. Eli Biham, On Matsui’s Linear Cryptanalysis, Advances in Cryptology, proceed-
ing of EUROCRYPT 1994, Lecture Notes in Computer Science 950, pp. 341–355,
Springer-Verlag, 1994.

9



3. Eli Biham, A Shamir, Differential Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, 1993.

4. Eli Biham, Orr Dunkelman, Nathan Keller, The Rectangle Attack – Rectangling
the Serpent, Advances in Cryptology, proceeding of EUROCRYPT 2001, Lecture
Notes in Computer Science 2045, pp. 340–357, Springer-Verlag, 2001.

5. Eli Biham, Orr Dunkelman, Nathan Keller, Linear Cryptanalysis of Reduced Round
Serpent, proceedings of Fast Software Encryption 8, Lecture Notes in Computer
Science 2355, pp. 16–27, Springer-Verlag, 2002.

6. Eli Biham, Orr Dunkelman, Nathan Keller, New Results on Boomerang and Rect-
angle Attacks, proceeding of Fast Software Encryption 9, Lecture Notes in Com-
puter Science 2365, pp. 1–16, Springer-Verlag, 2002.

7. Eli Biham, Orr Dunkelman, Nathan Keller, Enhancing Differential-Linear Crypt-
analysis, Advances in Cryptology, proceeding of ASIACRYPT 2002, Lecture Notes
in Computer Science 2501, pp. 254–266, Springer-Verlag, 2002.

8. Orr Dunkelman, An Analysis of Serpent-p and Serpent-p-ns, presented at the
rump session of the Second AES Candidate Conference, 1999. Available on-line
at http://vipe.technion.ac.il/∼orrd/crypt/.

9. John Kelsey, Tadayoshi Kohno, Bruce Schneier, Amplified Boomerang Attacks
Against Reduced-Round MARS and Serpent, proceedings of Fast Software Encryp-
tion 7, Lecture Notes in Computer Science 1978, pp. 75–93, Springer-Verlag, 2001.

10. Suzan K. Langford, Martin E. Hellman, Differential-Linear Cryptanalysis, Ad-
vances in Cryptology, proceedings of CRYPTO ’94, Lecture Notes in Computer
Science 839, pp. 17–25, 1994.

11. Mitsuru Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in Cryp-
tology, proceedings of EUROCRYPT ’93, Lecture Notes in Computer Science 765,
pp. 386–397, 1994.

12. NESSIE, Performance of Optimized Implementations of the NESSIE
Primitives, NES/DOC/TEC/WP6/D21/a, available on-line at
http://www.nessie.eu.org/nessie.

13. NIST, A Request for Candidate Algorithm Nominations for the AES, available
on-line at http://www.nist.gov/aes/.

14. David Wagner, The Boomerang Attack, proceedings of Fast Software Encryption
6, Lecture Notes in Computer Science 1636, pp. 156–170, 1999.

A The Differential Characteristic

The 3-round truncated differential used in the attack is based on the first 3
rounds of the best 4-round differential of Serpent. The first round of the differ-
ential is round 2 (or any other round that uses S2) with probability 2

−5:

S2S2 p=2
−5

10



After the linear transformation and the application of S3 we get the following
truncated differential with probability 2−1:

?
?
?

S3
−1

p=2

Where the ’?’ means that we do not care what the value of the difference is,
and the bold and thick arrow means that this happens with probability 1/2.

After the linear transformation, we get the following truncated differential in the
input to S4:

? ?

?

?

?
??

?

?

?

?

?
?
?
?

p=1

?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

?

?

S4

We checked all the various outputs of this S4 and found that all the possible
output differences do not affect the linear approximation used in the attack. The
empty arrow means that this holds with probability 1.

As mentioned before, we have experimentally verified that with probability
1/2+2−7 this input difference causes even difference (no difference or difference
in even number of bits) in the masked bits of λP .

B The Linear Approximation

The 6-round linear approximation used in the attack is part of the best 9-round
linear approximation of Serpent. It starts in a round with S5 as the S-box:

S5 P=1/2-2
-5

11



After the linear transformation, and the application of S6 we get the following
linear approximation with bias of 2−3:

P=1/2−2S6
−3

After the linear transformation, and the application of S7 we get the following
linear approximation with bias of 2−5:

S7 P=1/2-2
-5

After the linear transformation, and the application of S0 we get the following
linear approximation with bias of 2−6:

S0 P=1/2+2
-6

After the linear transformation, and the application of S1 we get the following
linear approximation with bias of 2−7:

S1 P=1/2-2
-7

12



After the linear transformation, and the application of S2 we get the following
linear approximation with bias of 2−6:

S2 P=1/2-2
-6

After this round, there are 7 active S-boxes in the following round: S-boxes
1, 8, 11, 13, 18, 23 and 28.

13


