
Rectangle Attacks on 49-Round SHACAL-1?

Eli Biham,1 Orr Dunkelman,1 Nathan Keller2

1Computer Science Department, Technion.
Haifa 32000, Israel

{biham,orrd}@cs.technion.ac.il
2Mathematics Department, Technion.

Haifa 32000, Israel
nkeller@tx.technion.ac.il

Abstract. SHACAL-1 is a 160-bit block cipher with variable key length
of up to 512-bit key based on the hash function SHA-1. It was submit-
ted to the NESSIE project and was accepted as a finalist for the 2nd
phase of the evaluation. In this paper we present rectangle attacks on 49
rounds out of the 80 rounds of SHACAL-1. The attacks require 2151.9

chosen plaintexts or ciphertexts and have time complexity of 2508.5 49-
round SHACAL-1 encryptions. These are the best known attacks against
SHACAL-1. In this paper we also identify and fix some flaws in previous
attacks on SHACAL-1.

1 Introduction

In 1993 NIST has issued a standard hash function called Secure Hash Algo-
rithm [?]. Later this version was named SHA-0, as in 1995 NIST published a
small tweak to this standard called SHA-1. Both SHA-0 and SHA-1 are based
on padding the message and dividing it to blocks of 512 bits. Then iteratively
compressing those blocks into a 160-bit digest. Recently, NIST has published
(besides SHA-1) 3 more standard hash functions as part of FIPS-180: SHA-256,
SHA-384 and SHA-512. Each of the new hash functions has a digest size corre-
sponding to its number, i.e., SHA-256 has a 256-bit digest, etc.
Both SHA-0 and SHA-1 were subjected to a great deal of analysis. In [?] an

attack producing pseudo-collisions in SHA-0 was suggested. A pseudo-collision is
not a true collision, as it assumes that the attacker can control the input to the
compression function, which is a constant value both in SHA-0 and in SHA-1.
The attack requires 261 computations of SHA-0 to produce a pseudo-collision.
This result does not apply to SHA-1.
As hash functions can also be attacked using differential cryptanalysis [?],

there is a continuous search for differentials in SHA-1. In [?] several of these
differentials were presented.
Recently, it was shown how to generate slid pairs in SHA-1 requiring about

232 computations of SHA-1, under some conditions [?].

? The work described in this paper has been supported by the European Commission
through the IST Programme under Contract IST-1999-12324.



As SHA-1 was thoroughly examined and analyzed, it was suggested to use
its compression function as a block cipher [?]. Later this suggestion was named
SHACAL-1 [?]. It is a 160-bit block cipher with variable key length (0–512 bits)
and 80 rounds based on the compression function of SHA-1. The cipher, which
was submitted as a candidate to the NESSIE project [?], was selected as a
NESSIE finalist, but was not selected for the NESSIE portfolio [?].
As mentioned before, it is possible to use the results of differential crypt-

analysis obtained on SHA-1, and apply them to SHACAL-1. In [?,?] a 5-round
differential characteristic with probability 1 is presented. Few 10-round differen-
tials are also presented in [?,?]. Recently, differentials with higher probabilities
than claimed in [?,?] were presented in [?,?]. In [?] these new differentials were
combined to mount an amplified boomerang attack on 47-round SHACAL-1.
The attack requires 2158.5 chosen plaintexts and has time complexity equivalent
to 2508.4 47-round SHACAL-1 encryptions.
In this paper we present some flaws in the analysis done in [?], and show how

to correct them without affecting the data complexity nor the time complexity
of the original attack.
We further improve the corrected results of [?] by applying the successor

of the amplified boomerang attack – the rectangle attack to SHACAL-1. This
allows us to reduce the data complexity to 2151.9 chosen plaintexts, and the time
complexity of attacking 47 rounds (rounds 0–46) of SHACAL-1 from 2508.4 to
2482.6 encryptions.
By moving the rectangle attack to other rounds (rounds 22–70 or rounds 29-

77) we also get an attack on 49-round SHACAL-1. The attack requires 2151.9

chosen plaintexts or chosen ciphertexts (depending on the rounds which we at-
tack) and 2508.5 49-round SHACAL-1 encryptions. This is the best known attack
against SHACAL-1.
This paper is organized as follows: In Section ?? we describe the block ci-

pher SHACAL-1. In Section ?? we present the previously best known results
on SHACAL-1 (we also describe the flaws, and present a modification to the
attack to correct those flaws). In Section ?? we give a short description of the
amplified boomerang and the rectangle attacks, and we present a rectangle at-
tack on 47-round SHACAL-1. In Section ?? we add two more rounds to the
attack to present a rectangle attack on 49-round SHACAL-1. Finally, Section ??
summarizes the paper. The appendix contains some of the differentials used in
the attack.

2 Description of SHACAL-1

SHACAL-1 [?] is a 160-bit block cipher supporting variable key lengths (0–512
bits). It is based on the compression function of the hash function SHA-1. The
cipher has 80 rounds (also referred as steps) grouped into 4 types of 20 rounds
each1.

1 To avoid confusion, we adopt the standard and common notations for rounds. In [?]
the notation step means round, where round is used for a group of 20 steps.
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The 160-bit plaintext is divided into five 32-bit words – A,B,C,D and E.
We denote by Xi the value of word X before the ith round, i.e., the plaintext
P is divided into A0, B0, C0, D0 and E0, and the ciphertext is composed of
A80, B80, C80, D80 and E80.
In each round the words are updated according to the following rule:

Ai+1 =Wi +ROTL5(Ai) + fi(Bi, Ci, Di) + Ei +Ki

Bi+1 = Ai

Ci+1 = ROTL30(Bi)

Di+1 = Ci

Ei+1 = Di

where + denotes addition modulo 232, ROTLj(X) represents rotation to the
left by j bits, Wi is the round subkey, and Ki is the round constant

2. There are
three different functions fi, selected according to the round number:

fi(X,Y, Z) = fif = (X&Y )|(¬X&Z) 0 ≤ i ≤ 19
fi(X,Y, Z) = fxor = (X ⊕ Y ⊕ Z) 20 ≤ i ≤ 39, 60 ≤ i ≤ 79
fi(X,Y, Z) = fmaj = ((X&Y )|(X&Z)|(Y&Z)) 40 ≤ i ≤ 59

In [?] it is strongly advised to use keys of at least 128 bits, even though
shorter keys are supported. The first step in the key schedule algorithm is to
pad the supplied key into a 512-bit key. Then, the 512-bit key is expanded into
eighty 32-bit subkeys (or a total of 2560 bits of subkey material). The expansion
is done in a linear manner using a linear feedback shift register (over GF (232)).
We omit the way the round subkeys are computed and the values of the

round constants as these details do not affect our analysis. However, we do use
the fact that the subkeys are linearly dependent on the key.

3 Previous Results

SHACAL-1 is based on SHA-1 and it is widely presumed that any attack on one
of them would lead to an attack on the other (as demonstrated lately in [?]).
Moreover, great deal of the analysis done to SHA-1 can be applied to SHACAL-1
as well.
In [?] the properties of the compression function of SHA-1 as a block cipher

were studied. Differential and linear properties of SHACAL-1 were studied in
[?,?]: There is a 4-round linear approximation with bias 1/2 (the maximal bias),
and for rounds with fxor this approximation can be extended into a 7-round
approximation with the same bias. There is also a 5-round differential with prob-
ability 1. These papers also contain results on 10-round linear approximations
and differentials. We summarize these results in Table ??.

2 This time we adopt the notations of [?], and alert the reader of the somewhat con-
fusing notations.
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Type f Type in Use Rounds Probability/Bias

Linear [?] any 4 1/2
Linear [?] fxor 7 1/2
Linear [?] fxor 10 2−6

Linear [?] fif 10 2−7.2

Linear [?] fmaj 10 2−6.4

Differential [?] any 5 1
Differential [?] fif , fmaj 10 2−13

Differential [?] fxor 10 2−26

Differential [?] fif 10 2−12

Differential [?] fxor 10 2−12

Differential [?] fif , fmaj 20 2−41

Differential [?] 20 fif then fxor 21 2−45

Differential [?] 20 fif then fxor 28 2−107

Differential [?] 20 fif then fxor 30 2−130

Differential [?] fxor 15 2−31

Table 1. Previously Known Differentials and Linear Approximations of SHACAL-1.

In [?] the differentials presented in [?,?] were improved, and 20-round differ-
entials with probability 2−41 are presented. In [?] another set of differentials of
SHACAL-1 is presented. We summarize these results in Table ??.
In [?] an algorithm for identifying whether two SHACAL-1 encryptions use

related keys is presented. The attack is based on finding slid pairs, once a slid
pair is encountered, the attacker can determine whether the two encryptions
have related keys. The attack requires about 296 encryptions under each of the
two keys to find a slid pair.
In [?] the 21-round differential for rounds 0–20 and the 15-round differential

for rounds 21–35 were combined to build an amplified boomerang [?] distin-
guisher for 36-round SHACAL-1. This distinguisher is used to attack 39-round
SHACAL-1 using 2158.5 chosen plaintexts and about 2250.8 39-round SHACAL-1
encryptions. The attack is based on guessing (or trying) the subkeys of the 3
additional rounds, and then checking whether the distinguisher succeeds. This
approach is further extended to attack 47-round SHACAL-1 before exhaustive
key search becomes faster than this attack. Another attack presented in [?] is
a differential attack on 41-round SHACAL-1. The attack uses the 28-round dif-
ferential characteristic with probability 2−107 for 128-bit keys, and the 30-round
differential characteristic with probability 2−130 for longer keys. We summarize
the data and time complexities of the attacks presented in [?] in Table ??.

3.1 Problems in the 47-Round Amplified Boomerang Attack and

How to Fix Them

As mentioned before, in [?] an amplified boomerang attack on 47-round SHACAL-1
is presented. The attack is based on a 36-round amplified boomerang distin-
guisher, and guessing the subkeys of the remaining 11 rounds. The basic idea is
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Key Size Type of Attack Number of Complexity
Rounds Data Time

128-bit Amplified Boomerang 28 2127.5CP 2127.2

Differential 30 2110CP 275.1

160-bit Amplified Boomerang 37 2158.5CP 287.8

Differential 32 2141CP 2105

256-bit Amplified Boomerang 39 2158.5CP 2250.8

Differential 34 2141CP 2234

512-bit Amplified Boomerang 47 2158.5CP 2508.4

Differential 41 2141CP 2491

CP - Chosen Plaintexts

Table 2. Complexities of Previous Attacks on SHACAL-1 ([?]).

to try each and every subkey for those 11 rounds, partially decrypt all the ci-
phertexts, and run the distinguisher. If the distinguisher succeeds (i.e., succeeds
to distinguish the remaining 36 rounds from a random permutation), then the
subkey for those 11 rounds is considered to be the right subkey.
We shall concentrate on the 39-round attack, which is based on guessing the

subkeys of the last 3 rounds. The 39-round attack is actually considered as a
procedure in the 47-round attack, hence, if this attack fails, so does the 47-round
attack presented in [?].
The 36-round distinguisher needs 2158.5 chosen plaintexts that compose 2157.5

pairs. According to the analysis in [?] it is expected that for the right subkey
the number of right amplified boomerang quartets3 is 8. However, the number
of right quartets has a Poisson distribution. Hence, if the expected number of
quartets is 8, and denoting by a random variable X the number of quartets, we
get that X ∼ Poi(8). This means that Pr[X ≥ 8] = 0.505 which is much lower
than expected by the authors of [?].
Usually this confusion between the expected value and the true distribution

of the value has no implication on the correctness of the attack. However, the
authors of [?] claim that

“But, for a wrong subkey, the expected value of counter is equal to 0
or 1, since the expected number of quartets passed through Step 4 is
2−5(= 2187 · (2−96)2).”

We agree that for most subkeys, the value of the counter (how many quartets
suggest this subkey) is 0 or 1. The values of these counters also behave like Pois-
son random variables. Let us examine a Poisson random variable Y ∼ Poi(1/32),
the probability Pr[Y ≥ 8] ≈ e−1/32 · (1/32)8/8! = 2−55.3 is truly very small. If
we take into consideration the fact that we have 296 such variables (each cor-
responds to a wrong subkey guess), each with probability of 2−55.3 to pass the

3 We present in Section ?? a detailed description of the amplified boomerang attack.
Meanwhile, we note that for a random permutation with 160-bit block, the proba-
bility that 2157.5 pairs create an amplified boomerang quartet is 2−5.
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filtering, then about 240.7 out of the possible 296 subkeys also have at least 8
“right” quartets. Therefore the 39-round attack fails, as there are 240.7 subkeys
suggested by the attack, and only in half of the cases the right subkey is among
them!
At first glance it appears that these observations indicate that the attack is

incorrect. We correct the attack by exploiting the fact that all subkeys and the
user key are all linearly dependent. Given a subkey with 8 (or more) candidate
quartets, we can check all keys which generate this subkey. Enlisting those keys
is easy and can be done efficiently, as the subkeys are linearly dependent in the
key. Thus, we can reduce the time complexity of exhaustive key search by a
factor of 255.3 and find the right key with probability 50.5%. By reducing the
threshold (examining subkeys with 7 or more quartets) we increase the success
rate of the attack to 69%. In exchange, we examine 1 out of every 247.3 keys,
i.e., 255 times more keys than when 8 quartets are the requirement.
We can further correct and improve the above results. Right quartets are

composed of two pairs of right pairs with respect to the first differential used
in the amplified boomerang distinguisher4, thus, if a subkey gets 7 or more
quartets, we have at least 14 pairs with respect to the first differential. We use
those pairs to mount a regular differential attack. Our analysis shows that 14
pairs are sufficient to determine the first round subkey uniquely. Moreover, for
a wrong subkey guess, the probability that these 14 pairs suggest a subkey for
the first round is about 2−24, hence, it can be used for eliminating wrong subkey
guesses.
This variant of the attack retrieves 128-bit subkey material, 32 bits in the

first round (these bits are actually key material), and the remaining 96 bits
that are linearly derived from the key. We can further retrieve subkey material,
continuing the differential attack and using auxiliary techniques.
Combining these corrections and improvements we get a valid attack with the

same time and data complexity as the one mentioned in [?]. The most time con-
suming part of the attack is still the basic 39-round attack, while the remaining
steps have a negligible time complexity.

4 Rectangling the Attack – Attacking 47-Round

SHACAL-1

In this section, we improve the corrected results of [?] to attack 47-round SHACAL-1
more efficiently. Our improvements are based on transforming the amplified
boomerang attack into a rectangle attack. This allows us to reduce the data
complexity of the attack to 2151.9 chosen plaintexts, and the time complexity to
2482.6 47-round SHACAL-1 encryptions.
We first upgrade the distinguisher from an amplified boomerang distinguisher

[?] into a rectangle distinguisher [?]. These attacks are closely related to the

4 Again, we present a detailed description of the amplified boomerang attack in the
next section.
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Probability (p) 2−45 2−46 2−47 2−48 2−49 2−50 2−51

Number of Differentials (l) 1 7 24 73 182 351 677
Contribution to p̂2 (= lp2) 2−90 2−89.2 2−89.4 2−89.8 2−90.5 2−91.5 2−92.6

Table 3. Number of Differentials for Rounds 0–20 of SHACAL-1.

boomerang attack [?]. Both the amplified boomerang and the rectangle attacks
are based on treating the distinguished part of the cipher as composed of two
sub-ciphers. Formally, we treat the block cipher E as a cascade of 4 sub-ciphers:
E = Ef ◦E1 ◦E0 ◦Eb, where Eb are the attacked rounds before the distinguisher,
Ef are the attacked rounds after the distinguisher, and E ′ = E1 ◦ E0 is the
distinguished part.

In the amplified boomerang attack, we take a differential α→ β through E0

with probability p and a differential γ → δ through E1 with probability q. If
we take N pairs of plaintexts with input difference α, about Np of them have
a difference β after E0. Those Np pairs can be combined in (Np)2/2 quartets.
Denoting such a quartet by ((P1, P2), (P3, P4)) we know that P1 ⊕ P2 = P3 ⊕
P4 = α and that E0(P1) ⊕ E0(P2) = E0(P3) ⊕ E0(P4) = β. Assuming that
{E0(Pi)} are distributed uniformally, then with probability 2

−160 it is true that
E0(P1)⊕ E0(P3) = E0(P2)⊕ E0(P4) = γ. When this happens, with probability
q2 we get that E1(E0(P1)) ⊕ E1(E0(P3)) = E1(E0(P2)) ⊕ E1(E0(P4)) = δ.
Hence, starting with N plaintext pairs with input difference α we expect about
N2 · (pq)2 · 2−161 quartets which satisfy the condition C1 ⊕ C3 = C2 ⊕ C4 = δ,
where Ci is the corresponding ciphertext to the plaintext Pi.

The rectangle attack is based on the same basic idea. However, the attack
allows using any differential α → β′ in E0 and any differential γ

′ → δ in E1

(as long as β′ 6= γ′). Besides these improvements, the attack gains a factor
of 2 in the number of expected quartets by checking the two different quar-
tets ((P1, P2), (P3, P4)) and ((P1, P2), (P4, P3)). Hence, starting with N plaintext
pairs with input difference α, we expect to get N 2 · (p̂q̂)2 · 2−160 right quartets,
where:

p̂ =

√

∑

β

Pr 2[α→ β], q̂ =

√

∑

γ

Pr 2[γ → δ].

Moreover, for a rectangle distinguisher, there is a better key recovery al-
gorithm presented in [?]. Therefore, using the rectangle attack instead of the
amplified boomerang attack is much more efficient and requires less data.

In order to compute p̂ we need to summarize the squares of the probabilities
of all the differentials with input difference α through E0. This task is compu-
tationally infeasible, and thus, we try to count over as many differentials as we
can. We settle for counting over all differentials which have the same first 20 or
19 rounds as the 21-round differential used in the original amplified boomerang
attack. In Table ?? we gather the number of counted differentials according to
their probabilities, and in Appendix ?? we present some of these differentials.
Given these results we are able to compute a lower bound for p̂ = 2−43.64.
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Probability (p) 2−31 2−32 2−33 2−34 2−35 2−36 2−37

Number of Differentials (l) 1 3 8 18 32 48 56
Contribution to p̂2 (= lp2) 2−62 2−62.4 2−63 2−63.8 2−65 2−66.4 2−68.2

Table 4. Number of Differentials for Rounds 21–35 of SHACAL-1.

Due to the same reasons, computing the exact value of q̂ is computationally
infeasible. Hence, we count only differentials which have the same 13 or 14 last
rounds as the 15-round differential used in the original amplified boomerang
attack. In Table ?? we list the number of differentials with their respective
probabilities, and in Appendix ?? we present some of these differentials. We
take all these differentials into account and get that q̂ = 2−30.28.

These improvements reduce the data complexity of the attack from 2158.5

chosen plaintexts to 2155.9 chosen plaintexts. Due to the nature of the amplified
boomerang and the rectangle attacks, this reduces the time complexity by a
factor of 25.2 ≈ 35.5.

Our third improvement to the data and time complexity of the attack is
based on reducing the number of rounds in the distinguisher itself.

In the attack presented in [?], there are 0 rounds in Eb, 21 rounds in E0,
15 rounds in E1, and between 3 to 11 rounds in Ef . We can move one round
from the E0 to the rounds before the distinguisher Eb. This changes the division
to sub-ciphers a little bit into 1 round in Eb and 20 in E0. This increases the
probability of the differentials of E0 by 2

4 in exchange for a more complex attack
algorithm.

In these new settings we use the results of [?], where a generic key recovery
algorithm based on the rectangle distinguisher is presented. We shortly describe
the notations used in that paper. Let E = Ef ◦ E1 ◦ E0 ◦ Eb be an n-bit block
cipher. Assume that for E0 we have an input difference α and a related p̂, and
an output difference δ and q̂ for E1. We denote by rb the number of bits which
are active or can be active in the plaintext given that there is an α difference
after Eb (and before E0). We denote by 2

tb the number of of possibilities for
these bits. For example, if an α difference after Eb requires that there is some
plaintext bit that always differs in the pair, then this bit is counted by rb but
has no affect on tb. We denote by mb the number of subkey bits in Eb that we
attack (i.e., the number of subkey bits in Eb that affect the α difference after
Eb). For Ef , we denote by rf the number of ciphertext bits whose difference
is unknown after Ef if the input difference of Ef was δ. Similarly, 2tf is the
number of possible differences in these rf bits. We denote by mf the number of
subkey bits in Ef that affect the δ difference. See [?] for more details of these
notations and the detailed attack.

The figures for this decomposition of 39-round SHACAL-1 are as follows:
n = 160 (as SHACAL-1 is a 160-bit block cipher). If we truncate the 21-round
characteristics by the first round (which becomes Eb), there are are 25 bits that
might have difference in the plaintext: The 22 most significant bits of register E,
bit 5 of register A, bit 20 of register C and bit 15 of register D, thus rb = 25. If
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we look at these 25 bits we observe that not all the 225 differences are possible:
3 out of these 25 bits always differ, i.e., for a pair with difference α after Eb

these bits are always active, and for some other bits not all the differences are
possible. For example, bits 10–14 of register E can have only one of the following
five patterns – {01x, 03x, 07x, 0Fx, 1Fx}. Similarly, our analysis reveals that the
22 bits of register E can have at most 5 · 2 · 4 · 2 · 2 · 12 = 960 = 29.9 differences
before round 0, and therefore tb = 9.9.
If the output difference of a pair after E1 is δ, after Ef we get that out of the

160 ciphertext bits, 68 bits have no difference or always have a difference (bits 0,1
of registerB, bits 30,31 of register C and the entireD and E registers). Therefore,
the number of bits which may differ in a right pair is rf = 160−68 = 92. Still, for
a right pair, not all the 292 possible differences in these 92 bits can be achieved.
Our analysis reveals that at most 7 · 222 · 7 · 222 · 232 = 281.6 of these differences
can be achieved if the input difference to Ef is δ, thus, tb = 81.6.
Finally, for this attack mb = 32 (as we attack one round in Eb) and mf = 96

(as we attack 3 rounds in Ef ).
Assigning these figures to the complexity analysis from [?] we obtain that

the data complexity of the attack is N = 2n/2+2/p̂q̂ = 2151.9 chosen plaintexts,
and the time complexity of the attack is N 2(2rf−n−1 +2tf−n +22tf +2rb−2n−2 +
2mb+2tf+tb−2n−1 + 2mf+2tb+tf−2n−1) + N memory accesses, which are 2235.4

memory accesses. These 2235.4 memory accesses are equivalent to 2227.5 39-round
SHACAL-1 encryptions5.
We can extend this attack to a 47-round SHACAL-1 using the following

algorithm:

1. Try all 2256 possible values for the eight 32-bit subkeys value (of rounds 39–
46). For each guess partially decrypt all ciphertexts these 8 rounds, and:
(a) Apply the 39-round rectangle attack.
(b) In case the 39-round attack suggests a subkey with 3 or more quartets,

check all the 2128 keys that generate this 128-bit subkey value (the one
suggested by the 39-round attack) and the 256-bit subkey values for
rounds 39–46.

The loop is repeated 2256 times, and it is expected that no more than 266

subkeys have 3 or more quartets for each 256-bit subkey guess. Thus, the time
complexity of Step (b) is 2256 ·266 ·2128 = 2450 47-round SHACAL-1 encryptions.
The time complexity of Step 1 is 2256 · 2151.9 · 8

47
= 2405.3 47-round SHACAL-1

encryptions, and the time complexity of Step (a) is 2490.8 memory accesses (which
are equivalent to 2482.6 47-round SHACAL-1 encryptions). Thus, the total time
complexity of the attack is 2482.6 47-round SHACAL-1 encryptions.

5 Attacking 49-Round SHACAL-1

In this section we present a rectangle attack on 49-round SHACAL-1. The attack
is quite similar to the one presented in the previous section. In order to improve

5 The conversion was done according to the best performance figures presented in [?].
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the attack, we remove one round of the basic 39-round attack (obtaining a 38-
round rectangle attack), and perform a chosen ciphertext attack on rounds 29–78
(or on rounds 22–70 using a chosen plaintext attack) of SHACAL-1. This results
in an attack on these 49 rounds that requires 2508.5 encryptions, or an attack on
47 rounds that requires 2444.5 encryptions.
The first observation is that the inclusion of third round of Ef (the rounds

after the distinguisher) in the 39-round attack does not contribute to the attack.
After adding this third round to Ef , the number of subkey bits checked (mf )
is increased by 32. The number of possible differences that a δ difference causes
after Ef is increased by 2

32, hence, tf and rf are increased by 32 each. Therefore,
adding this third round is equivalent to guessing this last round subkey, and
decrypting all ciphertexts another round.
This observation points out that we can use in the 47-round attack, a 38-

round attack which contains one round before the rectangle (Eb), 20 rounds in
E0, 15 in E1 and 2 rounds after the rectangle (Ef ), with the following parameters:
rb = 25, tb = 9.9, mb = 32, rf = 60, tf = 49.6, mf = 64 and p̂ = 2−39.87, q̂ =
2−30.32. Using these figures in the rectangle attack presented in [?] yields an
attack which requires 2151.9 chosen plaintexts and 2203.4 memory accesses.
Using this observation about the distinguisher, we change the attack algo-

rithm from the previous section accordingly to:

1. Try all 2288 possible values for the nine 32-bit subkeys value (of rounds 38–
46). For each guess partially decrypt all ciphertexts these 9 rounds and:

(a) Apply the 38-round rectangle attack.
(b) In case the 38-round attack suggests a subkey with 3 or more quartets,

check all the 2128 keys that generate this 96-bit subkey value (the one
suggested by the 38-round attack) and the 288-bit subkey values for
rounds 38–46.

This new attack algorithm has the same data complexity as before (2151.9

chosen plaintexts) with time complexity of 2151.9 ·2288 ·9/47 = 2437.5 encryptions
for step 1, 2490.8 memory accesses for step (a), and 2450 encryptions for Step (b).
As the reader surely observed, this change does not improve the attack. First,

we transform the 38-round attack into a chosen ciphertext attack. This might
pose a problem, as the distinguisher starts with the first round, and we cannot
decrypt the round before it. To solve this problem, we use our second observation
that fif and fmaj behave almost in the same manner with respect to differen-
tial cryptanalysis. Especially, the differentials that we use can be transferred to
rounds 41–60 without affecting their probability. Therefore, we can move the
38-round attack to rounds 40–77. The attack is a chosen ciphertext attack, thus
we treat the cipher in a reversed order. The cipher which we attack starts just
after round 77 and ends just before round 40: it has two rounds in the new Eb

(rounds 76–77), 35 rounds in the distinguisher itself (rounds 41–75), and one
round afterwards in the new Ef (round 40). For these settings the following
values for the rectangle attack are: mb = 64, mf = 32, tb = 49.6, tf = 9.9,
rb = 68 and rf = 22. As the same differentials are used, The values of p̂ and q̂
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remain the same. Thus, our attack requires 2151.9 chosen ciphertexts but only
2165.4 memory accesses.
We can now attack 11 more rounds after the distinguisher (actually before

the distinguisher), thus attacking rounds 29–77 using the following algorithm:

1. Try all 2352 possible values for the eleven 32-bit subkeys value (of rounds 29–
39). For each guess partially encrypt all plaintexts these 11 rounds and:
(a) Apply the 38-round rectangle attack on rounds 40–77.
(b) In case the 38-round attack suggests a subkey with 3 or more quartets,

check all the 264 keys which generate this 96-bit subkey value (the one
suggested by the 38-round attack) and the 352-bit subkey values for
rounds 29–39.

The time complexity of this 49-round attack is: 2151.9 · 2352 · 11/47 = 2501.8

49-round SHACAL-1 encryptions for step 1, 2516.8 memory accesses for step (a),
and 2478 encryptions for Step (b). Translating the time complexity to units of
49-round SHACAL-1 encryptions we get that the total time complexity of the
attack is 2508.5 49-round SHACAL-1 encryptions.
We can use a chosen plaintext attack on rounds 22–70 using the same attack

algorithm with chosen plaintexts and guessing the subkeys of the 11 rounds after
the end (i.e., rounds 60–70), with the same data and time complexity.
We can also apply this attack to 47-round SHACAL-1, with the same data

complexity, but with time complexity of only 2444.5 47-round SHACAL-1 en-
cryptions.

6 Summary and Conclusions

In this paper we improve the cryptanalytic results on SHACAL-1. The improve-
ments allow us to attack 47-round SHACAL-1 (rounds 0–46) using the rectangle
attack with data complexity of 2151.9 chosen plaintexts and time complexity of
2482.6 encryptions. We can also attack rounds 22-68 or rounds 31–77 with time
complexity of 2444.5 encryptions. Another attack presented in this paper is on
49 rounds that requires the same amount of data, and 2508.5 encryptions. This
is the best currently known result on SHACAL-1.
We summarize our results and compare them with the previously known

results in Table ??.
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A Differentials of SHACAL-1

In this appendix we describe the differentials used for the rectangle attacks on
SHACAL-1. The basic differentials were previously presented in [?].
The first differential (before truncating the first round) is for rounds 0–20

or for rounds 40–60, and is presented in Table ??. We use the notation ei to
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Round (i) ∆Ai ∆Bi ∆Ci ∆Di ∆Ei Probability

Input (i = 0) 0 e22 e15 e10 e5 2−4

1 e5 0 e20 e15 e10 2−3

2 0 e5 0 e20 e15 2−3

3 e15 0 e3 0 e20 2−2

4 0 e15 0 e3 0 2−2

5 0 0 e13 0 e3 2−2

6 e3 0 0 e13 0 2−2

7 e8 e3 0 0 e13 2−2

8 0 e8 e1 0 0 2−2

9 0 0 e6 e1 0 2−2

10 0 0 0 e6 e1 2−2

11 e1 0 0 0 e6 2−1

12 0 e1 0 0 0 2−1

13 0 0 e31 0 0 2−1

14 0 0 0 e31 0 2−1

15 0 0 0 0 e31 1
16 e31 0 0 0 0 2−1

17 e4 e31 0 0 0 2−2

18 e9 e4 e29 0 0 2−3

19 e14 e9 e2 e29 0 2−4

20 e19 e14 e7 e2 e29 2−5

Output (i = 21) e2,7,14,24,29 e19 e12 e7 e2

Differences are presented before the round, i.e., ∆A0 is the input difference.

Table 6. Differential Characteristic for Rounds 0–20 (or 40–60) of SHACAL-1.

represent the 32-bit word composed of 31 0’s and 1 in the ith place. We use ei,j
to denote ei ⊕ ej and ei,j,k = ei,j ⊕ ek, etc. Recall that for the rectangle attacks
presented in this paper, we changed this differential by removing its first round.

Due to the nature of the rectangle attack, we count over several differentials.
We have counted over differentials which have the same 19 rounds as the one
presented in [?] after it was truncated to a 20-round differential. In Table ??
we list the differentials with the highest probabilities which have the same first
19 rounds as the original one. As in the last round the only affected register
is A, the list contains only the various differences in register A (the remaining
registers have the same differences as in the original one of Table ??).

We can also alter the round before last of this differential, gaining more char-
acteristics with probabilities 2−46 at most. These changes are based on activating
one bit in the output of the non-linear function fif (or fmaj). We added their
numbers to the table presented in Section ??, as they affect the probability of
the distinguisher, but we omit their description here.

The second differential for rounds 21–35 (or rounds 61–75) is presented in
Table ??. It has also previously appeared in [?].

Again, due to the nature of the rectangle attack, we count probabilities of
several differentials. We count over various similar characteristics, by changing

13



∆A21 Prob. ∆A21 Prob. ∆A21 Prob. ∆A21 Prob.

e2,7,14,24,29 2−45 e2,3,7,14,24,29 2−46 e2,7,8,14,24,29 2−46 e2,7,14,15,24,29 2−46

e2,7,14,24,25,29 2−46 e2,3,7,14,24,29,30 2−46 e2,7,8,14,24,29,30,31 2−46 e2,3,4,7,14,15,24,29 2−47

e2,3,7,8,14,24,29 2−47 e2,3,7,14,15,24,29 2−47 e2,3,7,14,24,25,29 2−47 e2,3,7,14,15,24,29,30 2−47

e2,3,7,8,14,24,29,30,31 2−47 e2,7,8,9,14,24,29 2−47 e2,7,8,14,15,24,29 2−47 e2,7,8,14,24,25,29 2−47

e2,7,8,14,24,29,30 2−47 e2,7,8,14,24,29,30,31 2−47 e2,7,14,15,16,24,29 2−47 e2,7,14,15,24,25,29 2−47

e2,7,14,15,24,29,30 2−47 e2,7,14,15,24,29,30,31 2−47 e2,7,14,24,25,26,29 2−47 e2,7,14,24,25,29,30 2−47

e2,7,14,24,25,29,30,31 2−47

Table 7. Possible ∆A21 Values for the First Characteristic with the Respective Prob-
abilities.

Round (i) ∆Ai ∆Bi ∆Ci ∆Di ∆Ei Probability

Input (i = 21) e1,5,8 e1,3,5 e3,13 e1,5,13,31 e6,10,13,31 2−3

22 0 e1,5,8 e1,3,31 e3,13 e1,5,13,31 2−4

23 e1,8 0 e3,6,31 e1,3,31 e3,13 2−4

24 e1,3 e1,8 0 e3,6,31 e1,3,31 2−4

25 0 e1,3 e6,31 0 e3,6,31 2−3

26 e1 0 e1,31 e6,31 0 2−2

27 e1 e1 0 e1,31 e6,31 2−1

28 0 e1 e31 0 e1,31 2−1

29 0 0 e31 e31 0 1
30 0 0 0 e31 e31 1
31 0 0 0 0 e31 1
32 e31 0 0 0 0 2−1

33 e4 e31 0 0 0 2−1

34 e9,31 e4 e29 0 0 2−3

35 e14,29 e9,31 e2 e29 0 2−4

Output e9,19,29,31 e14,29 e7,29 e2 e29

Differences are presented before the round, i.e., ∆A21 is the input difference.

Table 8. Differential Characteristic for Rounds 21–35 (or 61–75) of SHACAL-1.

the first one or two rounds of this differential. In Table ?? we present some of
the differentials which agree with the original characteristic but the first round
(round 21). As in this round the only change is in the difference of register E,
only the various differences in that register are presented.
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∆E21 Prob. ∆E21 Prob. ∆E21 Prob. ∆E21 Prob.

e6,10,13,31 2−31 e6,7,10,13,31 2−32 e6,10,11,13,31 2−32 e6,10,13,14,31 2−32

e6,7,8,10,13,31 2−33 e6,7,10,11,13,31 2−33 e6,7,10,13,14,31 2−33 e6,10,11,12,31 2−33

e6,10,11,12,13,31 2−33 e6,10,11,13,14,31 2−33 e6,10,13,14,15,31 2−33 e6,7,8,9,13,31 2−34

e6,7,10,11,12,31 2−34 e6,7,8,9,10,13,31 2−34 e6,7,8,10,11,13,14,31 2−34 e6,7,8,10,11,13,31 2−34

e6,7,10,11,12,13,31 2−34 e6,7,10,11,13,14,31 2−34 e6,7,10,13,14,15,31 2−34 e6,10,11,12,13,14,31 2−34

e6,10,11,12,13,14,15,31 2−34 e6,10,11,13,14,15,31 2−34 e6,10,13,14,15,16,31 2−34

Table 9. Possible ∆E21 Values for the Second Characteristic with the Respective
Probabilities.
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