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Abstract. In this paper we study structural properties of SPN ciphers
in which both the S-boxes and the affine layers are involutions. We apply
our observations to the recently designed Rijndael-like ciphers Khazad
and Anubis, and show several interesting properties of these ciphers. We
also show that 5-round Khazad has 264 weak keys under a “slide-with-
a-twist” attack distinguisher. This is the first cryptanalytic result which
is better than exhaustive search for 5-round Khazad. Analysis presented
in this paper is generic and applies to a large class of ciphers built from
involutional components.

1 Introduction

Ciphers constructed from a product of involutions are not new in cryptogra-
phy. In fact one of the most popular constructions – the Feistel construction
is a product of two involutions: XOR of the two halves of the block and swap
of the two halves of the block. However SPNs resulting from a product of in-
volutions (i.e. both the non-linear S-box layer and the affine layer are involu-
tions) were not intensively studied. Recently two ciphers with this new property
have been designed by Barreto and Rijmen and submitted to the European pre-
standardization project NESSIE [6]. These ciphers are the 64-bit 8-round SPN
cipher Khazad [1] and the 128-bit 12-18-round cipher Anubis [2]. Both ciphers
have Rijndael-like structure [4]. Khazad uses an MDS diffusion layer which pro-
vides complete diffusion after one round (branch number is 9), while Anubis has
a slower, Rijndael-like diffusion. In both cases linear transformations of the two
ciphers are chosen to be involutions. The same is true for the S-boxes: Anubis
and Khazad share the same 8x8 bit involutional S-box which is constructed from
three layers of smaller 4x4 bit involutional S-boxes. Motivations behind such ex-
tensive use of involutional components is twofold: efficient implementation and
equal security of encryption and decryption. The only difference between en-
cryption and decryption of these ciphers is in the inverse key-schedule.

In this paper we study the structure of a generic involutional SPN on an
example of Khazad. We show several interesting properties of Khazad and Anubis
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which follow from their elegant involutional structure. The analysis that we
provide holds for arbitrary S-boxes or affine mixing layers assuming only that
these are involutions, and the S-boxes don’t have fixed points (which is true
both for Khazad and Anubis, since it was one of the design criteria). Whether
these properties can be exploited in attacks on round-reduced or full Khazad is
a matter of further research. Finally, we use involutional structure of Khazad in
order to mount sliding-with-a-twist attack [3] on 5-rounds of this cipher, which
works for 264 out of 2128 keys. This attack might be of independent interest,
since it may be applied to any cipher with the structure P ◦ F ◦Q , where F is
an arbitrary involution (for all the keys or for some of the keys), and P,Q are
arbitrary keyed bijections.

2 Previous Results for Khazad and Anubis

The best attack so far on Khazad is the very efficient square attack on 3-rounds
(29 chosen plaintexts and 216 S-box lookups). Extended by 64-bit subkey guess-
ing one gets an attack on 4-round Khazad (280 S-box lookups). Gilbert-Minier’s
collision attack [5] which worked better than the square attack for Rijndael, will
not work for Khazad since it will require full 64-bit block collisions which may
happen only for equal inputs (in Rijndael one could provide partial 4-byte col-
lisions, due to slower mixing). The designers claim that truncated differentials
attacks can’t be mounted for 4 or more rounds. No weak keys are known.

Many attacks that were devised against Rijndael can be applied to Anubis
with similar results. The best attack is the Gilbert-Minier attack which breaks
7-round Anubis with 232 chosen plaintexts and 2140 complexity of analysis. The
square attack against 7-rounds has data complexity 2128−2119 chosen plaintexts,
and the analysis complexity 2120 steps. Anubis has more rounds than Rijndael,
in order to increase its security margin.

3 Some Properties of Khazad

As mentioned before we will study the involutional properties on an example of
Khazad, however we will not use any specific features of its S-boxes or mixing
layers and thus all the following discussion will apply to a generic involutional
SPN cipher (with involutional S-boxes without fixed points) and in particular
will be applicable to the Anubis block cipher. We refer the reader to [1, 2] for
detailed descriptions of Khazad and Anubis.

Throughout this paper we will use the following notation: S-box layers will
be denoted by S, linear diffusion layers by M (multiplication by an MDS matrix
in Khazad) and key-addition by k (sometimes with a subscript to enumerate
different round subkeys). Since linear layer and key addition layer commute we
can write:

M(x)⊕ k = M(x)⊕M(k′) = M(x⊕ k′),

where k′ is a version of the key k transformed by the linear layer M . This gives
us an equivalent representation of Khazad in which the unknown subkeys are



grouped around the odd S-box layers and the M operations are grouped around
the even S-box layers.

Thus, for the 5-round Khazad, which initially can be presented like this (from
the left to the right):

k0SMk1SMk2SMk3SMk4Sk5,

we will arrive at the following structure:

k0Sk′1[MSM ]k2Sk′3[MSM ]k4Sk5.

In this equivalent representation the odd round subkeys are the same as in the
original scheme and the even-round subkeys must be transformed by the linear
diffusion layer k′ = M−1(k) = M(k) (recall that the M is an involution). This
new representation has several interesting properties.

Definition 1 A cycle type of a permutation A is a multiset containing the
cycle lengths of the permutation together with their multiplicities – the number
of times each cycle length occurs in the permutation. We will denote the cycle
type of A by C(A).

For example a permutation (1, 0, 3, 2, 5, 6, 7, 4) which can be written as a
collection of three cycles (1, 0), (3, 2) and (5, 6, 7, 4) has the cycle type (2, 2), (4, 1)
(i.e. two cycles of length two, and one cycle of length 4). First of all, the MSM
structure is a fixed permutation that covers 1.5 rounds of a cipher and is known to
the attacker. Moreover, since M is an involution we have MSM = MSM−1 = A
which means that A is a permutation isomorphic to S, and since S in Khazad
is an involution so is the permutation A, i.e. (C(A) = C(MSM) = C(S))1. In
the following subsections we will study the properties of the kSk and MSM
permutations.

3.1 Properties of the k1Sk2 Structure

In this subsection we study the function: k1Sk2(x) = S(k1⊕x)⊕k2, for arbitrary
64-bit keys k1, k2 and a layer of eight S-boxes S.

Theorem 1 The cycle structure of k1Sk2 depends only on k1 ⊕ k2. Moreover
each cycle length appears in the permutation k1Sk2 an even number of times.

Proof
Let us denote a permutation caused by XOR of k1 ⊕ k2 as 4k1k2. Then we

can write: k1Sk2(x) = S(k1 ⊕ x)⊕ k2 as

(S(k1⊕x)⊕k1)⊕(k1⊕k2) = 4k1k2
◦k1Sk1 = (S((k1⊕k2)⊕k2⊕x)⊕k2) = k2Sk2◦4k1k2

.

1 The tweaked version of Khazad has a very structured S-box, thus A is isomorphic
to the [QP ] structure inside the S-box. This doesn’t add information in terms of
the cycle type of A but may be helpful if we will find interesting properties of the
isomorphism itself.



Both k1Sk1, and k2Sk2 are involutions. Since k1Sk2 is a product of two involu-
tions without fixed points (in case S has no fixed points and unless k1 = k2) it
consists of cycles of the same length in even numbers (this fact was central to
the cryptanalysis of the Enigma cipher [7]). ¤

The k1Sk2 layer is a parallel application of eight 8-bit permutations, each
following the theorem above. Let us denote the number of cycles of the ith

permutation by 2ni, then we can write the following corollary:

Corollary 1 The permutation k1Sk2 consists of at least 28
∏

i
ni cycles. The

largest cycle size is smaller than 256 elements. Cycle lengths are 128-smooth
numbers.

Proof

Writing as an 8-component vector the initial point x = (x1, x2, . . . , x8), the
cycle produced by iterations of k1Sk2 will have the length which is a LCM
of lengths of individual components cycles starting at xi. Since maximal cy-
cle length for each component is 128 the corollary follows (the upper bound is
reached if all cycle lengths are relatively prime)2. ¤

Moreover let us pick two points x = (x1, x2, . . . , x8) and y = (y1, y2, . . . , y8)
at random. The GCD of the cycle sizes defined by the two initial points x and y
has good chances to be quite large (which is unlikely for a random permutation).
The probability that components xi’s and yi’s will belong to the same cycle or
to the two different cycles of the same size is more than 2li

256
, where 2li is the

size of the cycle starting at xi. By collecting the cycle lengths and studying the
factors we obtain initial information about the 4k1k2

, since each 4k1k2
defines

(but not uniquely) its cycle pattern.

3.2 Properties of the [MSM ]k1Sk2[MSM ] Structure

Now let us look at the following piece of the Khazad’s structure:

[MSM ]k1Sk2[MSM ] = Ak1Sk2A = B.

This piece covers 3.5 rounds of Khazad. Since A is an involution k1Sk2 and B
are isomorphic permutations. Thus B has all the nice cycle structure described
in the Corollary 1, in the previous subsection.

Claim 1 For a randomly chosen pair of keys k1, k2 the structure Ak1Sk2A has
no fixed points3 with probability larger than 1− 2−8 . However if it has at least
a single fixed point then at once it must have more than 28 fixed points4.

2 If a point belongs to cycles of lengths (l1, . . . , l8), then in a ’product’ permutation

it belongs to a cycle of length lcm(l1, . . . , l8), and
∏

li
lcm(l1,...,l8)

different cycles of the
same length are generated.

3 A random permutation has no fixed points with probability ≈ 1/e.
4 For a random permutation the average number of fixed points is e−1 ∑N

i=1
1

(i−1)!
≈ 1.



Proof
Due to isomorphism of Ak1Sk2A and k1Sk2 under an involution A there is

a 1-1 correspondence between the fixed points of the two functions. Similarly it
is enough to study fixed points of the function S(x)⊕4k, where 4k = k1 ⊕ k2.
The question is how many solutions there are to the equation S(x) ⊕ x = 4k?
Since S is an involution, running through all possible x’s there are at most 128
different solutions for the difference of the keys (for the actual S-box there are
102 different solutions, some suggested by 6 different inputs). Thus if 4k is
picked at random the chance to be in a “fixed-point” permitting combination is:
(102/256)8 ≈ 2−10.6. However if the key difference is in the proper combination
each S-box has at least two inputs that will preserve the fixed point. Thus the
total number of fixed points will be more than 28. ¤

3.3 Properties of the kSk[MSM ]kSk[MSM ]kSk Structure

The structure KH5 = kSk[MSM ]kSk[MSM ]kSk = k0Sk1Ak2Sk3Ak4Sk5 is
actually a 5-round Khazad, so any non-randomness in it, will be a very interesting
property.

For example if k1 = k4 (a 64-bit restriction on the key-schedule) and then
writing k5 = k0⊕(k0⊕k5) we obtain permutation isomorphic to just intermediate
k2Sk3 further permuted by a XOR with (k0 ⊕ k5).

Another interesting property of 5-round Khazad is the following: suppose that
the attacker guesses 4k = k0⊕ k5, and iterates the 5-round encryption function
together with the key-difference XOR after each iteration: (KH5(x)⊕4k)

n. It
is easy to see that due to cancellations that happen, this is almost equivalent to
iterations of a 3-round Khazad. If we denote 3-round Khazad by KH3 we may
write

(KH5(x)⊕4k)
n = k0SM(KH3)

nMSk0.

For example if one can detect any peculiarities in the cycle structure of 3-round
Khazad in less than 264 steps this property will provide a distinguishing attack
on 5-round Khazad faster than the exhaustive key search.

4 Sliding Encryption Against Decryption for 5-round

Khazad

In this section we will apply advanced sliding technique called slide-with-a-
twist [3] to five round Khazad. The idea behind this attack method is to slide
encryption against decryption in order to gain additional degree of self-similarity
due to increased symmetry.

Consider 5-round Khazad written in equivalent representation and aligned
as shown below:

P1 = k0Sk′1[Ak2Sk′3A]k4Sk5 = C1

C2 = k5Sk4[Ak′3Sk2A]k′1Sk0 = P2.



Here, as in the previous sections of this paper we have k′1 = M(k1), and
k′3 = M(k3), where k1, k3 are the original subkeys of Khazad. The other subkeys
k0, k2, k4, k5 are not changed.

If k2 = k′3, then a piece in the brackets [Ak2Sk′3A] is an involution and sliding
with a twist applies. We thus can write two very simple equations:

S(P1 ⊕ k0)⊕ k′1 = S(C2 ⊕ k5)⊕ k4,

S(P2 ⊕ k0)⊕ k′1 = S(C1 ⊕ k5)⊕ k4.

Although there are many unknowns in these equations: (k0, k
′
1, k4, k5), there is

no diffusion. If we encrypt a pool of texts Pi, i = 0, . . . , 232−1 with fixed 32-bits,
by setting inputs of four out of eight S-boxes to arbitrary constant, a proper slid
pair will have 32-bits in common between the plaintexts and as a consequence of
the slid-equations it will have 32-bits in the same positions in common between
the ciphertexts. Thus instead of checking all the 263 possible pairs we can check
only 231 pairs which satisfy the 32-bit filtration condition. These pairs can be
easily identified in a pool of ciphertexts sorted by the positions corresponding
to fixed input S-boxes. We will call the four S-boxes with a fixed input – “non-
active” S-boxes and the four S-boxes with varying input – “active” S-boxes.

There are several possible ways to exploit the set of remaining non-filtered
pairs which contains at least one slid-pair with non-negligible probability. One
method would be to look at possibilities for the 4 · 8 · 3 = 96 key bits of the
keys k0, k′1 ⊕ k4, k5 suggested by the slid pairs. Notice that using the slid pair
we can’t split the keys k′1 and k4. Since each equation provides us with 8-bit
test condition per S-box, total filtration power of two equations with four active
S-boxes is 8 ·2 ·4 = 64. That means that each pair will suggest about 232 possible
variants for the 96 key bits. For each analyzed pair all these key variants can be
written in a compact cross-product form and stored using 4 · 28 = 210 bytes of
memory. Using lookup tables it is also possible to perform this key enumeration
efficiently in about 210 steps. Thus each pool suggests 263 choices for 96 key bits
and these choices can be stored compactly in 241 bytes of memory. The idea
would be to request several pools in order to be sure that the correct key is
listed several times and then try to find the frequently suggested correct variant
of the key among the masses of incorrect guesses. While this approach might
be marginally faster than exhaustive search we would prefer to find a better
technique.

4.1 Generating More Slid Pairs

Another method is based on an observation that given a slid pair, it is relatively
easy to produce many more slid pairs due to absence of diffusion in the slid
equations. Indeed if one makes a small change to one of the S-boxes in plaintext
P1 and another change in the corresponding S-box at the ciphertext C2, with
a chance higher than 2−8 the pair will remain a slid pair (this idea is due to
Gustaf Dellkrantz).



Moreover, we apply the “variation” to one of the four S-boxes that were active
in the pool-generation step. Since plaintexts already run through all possible
values for these S-boxes we only have to apply a single change to the ciphertext
side. We then decrypt a new ciphertext into a new plaintexts. If the original pair
was a properly slid pair we are guaranteed, that a new slid pair will be formed
by the new query and one of the pairs from the old pool. The attack will proceed
as follows (suppose we vary S-box i):

1. For each probable slid pair, find about 28 choices for the 24-bits of the three
key bytes k0, k′1 ⊕ k4, k5 at i-th S-box location. This step can be done in
about 28 lookups given a 32-bit lookup table and byte-values of plaintext
and ciphertext from the i-th byte location of the analyzed pair.

2. Change i-th byte of the ciphertext C2 to an arbitrary value, to get C ′2.
Decrypt C ′2 to get the new plaintext P ′2.

3. For each 24-bit key guess from the 1st step, pick corresponding P ′1, C
′
1 pair

from the pool. This is done given the first slid equation (and can be precom-
puted and stored in a table for each key-candidate, if the variation value is
fixed).

4. Check that the pair is a properly slid pair, i.e. that the second equation holds
as well. This is an 8-bit filtering condition for the wrong key guesses.

5. After steps 1-4 on the average one candidate for the 24-bits of k0, k′1⊕k4, k5

at i-th location survives. We can thus apply second variation at the same i-
th location, to check this single key candidate. The change in the ciphertext
byte and the candidate key will define on the average a single value of the
plaintext byte via the first slid equation. This plaintext byte will define
which plaintext-ciphertext pair we need to pick from the pool. The second
slid equation will thus provide us with an 8-bit filtration for the wrong pairs.
After this step only about 231/28 = 223 pairs will remain. For these we can
repeat step 5 again, till only the proper slid pairs remains.

6. Given that only few wrong pairs (if any) may survive steps 1-5, we apply
variation to other S-box locations and recover 96-bits of the keys k0, k′1 ⊕
k4, k5 corresponding to four active S-boxes.

To summarize, we will need two pools of size 232 texts each (in order to increase
the probability to find a slid pair), for each pool we request additional 2 · 231

adaptive chosen ciphertext queries. We could then repeat this attack with an-
other set of pools, now fixing another 32-bits of the plaintexts to constant to
completely recover the subkeys k0, k′1 ⊕ k4, k5. However this approach would
double amount of data for the attack. Instead we will use already obtained slid
pairs, and apply “variations” to the S-box locations that were non-active during
the first phase of the attack. This way we completely recover the keys in just
a few more adaptive chosen ciphertext/chosen plaintext queries. Using the two
outer subkeys k0 and k5 we partially decrypt one round at the top and one round
at the bottom. We are left with 3-round Khazad which can now be attacked us-
ing auxiliary techniques, for example Square attack, which has complexity of
29 additional chosen plaintexts and 216 S-box lookups (we may also use the as-
sumption that k2 = k′3 which is the condition of the weak key class). The total



data complexity of this attack is 234 blocks and the analysis complexity is 240

table lookups and O(232) memory. The attack works for one in 264 keys.

4.2 A Generalization for an Arbitrary Involutional Cipher

This attack works whenever a cipher can be written as: Ek = P ◦ F ◦Q , where
F is an involution at least for some of the keys, and P,Q are arbitrary keyed
bijections. Then one can slide with a twist:

Ek(x1) = Q ◦ F ◦ P (x1) = y1,

Dk(y2) = P ◦ F ◦Q(y2) = x2.

This provides two slid equations:

P (x1) = Q(y2),

P (x2) = Q(y1).

If these equations are easy to solve the attack will work.

5 Properties of the KeySchedule

Khazad uses iterations of a 128-bit Feistel scheme with the internal F -function
being a round of Khazad with the constants (taken from the S-box) used as the
64-bit key. The user specified 128-bit key is used as a plaintext and the inter-
mediate 64-bit values after each round become the actual subkeys of Khazad.
Such keyschedule would possess nice ’sliding’ or symmetry properties, but the
randomized constants spoil them. Still the keyschedule is a Feistel block cipher
with a bijective F -function. Thus given any pair of consequent subkeys ki, ki+1

it is possible to reconstruct all the subkeys backwards or forward (including the
master key). Moreover it can be done for ki, ki+2 and even for ki, ki+3 in some
cases.

6 Conclusions

In this paper we have shown structural properties of SPN ciphers built with invo-
lutional components. Using these we have shown interesting features of recently
designed ciphers Khazad and Anubis, which where submitted to the NESSIE
European pre-standardization project. The main observation is that there might
be a distinguisher for 5-round Khazad if 3-round Khazad has any peculiarities
in its cycle structure. Using the equivalent representation of Khazad we show a
class of 264 weak keys out of total 2128 keys. For a weak key, 5-round Khazad
can be broken using 234 chosen plain/ciphertext queries and 240 table lookups
for the analysis. Full round Khazad is not threatened by this result.
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