
A Generic Protection against
High-Order Di�erential Power Analysis

Mehdi-Laurent Akkar (makkar@slb.com),
Louis Goubin (lgoubin@slb.com)

Cryptography Research, Schlumberger Smart Cards
36-38 rue de la Princesse, BP 45, F-78430 Louveciennes Cedex, France

Abstract. Di�erential Power Analysis (DPA) on smart-cards was intro-
duced by Paul Kocher [11] in 1998. Since, many countermeasures have
been introduced to protect cryptographic algorithms from DPA attacks.
Unfortunately these features are known not to be e�cient against high
order DPA (even of second order). In these paper we will �rst describe
new specialized �rst order attack and remind how are working high or-
der DPA attacks. Then we will show how these attacks can be applied to
two usual actual countermeasures. Eventually we will present a method
of protection (and apply it to the DES) which seems to be secure against
any order DPA type attacks. The �gures of a real implementation of this
method will be given too.

Keywords: Smart-cards, DES, Power analysis, High-Order DPA

1 Introduction

The framework of Di�erential Power Analysis (also known as DPA) was
introduced by P. Kocher, B. Jun and J. Ja�e in 1998 ([11]) and subse-
quently published in 1999 ([12]). The initial focus was on symmetrical
cryptosystems such as DES (see [11, 14, 1]) and the AES candidates (see
[3, 4, 7]), but public key cryptosystems have since also been shown to be
also vulnerable to the DPA attacks (see [15, 6, 9, 10, 16]).
Two main families of countermeasures against DPA are known:

� In [9, 10], L. Goubin and J. Patarin described a generic countermeasure
consisting in splitting all the intermediate variables, using the secret
sharing principle. This duplication method was also proposed shortly
after by S. Chari et al. in [4] and [5].

� In [2], M.-L. Akkar and C. Giraud introduced the transformed masking
method, an alternative countermeasure to the DPA. The basic idea is
to perform all the computation such that all the data are XORed

with a random mask. Moreover, the tables (e.g. the DES S-Boxes) are
modi�ed such that the output of a round is masked by the same mask
as the input.

Both these methods have been proven secure against the initial DPA at-
tacks, and are now widely used in real life implementations of many al-
gorithms. However, they do not take into consideration more elaborated
attacks called �High-order DPA�. These attacks, as described in [11] by
P. Kocher or in [13] by T. Messerges, consist in studying correlations be-
tween the secret data and several points of the electric consumption curves
(instead of single points for the basic DPA attack).
In what follows, we study the impact of the High-order DPA attacks on
both countermeasures mentioned above. Moreover, we describe new secure
ways of implementing a whole class of algorithms (including DES) against
these new attacks.
The paper is organized as follows:
� In section 2, we recall three basic notions: the (high-order) di�erential

power analysis, the duplication method and the transformed masking
method.

� In Section 3, we study �duplication method� and show that an im-
plementation of DES (or AES), which splits all the variables into n
sub-variables is still vulnerable to an n-th order DPA attack. Section
3.1 gives the general principle of the attack and section 3.2 discusses
practical aspects.

� Section 4 is devoted to the analysis of the �transformed masking� (see
[2]). For such an implementation of DES, section 4.1 describes how a
�second order� DPA can work. A new variant we call the �superposi-
tion attack� is also presented. In section 4.2, we show that an AES
(=Rijndael) implementation protected with the �transformed mask-
ing� method can also be attacked, either by second order DPA, or by
the �Zero problem� attack.

� Section 5 presents our new generic countermeasure: the �unique mask-
ing method�. We illustrate it on the particular case of DES. In 5.1, we
explain the main idea of �unique mask�. In 5.2, we apply it to the full
protection of a DES implementation. The security of this implemen-
tation against n-th order DPA attacks is investigated in sections 5.3
and 5.4.

� Section 6 focuses on the problem of securely constructing the modi�ed
S-Boxes used in our new countermeasure. The details of the algorithm
are presented, together with practical impacts on the amount of time
and memory needed.

� In Section 7, we give our conclusions.

2 Background
2.1 The (High-Order) Di�erential Power Analysis
In basic DPA attack (see [11, 12], or [8]), also known as �rst-order DPA (or
DPA when there is no risk of confusion), the attacker records the power
consumption signals and compute statistical properties of the signal for
each individual instant of the computation. This attack does not require
any knowledge about the individual electric consumption of each instruc-
tion, nor about the position in time of each of these instructions. It only
relies on the following fundamental hypothesis (quoted from [10]):
Fundamental hypothesis (order 1): There exists an intermediate vari-
able, that appears during the computation of the algorithm, such that
knowing a few key bits (in practice less than 32 bits) allows us to decide
whether two inputs (respectively two outputs) give or not the same value
for this variable.
In this paper, we consider the so-called High-Order Di�erential Power
Analysis attacks (HODPA), which generalize the �rst-order DPA: the at-
tacker now compute statistical correlations between the electrical con-
sumptions considered at several instants. More precisely, an "n-th order"
DPA attack takes into account n values of the consumption signal, which
correspond to n intermediate values occurring during the computation.
These attacks now rely on the following fundamental hypothesis (in the
spirit of [10]):
Fundamental hypothesis (order n): There exists a set of n intermedi-
ate variables, that appear during the computation of the algorithm, such
that knowing a few key bits (in practice less than 32 bits) allows us to
decide whether two inputs (respectively two outputs) give or not the same
value for a known function of these n variables.

2.2 The "Duplication" Method
The "duplication method" was initially suggested by L. Goubin and J.
Patarin in [9], and studied further in [4, 10, 5]. It basically consists in split-
ting the data (manipulated during the computation) into several parts,
using a secret sharing scheme, and computing a modi�ed algorithm on
each part to recombine the �nal result at the end. For example, a way
of splitting X into two parts can consist in choosing a random R and
splitting X into (X ⊕R) and R.

2.3 The "Transformed Masking" Method

The "Transformed Masking" Method was introduced in [2] by M.-L. Akkar
and C. Giraud. The basic idea is to perform all the computation that all
the data are XORed with a random mask. By using suitably modi�ed
tables (for instance S-Boxes in the case of DES), it is possible to have
the output of a round masked by exactly the same mask that masked the
input. The computation is thus divided into two main steps: the �rst one
consists in generating the modi�ed tables and the second one consists in
applying the usual computation using these modi�ed tables (the initial
input being masked before starting the computation and the �nal output
being unmasked after the computation).

3 Attack on the Duplication Method

3.1 Example: Second Order DPA on DES

In what follows, we suppose that two bits b1 and b2, appearing during the
computation, are such that b1⊕ b2 equals the value b of the �rst output of
the �rst S-Box in the �rst DES round. The attacker performs the following
steps:

1. Record the consumption curves Ci corresponding to N di�erent inputs
Ei (1 ≤ i ≤ N). For instance N = 1000.

2. The attacker guesses the interval δ between the instant corresponding
to the treatment of b1 and the instant corresponding to the treatment
of b2. Each curve Ci is then replaced by Ci,δ, which is the di�erence
between Ci and (Ci translated by δ). He then computes the mean
curve CMδ of the N curves Ci,δ.

3. The attacker guesses the 6 bits of the key on which the value of b
depends. From these 6 key bits, he computes for each Ei the expected
value for b. he then computes the mean curve CM'δ of all the Ci,δ such
that the expected b equals 0, and CM�δ the mean curve of all the other
Ci,δ

4. If CM'δ and CM�δ do not show any appreciable di�erence, go back to
3 with another choice for the 6 key bits.

5. If no choice for the 6 key bits was satisfactory, go back to 2, with
another choice for δ.

6. Iterate the steps 2, 3, 4, 5 with two bits whose �exclusive-or� comes
from the second S-Box, the third S-Box, ..., until the eighth S-Box.

7. Find the 8 remaining key bits by exhaustive search.

3.2 The Attack in Practice

As speci�ed in the original paper [10], it is clear that the n-th duplication
is vulnerable to an n-th order DPA attack. An important point is to notice
that if the method is not carefully implemented, it will be easily detected
on the consumption curve, just by identifying n repetitive parts in the
calculus. In this case, it would be easy for the attacker to just superpose
the di�erent parts of the curves (in a constant, or proportional to log(n),
time, but not exponential in n).
Moreover, in certain scenarios, the attacker has full access to the very
details of the implementation. In particular, for high-level security certi�-
cations (ITSEC, Common Criteria), it is assumed that the attacker knows
the contents of the smartcard ROM.

4 Attack on the Transformed Masking Method

4.1 DES: Second Order DPA

4.1.1 Usual Second Order DPA: For the DES algorithm, the input
of a round is masked with a 64 bits value R = R0−31||R32−63 divided in
two independent masks of 32 bits each. The modi�ed S-boxes S' are the
following (where S are the original ones).

S′(X) = S(X ⊕ EP (R32−63))⊕ P−1(R0−31 ⊕R32−64)

Where EP represents the Expansion Permutation, and P−1 the inverse of
the P permutation after the S-Boxes. We can see that using this formula
the output mask of the value at the end of a DES round is nearly R.
To get exactly the R masked value, the left part of the value has to be
remasked with R0−31 ⊕R32−64.
It is clear, like noticed in the article, than this countermeasure is subject
to a second-order DPA attack. Indeed, the real output of the S-boxes is
correlated to the masked value and the value R ; so getting the electrical
trace of these two values one can combine them and get a trace on which
will work a classical DPA attack. In order to perform e�ciently such an
attack, without need of n2 point like in the general attack, the attacker
should get precise information about the implementation of the algorithm:
he should know precisely where the interesting values are manipulated.

4.1.2 Superposition Attack: In this section we will present a new
kind of DPA attack. In theory it is a second-order DPA attack; but in

practice it is nearly as simple as an usual DPA attack. The idea is the
following: in a second order DPA the most di�cult thing is to localize the
time where the precise needed values are manipulated. On the contrary
localizing a whole DES round is often quite easy. So instead of correlating
precise part of the consumption traces we will just correlate the whole
trace of the �rst and the last round. With these method one can notices
than at one moment we will have the trace consumption T of the following
value which is the output S-Boxes values:

T = (S′(E(R15)⊕K16)⊕R′) ⊕ (S′(E(R1)⊕K1)⊕R′)
= S′(E(R15)⊕K16) ⊕ S′(E(R1)⊕K1)

Where R′ is the right part of the mask permutated by the expansion
permutation. One can notice that the T value does not depend of the
randommasking value and than R1 and R15

1 are often known. Considering
this, it is easy to sea that performing a guess on the 2×6 bits of the subkey
of the �rst and last round, it is possible to guess the XORed value of the
output of the S-Boxes of the �rst and last round. After that once can
perform an usual DPA-type attack attacker and �nd the values of the
di�erent sub-keys of K1 and K16. Due to redundancy of the key-bits one
can moreover check the coherency of the results: indeed with such an
attack one will �nd 2 × 6 × 8 = 96 >> 56 bits for the key. The detailed
algorithm is the following:

� Correlate (usually an addition or subtraction of the curves) the �rst
and last round traces.

� For All the messages M, For the S-box j = 1..8
� For k=0 to 63, For l=0 to 63
� Separate the Messages , considering one bit of the XOR values of the

output of the jth Sbox (round 1 and 16) for the message M considering
that the subkey of the S-Box j of the �rst round is k, and the subkey
of the S-Box j of the last round is l.

� Average and subtract the separated curves.
� Choose the value k, l where the greatest peak appear.
� Check the coherency of the keybits found.

A cautionary look of the attack could convince the reader that any error
of one bit on the guess of K1 or K16 eliminate all the correlation. Com-
paring to an usual second order DPA attack, even if this attack require
the analyze of 212 = 4096 possibilities, it has the advantage not to need
1 R15 can be deduced from the output applying the inverse of the �nal permutation

a precise knowing of the code. And from a complexity point of view it
increases by a constant factor (26 = 64) the amount of time and memory
needed for the attacker and not by a linear factor.

4.1.3 Conclusion: The superposition attack, even if it is a theoretical
second order attack is very e�cient in practice. Therefore to use trans-
formed masking method, one must use di�erent masks at each step of the
algorithm. This idea have been developed and adapted to produce the
protection described in this article.

4.2 AES

For the AES, the countermeasure is nearly the same than in DES. The
only di�erence is that no transformed tables are used for the non-linear
part of the AES (the inversion in the �eld GF(256)) but the same table
with a multiplicative mask. The distributivity of the multiplication over
XOR (addition in the �eld) is used. So from an additive mask it is easy,
without unmasking the value, to switch to a multiplicative one, to go
through the Sboxes and to get back to an the mask.

4.2.1 Usual Second Order DPA: For AES it is exactly the same
than in the DES transformed masking method. Correlating the masked
value and the mask allow an e�ective attack against this method.

4.2.2 The "Zero" problem: Because a multiplicative mask is used
during the inversion, one can see that if the inverted value is zero -and
this value just depend of 8 bits of the key in the �rst and last round-
then whatever is the masking value, the inverted value will be unmasked.
Therefore if someone is able to detect in the consumption trace that the
value is zero instead of a random masked value, one will be able to break
such an implementation. Of course probabilistic tools such as variance
analysis are devoted to such analysis.

4.2.3 Superposition Method: As in the DES, one can say that using
the same superposition method it would be possible to �nd the key 16 bits
by 16 bits superposing the �rst and last round of AES because these are
using the same mask. Unfortunately after the last round a last subkey is
added to the output of the round. So the attacker need at least to guess
8 more bits of the key. It increase the attacker amount of work to 24 bits

for each Sbox. In theory it is not a quadratic attack in the number of
samples but in practice it is not so easy to perform more than 16 billions
manipulation of the curve for each tables and each message.

4.2.4 Conclusion: Judging by these attacks we can consider that the
adaptive mask countermeasure on AES is not e�cient even against some
simpler attack than second order ones.

5 Unique Masking Method Principle
We have seen that the actual countermeasure against DPA are intrinsically
vulnerable to high order DPA. Often the order of vulnerability is two,
and even when it is theoretically more; practically it is one or two. In
the next section we will present a method to protect the DES that seem
to be e�cient against any order DPA attacks. We will �rst describe the
elementary steps of the method for after see how to construct a complete
secure DES and why it seems to be secure.

5.1 Masked Rounds
Given any 32 bits value α we will de�ne two new functions S̃1 and S̃2

based on the Sboxes function S.{
∀x ∈ {0, 1}48 S̃1(x) = S(x⊕E(α))
∀x ∈ {0, 1}48 S̃2(x) = S(x)⊕ P−1(α)

where E is the expansion permutation and P−1 is the inverse of the per-
mutation after the Sboxes.
We de�ne fKi to be the composition of E, the XOR of the ith round sub-
key Ki the Sboxes and the permutation P . We then de�ne f̃1,Ki and f̃2,Ki

by replacing S by S̃1 and S̃2 in f .

Remark We can see that f̃1 gives an unmasked value from a α-masked
value and that, f̃2 gives a α-masked result from an unmasked one.
Using the function f , f̃1 and f̃2 one can obtain 5 di�erent rounds us-
ing masked/unmasked values. The �gure 1 represents these �ve di�erent
rounds. The plain �ll represents the unmasked value and the dashed �ll
represents masked values.
The following automata (cf �g. 2) shows how these rounds are compati-
ble with each other. The input states are the rounds where the input is
unmasked (A and B) and the output states are the one where the output
of the rounds are unmasked (A and E).

Fig. 1. Masked rounds of DES

Fig. 2. Combination of the rounds

5.2 Complete DES with Masked Rounds

It is easy to see that one could obtain a 16 round complete DES with
these requirements. IP −BCDCDCEBCDCDCDCE − FP represents
a correct example (IP represents the initial permutation of DES and FP
the �nal one).

5.3 Security Requirements

In all this section we will consider that the modi�ed Sboxes are already
constructed and that the mask α changes at each DES computation.
The �rst step is to analyze in the DES of how many key bits depends
the bits of the data at each round. This simple analyze is summarized in
the �gure 3. We have also considered that the clear and the cipher were
known, explaining the symmetry of the �gure.

Fig. 3. Number of key bits / bits of data

To get a correct security we have considered that the critical data are the
one where the bits are dependant of less than 362 bits of the key. So we can
see that only two parts have to be protected: the one connecting R2 and L3

and the one connecting R15 and L16. We de�ne as usual Li (respectively
Ri) as the left part (respectively the right part) of the message at the end
of the ith round. Of course the one depending of none bits of the keys have
not to be protected.
Therefore these values must be masked and oblige the �rst three rounds
to be of the form:

BCD or BCE

The last three rounds must be of the form:

BCE or DCE

Taking in account these imperatives

IP −BCDCDCEBCDCDCDCE − FP

is -for example- a good combination.

5.4 Resistance to DPA
5.4.1 Classical DPA: This countermeasure clearly protect the DES
against DPA of order one. Indeed all the value depending of less than 36
bits of the key are masked by a random mask which is used only once.

5.4.2 Enhanced Attacks: First we have to notice that this counter-
measure is vulnerable against the superposition method guessing 12 bits
of the key. Indeed the same mask is used in the �rst and last round of
the DES. So to counteract this attack we will from know consider that
there's two di�erent masks α1 and α2 which are used in the �rst and last
round of DES. It is easy to see that the proposed combination of round
permit at the 7th and 8th round to switch from α1 to α2 because of the
structure of E-round/B-round which leave their output/input unmasked.
With evident notations we can get the following example of DES:

IP−Bα1Cα1Dα1Cα1Dα1Cα1Eα1Bα2Cα2Dα2Cα2Dα2Cα2Dα2Cα2Eα2−FP

Let now consider n-th order DPA attack. The idea is to correlate several
value to get the consumption of an important value. For us an important
2 If we consider that a curve contains 128 8 bits-samples, 36 bits represents an amount
of 2 Tb of memory needed

value is consider to be a value which could be guessed with less than 36
bit of the key. But we have seen that all these value are masked. Moreover
the mask appear only once in all the calculus3, so even with high order
correlation it is impossible to get any information about the masked value

5.5 Variation

� If we want the mask never to appear several times (even on values
depending on more than 36 bits of the key) one can use the following
combination instead of the proposed one:

IP −Bα1Cα1Eα1AAAAAAAAAABα2Cα2Eα2 − FP

� For paranoid people it is even possible to add two new masks and to
mask every values depending on less than 56 bits of the key.

� This method is modular: if one uses a protocol where the input or the
output are not known, one can eliminate the associated mask.

6 E�ective Construction of the Modi�ed S-Boxes

In this section algorithms will be described using pseudo c-code.

6.1 Principle

It is easy to see that the following operation must be performed securely
in order to construct the Sboxes S̃1.

� Generate a random α.
� Perform a permutation on α (permutation P−1).
� XOR a value (P−1(α)) to a table.

For the construction of S̃2, we need to:

� Recuperate α because it is the same than in S̃1.
� Permutate it (E(α)).
� XOR to a table containing (1..63).

Of course securely means that all these operations must be done without
giving any information about the consumption of α at any order (1,2 ...).
3 We remind the reader that we have considered that the tables are already con-
structed. This part will be analyzed in the next section

6.2 Generation of a Random Number: for example 64 bits
We consider that we have access to a 64 bytes array t and to a random
generator (for example a generator of bytes). We can proceed like the
following:
� for(i=0..63) { t[i]=rand()%2 }
� for(i=0..63) { swap(t[i],t[rand%64]) }
With this this method one can see that we get in memory a 64 bits random
value and that an attacker just know the hamming weight of α (if he can
perform an SPA attack). For this we have considered that the attacker
could not in one shot determinate what is the array entry addressed when
we swap the entries ; hypothesis which looks quite reasonable.

Variant 1: To save time and memory we can imagine the following
method which is much faster and does not look too weak. We will get
16 4-bits values in a 16 bytes array:
� for(i=0..16) { t[i]=rand() }
� for(i=0..16) { swap(t[i] AND 7,t[rand%16] AND 7) }
Indeed we can consider that the 4 bits of high weight will strongly in�u-
ence the consumption.

Variant 2: This other method produces and 8 bytes random array. It is
faster but less secure.
� for(i=0..8) { t[i]=rand() }
� for(i=0..16) { t[rand()%8] XOR= rand() }

6.3 Permutation
Classically it can be done bit per bit randomly. Against it only allow the
attacker to get the hamming weight of the permuted value.
To speed up and have a memory gain, one could perform randomly the
permutation quartet per quartet or even byte per byte. An idea could be
to add some dummy values and perform the permutation. The dummy
values would just not be considered after the permutation time.

6.4 XOR
Here a general method could be to XOR the value bit per bit in a random
order to the table. Once again many compromise are possible to perform
the XOR: do it byte per byte, add dummy values ...

6.5 Practical Considerations
The usual Sboxes are using 256 bytes. We need them but they could be
stored in ROM. For the additional tables we need to store them in RAM.
In the normal security method (two masks α1 and α2) we need to store 4
new tables. So the total requirement in RAM is of 1024 bytes.
We have seen that the construction of the Sboxes could be performed
quite securely. Of course the most secure method is very slow and will re-
ally slow down the DES execution and use a lot of memory. The idea was
just to show that it was theoretically possible to build the table without
�ltering any information4 with a reasonable model of security5 But we
have also seen that it is possible to increase the speed and decrease the
memory without loosing too much security.

Lets now have a look at how could be applied our countermeasure to
the AES algorithm. Due to the higher number of tables (more than 16
instead of 8) and because they are bigger (8→8 bits instead of 6→4) com-
pared to DES, our countermeasure would require about 8 Kb (or 16 Kb
for a high security level) of RAM, a size which is too big for usual smart-
cards. Some simpli�cations -which would unfortunately decrease the level
of security- are therefore necessary to apply our countermeasure to AES
implementation.

7 Real implementation on the DES algorithm

A real implementation of this method have been completed on an ST19
component. It includes the following features described in the last sections:

� SPA protections: Randomization and masking method for the permu-
tations and the manipulation of the key (permutations, Sboxes ac-
cess...).

� DPA protection: HO-DPA Protection of the �rst and last three rounds
of the DES.

� S-Boxes constructions is done bit per bit with bit per bit randomiza-
tion while computing the masking value.

� DFA Protection: multiple computation, coherence checking ...

With all this features we get an implementation with:

� 3 KB of ROM code.
4 But the hamming weight of the value
5 The attacker is not able to read the exact memory access in one shot.

� 81 bytes of RAM and 668 bytes of extended RAM
� An execution time of 38 ms at 10 Mhz.

This implementation have been submitted to our internal SPA/DPA/DFA
laboratory which have tried to attack it without success.

8 Conclusion

Opposed to other proposed countermeasures, the unique masking method
presents the following advantages:

� It is actually the only protection known against high-order DPA.
� The core of the DES is exactly the same than ordinary; so one can use

with very light modi�cation its implementation just adding the Sbox
generation routine.

� The important values are masked with a unique mask which never
appear in the DES computation. For example with the transformed
masking method the mask were appearing often (for a �rst mask at
the whole beginning and at each rounds). Here one do not even have
to mask the entry or unmask the output.

� The only part where the mask is appearing (but it could be randomly
and bit per bit) does not depend neither of the key and neither of the
message. Therefore the security is totally focused at this point.

� This method is very �exible and modular without important changes
in the code: it could even be a compilation parameter to determine
which level of security one wants.

� A real implementation have been performed proving the feasibility
of this countermeasure in reasonable time (less than 40ms with full
protections).

References

1. M.-L. Akkar, R. Bevan, P. Dischamp, D. Moyart, Power Analysis: What is now
Possible. In Proceedings of ASIACRYPT'2000, LNCS 1976, pp. 489-502, Springer-
Verlag, 2000.

2. M.-L. Akkar, C. Giraud, An Implementation of DES and AES Secure against Some
Attacks. In Proceedings of CHES'2001, LNCS 2162, pp. 309-318, Springer-Verlag,
2001.

3. E. Biham, A. Shamir, Power Analysis of the Key Scheduling of the
AES Candidates. In Proceedings of the Second Advanced Encryption
Standard (AES) Candidate Conference, March 1999. Available from
http://csrc.nist.gov/encryption/aes/round1/Conf2/aes2conf.htm

4. S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi, A Cautionary Note Regarding Evalua-
tion of AES Candidates on Smart-Cards. In Proceedings of the Second Advanced
Encryption Standard (AES) Candidate Conference, March 1999. Available from
http://csrc.nist.gov/encryption/aes/round1/Conf2/aes2conf.htm

5. S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi, Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In Proceedings of CRYPTO'99, LNCS 1666, pp.
398-412, Springer-Verlag, 1999.

6. J.-S. Coron, Resistance Against Di�erential Power Analysis for Elliptic Curve
Cryptosystems. In Proceedings of CHES'99, LNCS 1717, pp. 292-302, Springer-
Verlag, 1999.

7. J. Daemen, V. Rijmen, Resistance Against Implementation Attacks: A Com-
parative Study of the AES Proposals. In Proceedings of the Second Advanced
Encryption Standard (AES) Candidate Conference, March 1999. Available from
http://csrc.nist.gov/encryption/aes/round1/Conf2/aes2conf.htm

8. J. Daemen, M. Peters, G. Van Assche, Bitslice Ciphers and Power Analysis Attacks.
In Proceedings of FSE'2000, LNCS 1978, Springer-Verlag, 2000.

9. L. Goubin, J. Patarin, Procédé de sécurisation d'un ensemble électronique de cryp-
tographie à clé secrète contre les attaques par analyse physique. European Patent,
SchlumbergerSema, February 4th, 1999, Publication Number: 2789535.

10. L. Goubin, J. Patarin, DES and Di�erential Power Analysis � The Duplication
Method. In Proceedings of CHES'99, LNCS 1717, pp. 158-172, Springer-Verlag,
1999.

11. P. Kocher, J. Ja�e, B. Jun, Introduction to Di�erential Power Analysis and Re-
lated Attacks. Technical Report, Cryptography Research Inc., 1998. Available from
http://www.cryptography.com/dpa/technical/index.html

12. P. Kocher, J. Ja�e, B. Jun, Di�erential Power Analysis. In Proceedings of
CRYPTO'99, LNCS 1666, pp. 388-397, Springer-Verlag, 1999.

13. T.S. Messerges, Using Second-Order Power Analysis to Attack DPA Resistant
software. In Proceedings of CHES'2000, LNCS 1965, pp. 238-251, Springer-Verlag,
2000.

14. T.S. Messerges, E.A. Dabbish, R.H. Sloan, Investigations of Power Anal-
ysis Attacks on Smartcards. In Proceedings of the USENIX Work-
shop on Smartcard Technology, pp. 151-161, May 1999. Available from
http://www.eecs.uic.edu/∼tmesserg/papers.html

15. T.S. Messerges, E.A. Dabbish, R.H. Sloan, Power Analysis Attacks of Modular
Exponentiation in Smartcards. In Proceedings of CHES'99, LNCS 1717, pp. 144-
157, Springer-Verlag, 1999.

16. K. Okeya, K. Sakurai, Power Analysis Breaks Elliptic Curve Cryptosystem even
Secure against the Timing Attack. In Proceedings of INDOCRYPT'2000, LNCS
1977, pp. 178-190, Springer-Verlag, 2000.

