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Abstract. Recent research shows that the class of Rotation Symmetric
Boolean Functions (RSBFs), i.e., the class of Boolean functions that are
invariant under circular translation of indices, is potentially rich in func-
tions of cryptographic significance. Here we present new results regarding
the Rotation Symmetric (rots) correlation immune (CI) and bent func-
tions. We present important data structures for efficient search strategy
of rots bent and CI functions. Further, we prove the nonexistence of
homogeneous rots bent functions of degree ≥ 3 on a single cycle.
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1 Introduction

A variety of criteria for choosing Boolean functions with cryptographic applica-
tions (for secret key cryptosystems) have been identified. These are balanced-
ness, nonlinearity, autocorrelation, correlation immunity, algebraic degree etc.
The trade-offs among these criteria have received a lot of attention in Boolean
function literature for a long time (see [7] and the references in this paper). The
more criteria that have to be taken into account, the more difficult the problem
is to obtain a Boolean function satisfying these properties.

It has been found recently that the class of RSBFs is extremely rich in terms
of cryptographically significant Boolean functions. These functions have been
analyzed in [4], where the authors studied the nonlinearity of these Boolean
functions up to 9 variables and found encouraging results. This study has been
extended in [15, 16] and important properties (further to [4]) of these functions
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up to 8 variables have been demonstrated. Also, the enumeration of RSBFs
of specific degree has been discussed in [15, 16]. On the other hand, in [11],
Pieprzyk and Qu studied these functions as components in the rounds of a
hashing algorithm and research in this direction was later continued in [3].

The space of RSBFs is of size approximately 2
2n

n for n-variable, which is of
size n-th root of the total space 22n

. Thus any kind of search becomes compar-
atively easier and it has been shown in [15] that it is easy to get a 7-variable,
2-resilient RSBF with nonlinearity 56, which has earlier been considered as a
function that is not easy to search for [10]. Moreover, these functions also pos-
sess the best known autocorrelation spectra. Thus it is important to present tools
that can be used to efficiently search the space of RSBFs. We present important
data structures, the matrices nA and nB, that make this search and the study
of bent functions more efficient.

Using these data structures, for the first time we could find 8-variable, 1-
resilient, algebraic degree 6, nonlinearity 116, PC(1) functions with maximum
absolute value in the autocorrelation spectra 32. Functions with such parame-
ters have not been reported earlier. Moreover, interesting results are obtained
for 9-variable correlation immune functions. The space for these functions in the
Rotation Symmetric class is too large to execute exhaustive search. Hence we ex-
ploited simulated annealing technique to find these functions. The results found
by simulated annealing are as follows. We could find 9-variable, 2-resilient, al-
gebraic degree 6 and nonlinearity 240 functions and unbalanced 9-variable, 3rd
order correlation immune, algebraic degree 5 and nonlinearity 240 functions.
These functions have been posed as important open questions in [13, 14]. Note
that the details of simulated annealing is not included in this paper and that
has been published in [2].

In this paper, we also try to analyze the RSBFs class using combinatorial
techniques in Section 3. We present enumerative results (based on constructive
techniques) on balanced and correlation immune RSBFs. Further, we show that
it is possible to transform a class of RSBFs to correlation immune functions
depending on full rank of binary circulant matrices over Z2. In [15], it was
observed that there is no homogeneous rots bent functions of degree ≥ 3 up to
10 variables. We here theoretically show the nonexistence of homogeneous rots
bent functions of degree ≥ 3 on a single cycle for any (even) number of input
variables ≥ 6.

2 Preliminaries

A Boolean function on n variables may be viewed as a mapping from Vn =
{0, 1}n into {0, 1}. A Boolean function f(x1, . . . , xn) is also interpreted as the
output column of its truth table f , i.e., a binary string of length 2n, f =
[f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . . , f(1, 1, · · · , 1)].

The Hamming distance between S1, S2 is denoted by d(S1, S2) = #(S1 6= S2).
Also the Hamming weight or simply the weight of a binary string S is the number
of ones in S. This is denoted by wt(S). An n-variable function f is said to be



balanced if its output column in the truth table contains equal number of 0’s and
1’s (i.e., wt(f) = 2n−1).

Addition operator over GF (2) is denoted by ⊕. An n-variable Boolean func-
tion f(x1, . . . , xn) can be considered to be a multivariate polynomial over GF (2).
This polynomial can be expressed as a sum of products representation of all
distinct k-th order products (0 ≤ k ≤ n) of the variables. More precisely,
f(x1, . . . , xn) can be written as

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . . ⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij , . . . , a12...n ∈ {0, 1}. This representation of f is
called the algebraic normal form (ANF) of f . The number of variables in the
highest order product term with nonzero coefficient is called the algebraic degree,
or simply the degree of f and denoted by deg(f).

Take 0 ≤ b ≤ n. An n-variable function is called nondegenerate on b variables
if its ANF contains exactly b distinct input variables. A Boolean function is said
to be homogeneous if its ANF contains terms of the same degree only.

Functions of degree at most one are called affine functions. An affine function
with constant term equal to zero is called a linear function. The set of all n-
variable affine (respectively linear) functions is denoted by A(n) (respectively
L(n)). The nonlinearity of an n-variable function f is

nl(f) = ming∈A(n)(d(f, g)),

i.e., the distance from the set of all n-variable affine functions.
Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to {0, 1}n and

x · ω = x1ω1 ⊕ . . .⊕ xnωn. Let f(x) be a Boolean function on n variables. Then
the Walsh transform of f(x) is a real valued function over {0, 1}n which is defined
as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)⊕x·ω.

In terms of Walsh spectra, the nonlinearity of f is given by

nl(f) = 2n−1 −
1

2
max

ω∈{0,1}n
|Wf (ω)|.

In [5], an important characterization of correlation immune functions has
been presented, which we use as the definition here. A function f(x1, . . . , xn) is
m-th order correlation immune (respectively m-resilient) iff its Walsh transform
satisfies

Wf (ω) = 0, for 1 ≤ wt(ω) ≤ m (respectively 0 ≤ wt(ω) ≤ m).

As the notation used in [13, 14], by an (n,m, d, σ) function we denote an
n-variable, m-resilient function with degree d and nonlinearity σ. Further by an
[n,m, d, σ] function we denote an unbalanced n-variable, mth order correlation
immune function with degree d and nonlinearity σ.



Propagation Characteristics (PC) and Strict Avalanche Criteria (SAC) [12]
are important properties of Boolean functions to be used in S-boxes. Further,
Zhang and Zheng [18] identified related cryptographic measures called Global
Avalanche Characteristics (GAC).

Let α ∈ {0, 1}n and f be an n-variable Boolean function. Let us denote the
autocorrelation value of the Boolean function f with respect to the vector α as

∆f (α) =
∑

x∈{0,1}n

(−1)f(x)⊕f(x⊕α),

and the absolute indicator

∆f = max
α∈{0,1}n,α6=0

|∆f (α)|.

A function is said to satisfy PC(k), if

∆f (α) = 0 for 1 ≤ wt(α) ≤ k.

2.1 Rotation Symmetric Boolean Functions

Let xi ∈ {0, 1} for 1 ≤ i ≤ n. For 1 ≤ k ≤ n, we define

ρk
n(xi) = xi+k, if i + k ≤ n, and

= xi+k−n, if i + k > n.

Let (x1, x2, . . . , xn−1, xn) ∈ Vn. We can extend the definition of ρk
n on tu-

ples and monomials as ρk
n(x1, x2, . . . , xn) = (ρk

n(x1), ρ
k
n(x2), . . . , ρ

k
n(xn)) and

ρk
n(xi1xi2 · · ·) = ρk

n(xi1)ρ
k
n(xi2) · · · .

Definition 1. A Boolean function f is called Rotation Symmetric if for each
input (x1, . . . , xn) ∈ {0, 1}n, f(ρk

n(x1, . . . , xn)) = f(x1, . . . , xn) for 1 ≤ k ≤ n.

Following [15], let us denote

Gn(x1, . . . , xn) = {ρk
n(x1, . . . , xn), for 1 ≤ k ≤ n}.

Note that Gn(x1, . . . , xn) generates a partition in the set Vn. Let gn be the num-
ber of such partitions. Using Burnside’s lemma, it can be shown (see also [15])
that the number of n-variable RSBFs is

2gn , where gn =
1

n

∑

k|n

φ(k) 2
n
k ,

φ being Euler’s phi−function. Further the following result has been proved re-
garding n-variable RSBFs of some specific degree. The number of

(i) degree w homogeneous functions is 2gn,w − 1,

(ii) the number of degree w functions is (2gn,w − 1)2
∑

w−1

i=0
gn,i and



(iii) the number of functions with degree at most w is 2
∑

w

i=0
gn,i , where gn,w is

defined as follows (see also [15]).

Consider Gn(x1, . . . , xn), where wt(x1, . . . , xn) is exactly w, and define gn,w

as the number of partitions over the n bit binary strings of weight w (total
number

(
n
w

)
), determined by Gn. Further, denote by hn,w the number of distinct

sets Gn(x1, . . . , xn), where wt(x1, . . . , xn) = w and |Gn(x1, . . . , xn)| = n, that
is, the number of long cycles of weight w. It is easy to see that hn,w < gn,w.
Write k|m, if k (1 < k ≤ m) is a proper divisor of m. The following results were
obtained in [15].

(i) gn,w =
1

n

(
n
w

)
, if gcd(n,w) = 1. Also, gn,0 = gn,n = 1.

(ii) gn,w =
1

n


(

n
w

)
−

∑

k|gcd(n,w)

n

k
· hn

k
, w

k


 +

∑

k|gcd(n,w)

hn
k

, w
k
, if w < n.

Filiol and Fontaine [4] discussed the set of idempotent Boolean functions in
an experimental setting. Let B = (b1, . . . , bn) be a basis of Fn

2 (which is identified
with F2n). An idempotent f is a Boolean function on F2n that satisfies f2 = f .
Define the Mattson-Solomon (MS) polynomial by

MSf (Z) =

2n−2∑

j=0

AjZ
2n−j−1, where Aj =

2n−1∑

i=0

f(αi)αij ,

where α is a primitive element of F2n . Using the representation

f =
∑

g∈F∗

2n

f(g)(g)

(in the multiplicative algebra F2[F2n ,×]), one gets that f is an idempotent iff
f(g) = f(g2), ∀ g; the coefficients of the MS polynomial belong to F2; Aj = Ak

for all k in the 2-cyclotomic class of j ({j, 2j, . . . , 2n−1j}); the ANF of f (using a

normal basis (γ, γ2, . . . , γ2n−1

) remains invariant under circular shift. This gives
that the corpus of idempotents is the same as the class of Rotation Symmetric
Boolean functions. For n = 5, 7, they found idempotents of highest nonlinearity
(12, respectively 56) of degrees 2, 3 (for n = 5), and degrees 2, 3, 4, 5, 6 (for
n = 7). For n = 6, 8 they found all idempotents of highest nonlinearity (28,
respectively 120), of degrees 2, 3, respectively, 2, 3, 4. They were not able to find
all idempotent functions for n = 8, though. Finally, for n = 9, they found
1142395 functions (up to equivalence) with nonlinearity 240, some of which are
balanced, of degrees 2, 3, 4, 5, 6, 7.

3 Study on RSBFs

Motivated by [4, 15], in this section we will investigate the richness of the RSBFs
class in terms of cryptographic properties and present some important data



structures. The data structures will help in running the search algorithms very
fast. In this direction we start with a few technical results. In the preliminaries,
we have defined Gn(x1, . . . , xn) = {ρk

n(x1, . . . , xn), for 1 ≤ k ≤ n}. As example,
for n = 4 we get the following partition of {0, 1}n:

G4(0, 0, 0, 0) = {(0, 0, 0, 0)};
G4(0, 0, 0, 1) = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)};
G4(0, 0, 1, 1) = {(0, 0, 1, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 1, 0, 0)};

G4(0, 1, 0, 1) = {(0, 1, 0, 1), (1, 0, 1, 0)};
G4(0, 1, 1, 1) = {(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)};

G4(1, 1, 1, 1) = {(1, 1, 1, 1)}.

Note that there are gn such partitions, and the lexicographically first element
of each part is considered as the representative element. We denote these rep-
resentative elements by Λn,i where i varies from 0 to gn − 1 and representative
elements are again arranged lexicographically. That is, in the above example,
Λ4,0 = (0, 0, 0, 0), Λ4,1 = (1, 0, 0, 0), Λ4,2 = (1, 1, 0, 0), Λ4,3 = (1, 0, 1, 0), Λ4,4 =
(1, 1, 1, 0), Λ4,5 = (1, 1, 1, 1).

By RSTT (rotation symmetric truth table) we mean the gn-bit long binary
string

[f(Λn,0), f(Λn,1), . . . , f(Λn,gn−1)],

which gives the complete information of the function f when it is rots.

Lemma 1. Let u, v ∈ {0, 1}n and u 6= v with u ∈ Gn(v). Let f be an n-variable
RSBF. Then Wf (u) = Wf (v), which implies that the Walsh spectra of f can be
at most gn valued.

Proof. First we show that for a ∈ {0, 1},

∑

x∈Gn(Λn,i)

(−1)a⊕x·u =
∑

x∈Gn(Λn,i)

(−1)a⊕x·v.

Since u ∈ Gn(v), u = ρk
n(v) for some k. Now

∑
x∈Gn(Λn,i)

(−1)a⊕x·u

=
∑

x∈Gn(Λn,i)
(−1)a⊕ρk

n(x)·ρk
n(u) =

∑
y∈Gn(Λn,i)

(−1)a⊕y·v (take y = ρk
n(x)) =∑

x∈Gn(Λn,i)
(−1)a⊕x·v.

Wf (u) =
∑

x∈{0,1}n(−1)f(x)⊕x·u =
∑gn−1

i=0

∑
x∈Gn(Λn,i)

(−1)f(x)⊕x·u

= ( using the above result )
∑gn−1

i=0

∑
x∈Gn(Λn,i)

(−1)f(x)⊕x·v = Wf (v). ⊓⊔

Note that, Lemma 1 helps to run any heuristic in a much smaller space. Now
we define an important matrix called nA with respect to the set of n-variable
RSBFs as:

nAi,j =
∑

x∈Gn(Λn,i)

(−1)x·Λn,j .

See the following example corresponding to 6-variable case.



i 0 1 2 3 4 5 6
Λ6,i 000000 000001 000011 000101 000111 001001 001011

i 7 8 9 10 11 12 13
Λ6,i 001101 001111 010101 010111 011011 011111 111111

6A =




1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 4 2 2 0 2 0 0 −2 0 −2 −2 −4 −6
6 2 2 −2 2 −2 −2 −2 2 −6 −2 −2 2 6
6 2 −2 2 −2 −2 −2 −2 −2 6 2 −2 2 6
6 0 2 −2 0 −6 0 0 −2 0 2 6 0 −6
3 1 −1 −1 −3 3 1 1 −1 −3 −1 3 1 3
6 0 −2 −2 0 2 −4 4 2 0 2 −2 0 −6
6 0 −2 −2 0 2 4 −4 2 0 2 −2 0 −6
6 −2 2 −2 −2 −2 2 2 2 6 −2 −2 −2 6
2 0 −2 2 0 −2 0 0 2 0 −2 2 0 −2
6 −2 −2 2 2 −2 2 2 −2 −6 2 −2 −2 6
3 −1 −1 −1 3 3 −1 −1 −1 3 −1 3 −1 3
6 −4 2 2 0 2 0 0 −2 0 −2 −2 4 −6
1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1




This matrix is of size gn × gn. Now for an n-variable RSBF f , we have Wf (ω) =∑
x∈{0,1}n(−1)f(x)⊕x·ω =

∑gn−1
i=0

∑
x∈Gn(Λn,i)

(−1)f(x)⊕x·ω

=
∑gn−1

i=0 (−1)f(Λn,i)
∑

x∈Gn(Λn,i)
(−1)x·Λn,j , if ω ∈ Gn(Λn,j). Thus, Wf (Λn,j) =

∑gn−1
i=0 (−1)f(Λn,i)

nAi,j . To summarize, we have the following result.

Proposition 1. Wf (Λn,j) =
∑gn−1

i=0 (−1)f(Λn,i)
nAi,j .

In terms of Proposition 1, we can list the following.

Lemma 2. Let f be an n-variable RSBF.

1. nl(f) = 2n−1 − 1
2 maxΛn,j ,0≤j<gn

|
∑gn−1

i=0 (−1)f(Λn,i)
nAi,j |.

2. f is balanced iff
gn−1∑

i=0

(−1)f(Λn,i)
nAi,0 = 0.

3. f is m-th order CI (respectively m-resilient) iff

gn−1∑

i=0

(−1)f(Λn,i)
nAi,j = 0, for 1 (respectively 0) ≤ wt(Λn,j) ≤ m.

4. f is bent iff

gn−1∑

i=0

(−1)f(Λn,i)
nAi,j = ±2

n
2 for 0 ≤ j ≤ gn − 1.



Theorem 1. The number of balanced RSBFs is exactly 2πn, where πn is the
number of partitions of the space Vn as Vn = An ∪ Bn, where An and Bn have
the same cardinal, and both include complete cycles of any length. Further, if

n = p is an odd prime, then the number of balanced RSBFs is 2 ·
(

(2p−2)/p
(2p−1−1)/p

)
;

if n = pa (a > 1) and p is an odd prime, then the number of balanced RS-

BFs is 2 · πn, with πn ≥
(

x
x/2

)
·

a∏

i=1

(
xi

xi/2

)
, where xi =

2pi

− 2pi−1

pi
, and

x = p−a


2pa

+
a∑

j=1

φ(pj) · 2pa−j


 −

a∑

i=1

xi − 2.

Proof. Using item 2 of Lemma 2, to determine balanced RSBFs, it suffices to find
the RSBFs satisfying

∑gn−1
i=0 (−1)f(Λn,i)

nAi,0 = 0. According to the definition

nAi,0 =
∑gn−1

i=0 (−1)x·Λn,0 = #Gn(Λn,i). Since the values of (−1)f(Λn,i) are either
±1, and f is constant on Gn(v) for any v, we get the first claim.

If n = p is prime, the number of long cycles is hp = 2p−2
p and the number of

short cycles is 2 (the trivial ones) (see Subsection 2.1). Therefore, to partition
Vn = An ∪ Bn (with An, Bn having the same number of elements), we need to
place a short cycle in each of An, Bn, and the rest of p · hp elements must be
placed half in An and half in Bn (keeping together cycles). That can be done in(

(2p−2)/p
(2p−1−1)/p

)
ways. The second claim is proved.

If n = pa (a > 1), the number of short cycles of length pi (for any i =

1, . . . , a− 1) is xi = (2pi

− 2pi−1

)/pi (see Subsection 2.1). For each i, we can put
half of the cycles in An, and half in Bn. The same can be done with the long
cycles. Since the number of long cycles is x, the result is proved. ⊓⊔

For example, consider the case for 4-variable balanced RSBFs. We have

V4 = G4(Λ4,0) ∪ G4(Λ4,1) ∪ G4(Λ4,2) ∪ G4(Λ4,3) ∪ G4(Λ4,4) ∪ G4(Λ4,5).

Now consider
W4 = G4(Λ4,0) ∪ G4(Λ4,3) ∪ G4(Λ4,5).

Hence
V4 = W4 ∪ G4(Λ4,1) ∪ G4(Λ4,2) ∪ G4(Λ4,4).

Therefore, a balanced RSBF must be 1 at the output corresponding to any two of
W4, G4(Λ4,1), G4(Λ4,2), G4(Λ4,4). Hence π4 = 3 and there are 6 balanced RSBFs
on 4-variables. The reason we do not exhaust all possibilities in the second part of
the previous theorem is because we can get a different partition of Vn, satisfying
the requirements, by placing more short cycles in An (or Bn) as long as one ends
up with the same number of elements in An, Bn.

Note that we have defined ρk
n(xi1xi2 · · ·) = ρk

n(xi1)ρ
k
n(xi2) · · · in Subsec-

tion 2.1. By abuse of notation let us denote

Gn(xi1xi2 . . . xil
) = {ρk

n(xi1xi2 . . . xil
), for 1 ≤ k ≤ n}.



We select the representative element of Gn(xi1xi2 . . . xil
) as the lexicographi-

cally first element. As example, the representative element of {x1x2x3, x2x3x4,
x3x4x1, x4x1x2} is x1x2x3. Note that it is also clear that the term x1 will always
exist in the lexicographically first element (the representative element).

We now define the short algebraic normal form (SANF) of an RSBF. An
RSBF f(x1, . . . , xn) can be written as

a0 + a1x1 +
∑

a1jx1xj + . . . + a12...nx1x2 . . . xn,

where the coefficients a0, a1, a1j , . . . , a12...n ∈ {0, 1}, and the existence of a rep-
resentative term x1xi2 . . . xil

implies the existence of all the terms from the set
Gn(x1xi2 . . . xil

) in the ANF. This representation of f is called the short algebraic
normal form (SANF) of f . Note that the number of terms in each summation
(
∑

) corresponding to same degree terms depends on the number of short and
long cycles.

As example consider the ANF of a 4-variable RSBF x1 + x2 + x3 + x4 +
x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2. Its SANF is x1 + x1x2x3.

We can easily identify a monomial xi1xi2 · · ·xik
as a binary string of length n

where the positions i1, i2, · · · , ik contain ‘1’ and the rest of the positions contain
‘0’. By abuse of notation we associate the n-bit patterns with monomials. It is
clear that all the monomials in Gn(Λn,i) will either be present in the ANF or
all of them will be absent if the Boolean function is rotation symmetric. Let us
define another matrix nB as

nBi,j =
⊕

e∈Gn(Λn,j)

e|Λn,i
.

That is, we take an RSBF (say h) with all the monomials coming from a single
Rotation Symmetric group (say represented by Λn,j). Then we check what is the
value of h at the representative input points Λn,i and put that in the location

nBi,j which contains either 0 or 1. Given nBi,j and the SANF of an RSBF, one
can directly get the RSTT of the RSBF. The example for 6B is as follows.

6B =




1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 0 0 0 0 0 0 0
1 1 1 1 0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 1 1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 1 1 1 0 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 1 1 0 1 0 1 1 0
1 0 0 0 0 1 0 0 0 0 0 1 0 1






Note that the matrices nA, nB help to perform the search much faster than the
naive Boolean function implementation.

3.1 Correlation Immune (CI) and Resilient RSBFs

We start our discussion with construction of 1st order CI RSBFs. Note that
the second column of the matrix nA is instrumental in the analysis of first
order CI functions. From item 3 of Lemma 2 we get that f is 1st order CI if∑gn−1

i=0 (−1)f(Λn,i)
nAi,j = 0 for wt(Λn,j) = 1, i.e., when j = 1, i.e., Λn,j = Λn,1.

Note that nAi,1 =
(n−2wt(Λn,i))

k for cycles of length n
k , where k (1 ≤ k ≤ n)

is a divisor of n. See the second column of 6A as example. Thus we have the
following result.

Theorem 2. An n-variable Rotation Symmetric Boolean function f is 1st order

CI iff
∑gn−1

i=0 (−1)f(Λn,i) (n−2wt(Λn,i))
ki

= 0, where |Gn(Λn,i)| = n
ki

.

Based on this we present the following enumerative result when n is prime.

Corollary 1. There are at least 2
∏n−1

2

w=1

∑gn,w

k=0

(
gn,w

k

)2
many 1st order CI RS-

BFs on n variables, where n is an odd prime. In this case, gn,w =

(
n
w

)
n .

Proof. For n prime we know that gn = 2n−2
n + 2. There are 2n−2

n full cycles
and two trivial short cycles (all zero and all one). Thus it is clear that nAi,1 =
n − 2wt(Λn,i) for 1 ≤ i ≤ gn − 2 and nA0,1 = 1, nAgn−1,1 = −1. Note that,

nAi1,1 = −nAi2,1, when wt(Λn,i1) = n−wt(Λn,i2). Now consider an assignment
of 0 or 1 value at output corresponding to the gn,w classes where wt(Λn,i1) = w.
We have to put the same number of 0’s and 1’s corresponding to the gn,n−w

classes where wt(Λn,i2) = n − w. The two trivial cycles should also have the
same value at the output, either both zero or both 1. This satisfies the condition
that

∑gn−1
i=0 (−1)f(Λn,i)

nAi,1 = 0, i.e., Wf (Λn,1) = 0, i.e., f is 1st order CI.

Hence the number of possible options is 2 ×
∏n−1

2

w=1(
∑gn,w

k=0

(
gn,w

k

)
·
(

gn,w

k

)
). ⊓⊔

Note that similar strategy can be exploited for higher order correlation im-
mune or resilient RSBFs. However, in those cases, the analysis will be more
involved.

3.2 A large subclass of RSBFs that are transformable to 1st order
CI functions

We first investigate the independence of the vectors of a full cycle, i.e., the vectors
in Gn(Λn,i) when |Gn(Λn,i)| = n.

Lemma 3. Consider the elements of Gn(Λn,i) for some i, where |Gn(Λn,i)| =
n. Let Λn,i = (a1, a2, . . . , an) of weight w and the positions of 1’s in Λn,i be
s1 = 1, s2, . . . , sw. The vectors in Gn(Λn,i) are linearly dependent (over Z2) iff
there is an n-th root of unity µ such that 1 + µs2 · · · + µsw = 0, over Z2.



Proof. The set {(a1, a2, . . . , an), (an, a1, . . . , an−1), . . .} is linear dependent over
Z2 if and only if the matrix

circ(a1, a2, . . . , an) =




a1 a2 a3 . . . an

an a1 a2 . . . an−1

an−1 an a1 . . . an−2

...
...

a2 a3 a4 . . . a1




has zero determinant over Z2. We observe that the matrix is circular and it is
known that the determinant of a circular matrix is given by

det(circ(a1, a2, . . . , an)) =
∏

µ

(
a1 + a2µ + a3µ

2 + · · · + anµn−1
)
,

where the product runs over all the n number of n-th roots of unity. Since ai’s
are 1 in the positions described by sj ’s and 0 elsewhere, we get that

det(circ(a1, a2, . . . , an)) =
∏

µ

(1 + µs2 + · · · + µsw) ,

which is zero if and only if one of the factors is zero, that is, iff there exists an
n-th root of unity such that 1 + µs2 · · · + µsw = 0 (over Z2). ⊓⊔

Corollary 2. Take n arbitrary. If wt(Λn,i) is even, then the full cycle generated
by Λn,i is dependent.

Proof. We have det(circ(Λn,i)) =
∏

µ (1 + µs2 + · · · + µsw) = 0, since 1 + µs2 +
· · · + µsw = 0 (in Z2), for µ = 1 (which is an n-th root of unity, for any n). ⊓⊔

Now we present some examples. Take the cycle generated by (1, 1, 0, 0) in V4.
The circular determinant is det(circ(1, 1, 0, 0)) =

∏
µ (1 + µ) = 0, since µ = −1

is one of the 4-roots of unity. Another example is the cycle generated over V6

by (1, 1, 1, 0, 1, 0). We have det(circ(1, 1, 1, 0, 1, 0)) =
∏

µ

(
1 + µ + µ2 + µ4

)
= 0,

since µ = 1 (a 6-root of unity) satisfies 1+µ+µ2 +µ4 = 0 over Z2. On the other
hand, the full cycle generated in V6 by (1, 1, 0, 0, 1, 0) is linearly independent.

Corollary 3. Let n be a positive integer, and p be the least odd prime occurring
in the factorization of n. Take Λn,i (a generator of a full cycle), of odd weight
w and sw ≤ p − 2. Then the full cycle generated by Λn,i is independent.

Proof. As before, under the above conditions, if we have dependence, then there
is an n-th root of unity µ, such that P (µ) = 0, where P (x) = xsw + · · ·+xs2 +1.
Since w is odd, µ 6= ±1. There exists k |n such that µ is a primitive k-th root of
unity. Therefore, the cyclotomic polynomial Φk(x) divides P (x) over Z2 (see [6],
Ch. 2 & 3). If k < p, then it must be that k is a power of 2, say 2l (since k is
a divisor of n, and p is the least odd prime dividing n). But that is impossible,

since then Φk(x) will divide x2l

− 1, so (over Z2) 1 = µ2l

= µ. Therefore, k ≥ p.



Assume k = 2lpα1

1 · · · pαr
r . If r ≥ 1, then pi ≥ p, so φ(k) ≥ φ(pi) = pi −1 ≥ p−1.

But the degree of P (x) is at most p−2 and that of Φk(x) is greater than or equal
to p − 1. That is a contradiction. If r = 0, then k = 2l > p, and the previous
case’s argument applies. ⊓⊔

Corollary 3 is the best we can get in that direction, as we see taking the cycles
in V14 generated by (1, 1, 1, 1, 1, 0, 0, 0, . . .) and (1, 1, 1, 1, 1, 1, 1, 0, . . .). Now, the
prime 7 is the least odd prime dividing n = 14. The weight w and sw of the first
generator is 5 and the cycle is independent; the weight w and sw of the second
generator is 7 and the cycle is dependent.

With the background of Lemma 3, Corollary 2 and Corollary 3 we present
the following result.

Theorem 3. Let f be an n-variable RSBF with Wf (Λn,j) = 0 for some j such
that Gn(Λn,j) contains n independent vectors. Then the function f can be trans-
formed to a 1st order correlation immune function g which may or may not be
RSBF. Further if f is balanced, i.e., Wf (0) = 0, then g is 1-resilient.

Proof. Given the set of n independent vectors, at which the values of the Walsh
spectra are 0, it is possible to apply linear transformation on the function f to
get a function g which is 1st order correlation immune (using the methods of [8]).
Note that, after the linear transformation, the Rotation Symmetric property of
g is not guaranteed. ⊓⊔

Theorem 3 presents a simple method to get 1st order CI or 1-resilient func-
tions easily from RSBFs satisfying some conditions. Moreover, the combinato-
rially interesting point is that the conditions are related to full rank of binary
circulant matrices over Z2 and n-th roots of unity as described in Lemma 3.

3.3 Search for important functions

Recall the notation gn,w in Subsection 2.1. It is clear that for an RSBF, the
(

n
w

)

many monomials of degree w are partitioned into gn,w many groups and the
monomials of each group are either present or absent together. Now the search
technique works as follows.

1. Choose a candidate RSBF (say f) represented by its SANF.
2. Use nB to get the RSTT of f from the SANF.
3. Use nA and the RSTT of f to analyze the Walsh Spectra of f .

Let us now consider the (8, 1, 6, 116) functions. These functions are of lot
of interest as evident from [7, 1, 9]. Note that so far there was no evidence of
(8, 1, 6, 116) functions with PC(1) property. We here show that there are such
functions in the RSBFs class. We consider f(0) = 0, and there can not be any
term of degree 7, 8 in the ANF. Thus we need to take any combination from∑5

i=1 g8,i groups and at least one group from g8,6 groups. This search space is

of size 2
∑

5

i=1
g8,i(2g8,6 − 1). Note that g8,1 = 1, g8,2 = g8,6 = 4, g8,3 = g8,5 =



7, g8,4 = 10. Thus we need to search a space of size 229(24 − 1) ≈ 233 and the
search needed little more than a day on a Pentium 1.6 GHz computer with 256
MB RAM using Linux 7.2 operating system. We searched the complete space and
found 10272 such functions. The ∆f (autocorrelation values) of the functions are
32 (2176 many), 40 (1024 many), 48 (128 many), 64 (6688 many) and 128 (256
many). Next we searched the set of these 10272 functions for the propagation
property. There are 2672 such functions. The ∆f (autocorrelation values) of the
functions are 32 (384 many), 40 (256 many), 64 (1936 many) and 128 (96 many).
Thus we have the following theorem.

Theorem 4. There are 10272 many (8, 1, 6, 116) RSBFs f with f(0) = 0.
Among them we have 2672 many (8, 1, 6, 116) RSBFs which are also PC(1) and
out of them 384 many functions have ∆f value as low as 32.

The following one is the truth table (in Hex) of an (8, 1, 6, 116), PC(1) RSBF
with ∆f = 32.

0055 6267 7d59 2d7a 3be6 32c3 4da2 3bcc

0f8b fd3c 5a49 b05a 31f6 c94c 5e9a e4a0

Next we concentrate on 9-variable functions. As we discuss, it will be clear
that even if the search space is reduced, it is not possible to go for an exhaustive
search. Thus we attempted heuristic search using simulated annealing. Note that
the details of simulated annealing is not included in this paper and that has been
published in [2].

Let us consider the (9, 2, 6, 240) functions with f(0) = 0. There can not be

any term of degree 7, 8, 9. Thus we need to take any combination from
∑5

i=1 g9,i

groups and at least one group from g9,6 groups. Now g9,1 = 1, g9,2 = 4, g9,3 =

g9,6 = 10, g9,4 = g9,5 = 14. Thus the search space is of size 2
∑

5

i=1
g9,i(2g9,6 −

1) = 243(210 − 1) ≈ 253. With the current computational facility this search
would be extremely time consuming. Hence we attempted heuristic search in
this case and succeeded to get such functions. Note that this function was posed
as an important open question in [13, 14]. The best possible functions that have
been achieved earlier [13] are (9, 2, 6, 232) and (9, 2, 5, 240), i.e., the first one has
smaller nonlinearity (than the upper bound 240) when the algebraic degree was
maximum and the second one has smaller algebraic degree (maximum upper
bound 6) when the nonlinearity was maximum.

Next we consider the (9, 3, 5, 240) functions with f(0) = 0. There can not
be any term of degree 6, 7, 8, 9. Thus we need to take any combination from∑4

i=1 g9,i groups and at least one group from g9,5 groups. Thus the search space

is of size 2
∑

4

i=1
g9,i(2g9,5 − 1) = 229(214 − 1) ≈ 243. Though this search space

is not extremely large, with our current implementation it is expected to take
almost 3 years to complete the search on a single Pentium 1.6 GHz computer with
256 MB RAM using Linux 7.2 operating system. Hence we attempted heuristic
search, but could not succeed. Instead we could achieve unbalanced [9, 3, 5, 240]
functions, which were also not known earlier.



4 Rotation Symmetric Bent Functions

Let us now discuss a sieving strategy for rots bent functions. Given the matrix

nA, a rots bent function needs to satisfy item 5 of Lemma 2. Thus the idea is
to get the RSTT of the function which can be seen as a column of gn elements.
Now one needs to calculate

∑gn−1
i=0 (−1)f(Λn,i)

nAi,j and check whether this is
equal to ±2

n
2 for 0 ≤ j ≤ gn − 1. The first time it fails for some j, we terminate

checking that function and go for the next. This gives a very good performance
for search strategies.

At the time of the search we can consider that b(0) = 0 and the function
is free from linear terms. Moreover, for a bent function, the maximum possible
algebraic degree is n

2 . Here the matrix nB comes into play. We need to consider
only those columns of nB where 2 ≤ wt(Λn,j) ≤

n
2 . Then we choose all the linear

combinations of those columns and then search for the bent functions. Thus the

algorithm needs to check 2
∑n

2

i=2
gn,i − 1 combinations as we ignore the all zero

combination. Note that in this case once we get any
∑gn−1

i=0 (−1)f(Λn,i)
nAi,j not

equal to ±2
n
2 for 0 ≤ j ≤ gn − 1, then we need not check the function further

for bentness and check the next function. Thus the process of sieving is much
faster.

Filiol and Fontaine [4] counted all the bent functions b on 8-variables where
b(0) = 0 and b is free from linear terms. There are 3776 such functions and in
total 3776 × 4 = 15104 many. With the matrices 6A,6 B, and using our sieving
method we need just one minute on a Pentium 1.6 GHz computer with 256 MB
RAM using Linux 7.2 operating system. The number of functions to be checked

is 2
∑

4

i=2
gn,i − 1 = 221 − 1 for n = 8.

Note that, g10 = 108 and gn,2 = 5, gn,3 = 12, gn,4 = 22, gn,5 = 26. Thus
the search required is 265 − 1 and with the current computational facility, it is
not possible to exhaust this set easily. That is the reason some kind of heuristic
search is required in this case and we found enough number of bent functions in
each attempt using simulated annealing. We can also increase the speed of the
algorithm by noting that there can not be any single cycle rots bent function
of degree ≥ 3. In [15] it has been observed that up to 10-variables, there is no
rotation symmetric homogeneous bent function with degree > 2 and it has been
conjectured that it is true for any even n. Our result on single cycle rots bent
functions provides a partial answer to that.

We have already denoted Vn = {0, 1}n. For a Boolean function f : V2n → V1,
let ki (i = 1, . . . , 4) be the number of input bits 1 (i.e., x with f(x) = 1) in each
of the quarters of f . If S is a bit string, by (S)u or Su we shall mean the string
obtained by concatenation of u copies of S. The concatenation of two strings
u, v will be denoted by uv or u|v. Further, h̄ is the complement of h, and for

fixed integer d, ĥ is equal to h (bit string in Vs) with the last 2s−d bits of its
truth table complemented. Let A = 0, 0, 1, 1; B = 0, 1, 0, 1; C = 0, 1, 1, 0; D =
0, 0, 0, 0; U = 1, 0, 0, 0; V = 0, 0, 0, 1; X = 0, 1, 0, 0; Y = 0, 0, 1, 0. The following
result was a central proposition in [17].



Proposition 2. Let f : V2n → V1 be a bent Boolean function (not necessarily
homogeneous) and the corresponding ki (i = 1, 2, 3, 4). Then (i) three of ki’s are
equal and one is different, and (ii) min(k1, k2, k3, k4) ≥ 22n−3 − 2n−1.

The following lemma (Lemma 11 of [3]) turns out to be quite useful. It gives the
truth table of every monomial of arbitrary degree.

Lemma 4 ([3]). The truth table of any monomial xi1 · · ·xis
of degree s is

(
D2n−i1−2 · · ·

(
D2n−is−2D̄2n−is−2

)
2is−is−1−1

)
2i1−1

,

if 1 ≤ i1 < · · · < is ≤ n − 2,(
D2n−i1−2 · · ·

(
D2n−is−1−2M2n−is−1−2

)
2is−1−is−2−1

)
2i1−1

, (1)

where M = A or B if is = n − 1, respectively is−1 < n − 1 and is = n,(
D2n−i1−2 · · ·

(
D2n−is−2−2V2n−is−2−2

)
2is−2−is−3−1

)
2i1−1

,

if is−1 = n − 1 and is = n.

Theorem 5. There are no homogeneous RSBFs with a single full cycle of degree
d ≥ 3 on Vn (n ≥ 6 even) that are bent.

Proof. Any full one-cycle RSBF is affinely equivalent to an RSBF f generated by
x1x2 . . . xd. We show now that the first quarter in the truth table of f has weight
strictly less than 22n−3 − 2n−1, thus contradicting Proposition 2. Therefore, f it
is not bent.

An immediate application of Lemma 4 gives that, for i ≤ n−d−2, the truth
table of xixi+1 . . . xi+d =

(
D2n−i−2 · · · (D2n−i−d−2D̄2n−i−d−2)

)
2i−1 ,

xn−d · · ·xn−2xn−1 = (D2d−2 · · · (DA))2n−d−1 , and
xn−d+1 · · ·xn−1xn = (D2d−3 · · · (DV ))2n−d , therefore the first quarter of the
truth table of f is given by the first quarter of

n−d−2∑

i=1

(
D2n−i−2 · · · (D2n−i−d−2D̄2n−i−d−2)

)
2i−1 + (D2d−1−1A)2n−d−1

+(D2d−2−1V )2n−d

=

n−d−2∑

i=1

(
D2n−i−1−2n−i−d−2D̄2n−i−d−2

)
2i−1 + (D2d−2−1V D2d−2−1Y )2n−d−1(2)

To see that it is so, observe that the only terms missing are x1xn−d+2 · · ·xn−1xn+
· · ·. But all these contain x1 · · ·xn−1xn. Therefore, in all the missing terms,
i1 = 1, is−1 = n − 1, is = n, so the last case of Lemma 4 implies that they all
have 0 in the first quarter of their truth table, so all these terms do not contribute
anything to the weight of the first quarter of f .

For easy writing, denote the first quarter in the truth table of f (on Vn)
by hn−2

d . Let n = d + 2 and consider hd
d. Since the first quarter of the truth

table of f (on Vn), that is hd
d, is obtained by taking the last two variables

xd+1 = xd+2 = 0, and since the degree is d, it follows easily that hd
d is nonzero

only for x1 = x2 = · · · = xd = 1, that is, hd
d = D2d−2−1V . Inductively on s, by



using the displayed relation (2), we obtain the recurrence hs
d = hs−1

d ĥs−1
d (write

the displayed relation (2) for s − 1 and s, and look at how the first quarter of
that expression for s changes from the expression for s−1; this is why we needed
the definition for ĥ, to explain that change). As example, let d = 3, and f be
the RSBF generated by x1x2x3. Write fq(f) for the first quarter of f . If n = 5,

then the RSTT of fq(f) = 00000001 = DV ; if n = 6, then fq(f) = DV ̂(DV ) =

DV DY ; if n = 7, then fq(f) = DV DY ̂(DV DY ) = DV DY DV DY .
When d is fixed we shall write hs

d as hs. Using the recurrence and Maple (a
trademark of Waterloo Maple) we obtained easily that the sequence of weights
of hn for the first few values of n, say d ≤ n ≤ d + 10 is

n d d + 1 d + 2 d + 3 d + 4 d + 5 d + 6 d + 7 d + 8 d + 9 d + 10
wt(hn

d ) 1 2 6 14 32 72 156 336 712 1496 3120
(3)

Fixing d, and using the recurrence hs = hs−1ĥs−1, we get

hs = hs−1hs−2hs−3h̄s−4 ˆ̄h
s−4

and ĥs = hs−1hs−2h̄s−3hs−4ĥs−4.

Therefore, denoting by ws the weight of hs, and by ŵs the weight of ĥs, we
arrive at the identities ŵs = 2ws−1 +2ws−2−ws +2s−2, and ws = ws−1 + ŵs−1.
We deduce (s ≥ 6)

wt(hs) = 2
(
wt(hs−2) + wt(hs−3)

)
+ 2s−3. (4)

Next we want to prove that wt(hs
d) < wt(hs

3) < 2s−1 − 2⌊
s+2

2
⌋, s ≥ 5, d > 3.

From these inequalities we derive the theorem. The first inequality on weights
follows easily from the recursive definition of hs

d. The second inequality will be
proved by induction. If s = 5, then wt(h5

d) = 6 < 24 − 23 = 8; if s = 6, then
wt(h6

d) = 14 < 25 − 24 = 16; if s = 7, then wt(h7
d) = 32 < 26 − 24 = 48.

They are certainly true. Assume the inequality true for all values from 5 to
n − 1. Now, for dimension n, wt(hn−2

d ) = 2
(
wt(hn−4) + wt(hn−5)

)
+ 2n−5 ≤

2
(
2n−5 − 2⌊

n−2

2
⌋ + 2n−6 − 2⌊

n−3

2
⌋
)

+ 2n−5 = 2n−3 − 2⌊
n−2

2
⌋+1 − 2⌊

n−3

2
⌋+1 <

2n−3 − 2⌊
n
2
⌋, since 2⌊

n−2

2
⌋+1 + 2⌊

n−3

2
⌋+1 > 2⌊

n
2
⌋. ⊓⊔
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