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Abstract. We present a realization of an LFSM that utilizes an LFSR.
This is based on a well-known fact from linear algebra. This structure is
used to show that a previous attempt at using a CA in place of an LFSR
in constructing a stream cipher did not necessarily increase its security.
We also give a general method for checking whether or not a nonlinear
filter generator based on an LFSM allows reduction to one that is based
on an LFSR and which is vulnerable to Anderson information leakage.
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1 Introduction

Linear feedback shift registers (LFSR) are one of the most useful building blocks
for constructing stream ciphers. There are classical models of memoryless syn-
chronous stream ciphers that utilize LFSR’s : the nonlinear filter model (NF)
and the nonlinear combiner model (NC).

For the NF model, building on previous works[0,0], Anderson[0] showed that
much information about the state of the LFSR may be obtained from the output
key stream, if the distribution of possible states of LFSR’s in relation to output
stream blocks is not uniform. And for a random NF model, this is usually quite
irregular.

In the paper [0], presented at CRYPTO 2002, a model that combines the NF
and NC models was introduced. This model utilized a cellular automaton (CA)
instead of an LFSR to eliminate the above mentioned information leakage of NF
models. In the paper, it is claimed that this non-uniform distribution stems from
the fact that a particular state bit of an LFSR affects the output key stream
several times. This would be unavoidable in an NF generator based on an LFSR.
It is also claimed that this property can be avoided through the use of a CA,
thus removing Anderson information leakage. In this paper, we show this claim
to be incorrect.



CA is a special case of linear finite state machines (LFSM) and can be viewed
as a one-dimensional array of cells. The cells change state at each clock tick, and
the new state of a cell is completely determined by its present state and those
of its left and right neighbors. CA’s have been applied to various fields such as
biological system, fault-tolerant computation, VLSI design, and cryptography.
(See [0] for a survey on the general theory of CA.) In the cryptographical field,
CA’s have been used in designing hash functions and stream ciphers[0,0]. It was
believed that from the security perspective, a CA would give properties better
than those of an LFSR. However, we shall show that the use of a CA in place of
an LFSR does not necessarily increase security.

Recalling a well-known fact from linear algebra, we give a way to realize an
LFSM, utilizing an LFSR. In short, the realization is done by attaching a linear
map to an LFSR. We understand that, due to its simplicity, this could have been
known to experts of this field. But we could not find any references, and it seems
that this fact was not looked at from the security perspective.

The realization could be of interest in its own. For example, it gives a natural
way of running a CA in the reverse direction, something which was thought to be
a complex procedure. But as will be shown through the examination of arguments
in [0], this realization also has grave consequences in the use of LFSM’s as
cryptographic building blocks.

The paper is organized as follows. Section shall present the simple mathe-
matical fact that is the starting point of this paper. This is used in Section in
realizing an LFSM using an LFSR and a linear map. In Section , we review the
notion of Anderson information leakage and examine the system given in [0].
Using the realization of a CA which utilizes an LFSR, we shall argue that the
system did not achieve its design goal. The section that follows presents an ex-
plicit example confirming these arguments. Next, in Section we give a general
method for checking whether or not a given NF generator based on an LFSM
admits a reduction to a NF generator based on an LFSR that is vulnerable to
Anderson information leakage. The last section closes the paper with some con-
cluding remarks. Some readers might want to read Appendix , which contains
remarks on what further developments the basic idea of this paper might bring.

2 Basic facts and definitions

In this section we shall recall some elementary facts from linear algebra and
introduce two classes of linear finite state machines, CA and LFSR.

2.1 Linear Algebra

Let us denote by I the n × n identity matrix. The characteristic polynomial of
a matrix M with entries in the binary field F2 is defined to be the polynomial

char(M) = det(xI − M) ∈ F2[x]. (1)



We define the companion matrix of a monic polynomial

p(x) = a0 + a1x + · · · + an−1x
n−1 + xn ∈ F2[x] (2)

to be the matrix






















0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 0 0
...

...
0 0 0
0 0 0 · · · · · · 0 1
a0 a1 a2 · · · · · · an−2 an−1























. (3)

We shall accept the following statement as a fact.

Fact 1 Let p(x) be the characteristic polynomial of a square matrix M . Denote

by L, the companion matrix of the monic polynomial p(x). If p(x) is irreducible,

then there exists an invertible (basis transition) matrix T satisfying

TMT−1 = L.

This is the only fact from linear algebra we shall need in this paper. Readers
familiar with linear algebra can look up Appendix to see justification for this
fact.

Remark 1. The matrix T appearing in this fact is not unique. If the size of the
square matrix M is n, there can be up to 2n − 1 of them.

2.2 Linear finite state machine

An n-bit linear finite state machine (LFSM), denoted by M, is a pair (Fn
2 ,M),

where M is an n × n matrix. The internal state of M is described by an n-bit
vector v = (v0, . . . , vn−1) ∈ Fn

2 . The evolution of M over discrete time t ≥ 0 is
described by a sequence of n-bit vectors v(0),v(1), . . . , satisfying

v(t+1) = Mv(t). (4)

Here, v(0) is the initial state. For t ≥ 0, we shall write

v(t) = (v
(t)
0 , v

(t)
1 , . . . , v

(t)
n−1).

It is well known that if the characteristic polynomial of M is primitive over F2,
then each of the sequences

vi = (v
(t)
i )t≥0 (5)

has period 2n − 1 [0]. This is the maximum possible period obtainable for the
state sequence of an LFSM. The most popular subclasses of the LFSM’s are
CA’s and LFSR’s.



2.3 Cellular automaton

A cellular automaton (CA) is an LFSM with a defining matrix M which is tri-
diagonal. If the upper and lower subdiagonal entries of M are all equal to 1,
then it is called a 90/150 CA. Visually, the general matrix defining a 90/150 CA
will be of the form























c0 1 0 0 · · · · · · 0
1 c1 1 0 · · · · · · 0
0 1 c2 1 0
...

...
1 0

0 · · · 1 cn−2 1
0 · · · 0 1 cn−1























, (6)

where each ci is either 0 or 1. We shall only consider 90/150 CA’s in this paper.
The sequences obtained from such a CA satisfies the following relation. For each
0 ≤ i ≤ n − 1 and t ≥ 0,

v
(t+1)
i = v

(t)
i−1 ⊕ civ

(t)
i ⊕ v

(t)
i+1,

where we take v
(t)
−1 = v

(t)
n = 0.

2.4 Linear feedback shift register

A linear feedback shift register (LFSR) corresponding to a monic polynomial
p(x) given by (2) is an LFSM with the defining matrix set to the companion
matrix of p(x) given by (3). So if we write the internal state of the LFSR at time

t ≥ 0 as v(t) = (v
(t)
0 , v

(t)
1 , . . . , v

(t)
n−1), we have

v
(t+1)
i = v

(t)
i+1

for each 0 ≤ i ≤ n − 2, and

v
(t+1)
n−1 = a0v

(t)
0 ⊕ a1v

(t)
1 ⊕ · · · ⊕ an−1v

(t)
n−1.

Hence, register contents will be shifted to the left by one cell during the evolution
process.

3 Reducing an LFSM to an LFSR

In this section, we shall see how the contents of the previous section relate to
each other. We give a way to realize an LFSM, utilizing an LFSR and a linear
map. It seems that the method we are going to give is known to the experts
of this field. But we could not find any references, so it is explained here for
completeness.



Let us be given an LFSM M defined by a matrix M . Denote the characteristic
polynomial of M by p(x) and the companion matrix of p(x) by L. Notice that
the matrix L defines an LFSR. We say that this LFSR is associated with the
LFSM M.

Suppose that p(x) is irreducible. Then we know from Fact 1 that there exists
some invertible matrix T such that

TMT−1 = L. (7)

Now, recalling that the evolution of LFSM internal state is given by (4), if the
initial state of the LFSM M was v, the state v(t) of the LFSM at time t ≥ 0
will be given by

v(t) = M tv.

Here, M t denotes M multiplied t times and not the transpose of M . Similarly,
if the initial state of the LFSR defined by the matrix L was w, the state w(t) of
the LFSR at time t ≥ 0 will be given by

w(t) = Ltw.

Now, if we had w = Tv, using (7), we can easily check the following sequence
of equalities.

v(t) = M tv = (T−1LT )tv = T−1LtTv = T−1Ltw = T−1w(t). (8)

This shows that an LFSM is intimately related to the LFSR defined by its
characteristic polynomial.

Proposition 1. The current internal state v(t) of an LFSM which starts at the

initial state v(0) may be calculated using the internal state w(t) of the associated

LFSR through the simple linear equation

v(t) = T−1w(t) (9)

by initializing the LFSR with w(0) = Tv(0).

So, even though an LFSM seems much more complicated than an LFSR, the
two are only apart by a simple linear transformation.

The only hypothesis on the LFSM we have used in this section is that its
characteristic polynomial be irreducible. In most cryptographic applications of
an LFSM, the characteristic polynomial will be taken to be primitive, in order
to achieve maximal period, so this is not a very restricting assumption. Hence
any cryptographic system that bases its safety on the complexity of an LFSM,
compared to an LFSR, may not be as safe as it seems at first sight. Since CA’s
are just a special type of LFSM’s the same can be said of systems using CA’s.

4 Security of nonlinear filter models utilizing a CA

In this section, we shall present a system which has tried to use a CA in place
of an LFSR in order to remove some unwanted property of a stream cipher. We
shall apply the theory of Section to show that the attempt did not succeed in
achieving its goal.



4.1 The NF-CA model

In the paper [0], a memoryless synchronous stream cipher called the filter-

combiner (FC) model was introduced. We shall not present the whole FC model
in this paper, but use only a small part of the model in explaining one of the
main arguments of that work. The referenced paper contains more than what is
presented here.

Let M = (Fn
2 ,M) be a CA. We assume that the characteristic polynomial

p(x) of the CA is primitive. It is known that each of the n sequences given by (5)
are all exactly the same periodic sequence with only the starting points different.
Hence they are relative shifts of each other.

We apply a nonlinear filter f with good properties, for example, high re-
siliency and nonlinearity, on the cells of the CA to obtain a stream cipher. The
system is to satisfy the following loosely stated constraints. We refer the reader
to the original paper [0] for exact statements.

1. The number r of cells used as inputs to f is small relative to the size n of
the CA. (r ≤ log2 n)

2. The starting points of the sequences obtained from the cells used as inputs
to f is (almost) evenly distributed within the common periodic sequence.

3. The number of bits encrypted using the system does not come close to 2n/r.

We shall call this reduced model by the name NF-CA, a nonlinear filter model
utilizing a CA. The paper claims that under these constraints the NF-CA is
resistant to Anderson information leakage [0].

Anderson information leakage is an observation on the nonlinear filter model
(a stream cipher that applies a nonlinear filter on an LFSR) that allows one to
gather information on the initial state of the LFSR from the key stream. More
explanation is given in the next subsection.

The author of [0] believed that Anderson information leakage was fundamen-
tally due to using the same bit more than once as input to the nonlinear filter
in obtaining the key stream. This reasoning was also somewhat vaguely stated
in the paper [0]. Hence the main objective behind the above constrains was to
remove the possibility of any part of the periodic sequence being used more than
once.

4.2 Anderson information leakage

Consider the filter model of stream ciphers. This is a stream cipher that uses
cell states of an LFSR as inputs to a nonlinear filter in obtaining a key stream.
We shall write this model as NF-LFSR for short.

Suppose we use k consecutive cells of the LFSR as inputs to the nonlinear
filter f . Let us take the convention, as given in Section , that the contents of
the register are being shifted to the left at each step. If we fix the contents of k
cells used as inputs to f , we can calculate one bit of output from the NF-LFSR.
Similarly, if we fix contents of the k cells and also (k − 1) more cells that lie
immediately to their right, we can calculate k output bits from the NF-LFSR.



Now, suppose we classify all possible (2k−1)-bit states according to the k-bit
output key stream it will give. In the ideal case, each class will contain exactly
2k−1 elements. That this distribution usually is not uniform was investigated by
Anderson [0] to show that much information about the state of the LFSR may
be obtained from the output key stream.

He gives an explicit example using a 2-resilient nonlinear filter that uses 5
variables. The above mentioned table is constructed to show that it is indeed
irregular. To show that actually useful information may be found, he lists all
possible 9-bit initial states that can give the 5-bit output stream 11010.

001010101

001110001

001110010

100110001

100110010

101001011

101110001

101110010

110110001

110110010

If we look closely at these values, we see that there is only a single 0 among
all the 5th bits, and a single 1 among both 6th and 7th. In other words, if the
key stream we obtain is 11010, then at the starting point of this key stream,
the state of the 5th cell of the LFSR would have been 1 with probability 0.9.
Likewise, state of the 6th and 7th bit would have been 0 with probability 0.9.

Irregularity in the distribution of initial states classified according to output
stream blocks contains potential for the NF-LFSR giving out information on the
initial LFSR state.

We remark that some further developments of Anderson’s idea appear in [0,0,0].

4.3 Information leakage of the NF-CA

Let the initial state of the NF-CA, or equivalently, that of the CA M = (Fn
2 ,M)

be denoted by v(0). We shall add dummy variables to the nonlinear filter f and
view it as defined on the whole CA. Then the t-th output key stream bit ct of
the NF-CA will be given by

ct = f(v(t)). (10)

We may follow through the arguments of Section in constructing an associated
LFSR and finding a linear transformation T satisfying (7). And by applying (9)
to the above equation, we may write

ct = f ◦ T−1(w(t)), (11)

where we have taken the initial state of the associated LFSR to be w(0) = Tv(0).
Notice that since T−1 is a simple linear map, we may view the map g = f ◦T−1

as just another normal nonlinear filter. That is, we have

ct = g(w(t)). (12)

We see that the right hand side is now the output of a normal NF-LFSR.

Proposition 2. The NF-CA which uses nonlinear filter f on a CA initialized

to v(0) may be realized as an NF-LFSR. This is done by applying the nonlinear

filter g = f ◦ T−1 to the associated LFSR and initializing it to w(0) = Tv(0).



Now, we do not yet have any criterion for measuring an NF-LFSR’s resistance
to Anderson information leakage. And, as stated in Anderson’s paper [0], random
NF-LFSR’s tend to leak a lot of information. Hence there is a non-dismissible
chance of (12) and hence (10) representing a stream cipher which is not resistant
to Anderson information leakage.

Remark 2. Anderson information leakage does not seem to be applicable to the
nonlinear combiner model. Hence Anderson information leakage is probably not
applicable to the FC model of [0]. But, once again, this is due to the use of
combiner part of the FC model rather than from the three constraints of Section .

5 Explicit example of leaking NF-CA

We have constructed a small but concrete example to verify that it is possible
for an NF-CA to satisfy all three of the constraints introduced in Section and
still show Anderson information leakage.

5.1 CA and its relation to an LFSR

Consider the 90/150 CA represented by a matrix M of the form (6) with the
diagonal entries given by

(c0, c1, . . . , c22) = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0).

For clarity, we have written down the explicit matrix M in Appendix . Charac-
teristic polynomial p(x) of M is

1 + x2 + x4 + x7 + x9 + x10 + x11 + x13 + x14 + x15 + x17 + x19 + x20 + x22 + x23.

This is a primitive polynomial so that each of the 23 cells of the CA gives a
sequence of period (223 − 1). Let L be the companion matrix of p(x). To define
T , we let T1 = (1, 0, 0, . . . , 0) be its top row and recursively fix the i-th row Ti

by setting

Ti = MTi−1 for 1 < i ≤ 23. (13)

The actual matrix T may be found in Appendix .

Checking

TMT−1 = L (14)

is easy. We remark that the such a T is not unique. Any invertible matrix ob-
tained through the process (13) starting with an arbitrary nonzero vector will
satisfy (14). For the above T , its inverse, T−1, is given in Appendix .



5.2 Shifts between CA cells and the nonlinear filter

Let m
(t)
i be the sequences generated by the i-th cell of the CA for 1 ≤ i ≤ 23.

Then the relative shifts between m
(t)
1 and m

(t)
i are

0 1988170 8388605 5964510 4125305 3763873 6190462 6778815 · · · .

These have been calculated using a program implementing [0]. From this, one
can check that the relative shifts between the four sequences obtained from the
2nd, 3rd, 5th, and 7th cells are quite close to 221 or 222.

2nd 5th

7th3rd

221.03

221.07

220.98

222.00

220.92

221.98

For example, the shift between m
(t)
3 and m

(t)
2 is

1988170 − 8388605 = −6400435

≡ 1988172 (mod (223 − 1))

; 220.92301···.

Hence, if we apply the nonlinear filter given by

f = m2 ⊕ m3 ⊕ (m5 · m7) (15)

on the CA, Rule 2 of Section is satisfied. It is easily checked that f is a 1-resilient
function, so we are not using a very bad filter.

That Rule 1 is also satisfied is easily checked by calculating

log2 23 = 4.52356 · · · ≥ 4.

To satisfy Rule 3, we just need to use less than 221 bits from the NF-CA we
shall create. This should not be a problem since we shall be using less than 20
key stream bits.

5.3 Equivalent NF-LFSR

We may recall from equations (10) and (11) that

f(v(t)) = (f ◦ T−1)(w(t)).



And in terms of the state (l1, l2, . . . , l23) of the LFSR, the nonlinear filter f
translates into the nonlinear filter

g = (f ◦ T−1) = (l1 ⊕ l2 ⊕ l3) ⊕ (l2 ⊕ l4 ⊕ l5) · (l1 ⊕ l2 ⊕ l3 ⊕ l5 ⊕ l7).

We have used the 2nd, 3rd, 5th, and 7th rows of the explicitly calculated T−1

given in Appendix . Notice that the 7th bit from the LFSR is the rightmost bit
used to find states of the 4 CA cells we have chosen to use for the NF-CA.

5.4 Information leakage

Since the 7th bit of LFSR remains in effect until we obtain 7 bits of the output
stream, we trace the 7-bit output stream by running the obtained NF-LFSR on
all possible 13-bit states of the leftmost part of the LFSR. Input count for each
output is given in Table . The 7-bit output stream is represented in hexadecimal

Output 00 01 02 03 04 05 06 07

# 38 51 61 73 51 75 73 89

Output 08 09 0A 0B 0C 0D 0E 0F

# 65 29 67 63 69 69 87 63

Output 10 11 12 13 14 15 16 17

# 79 63 45 37 87 67 77 57

Output 18 19 1A 1B 1C 1D 1E 1F

# 49 73 43 59 73 85 59 71

Output 20 21 22 23 24 25 26 27

# 73 93 51 71 61 69 39 55

Output 28 29 2A 2B 2C 2D 2E 2F

# 79 83 77 49 75 43 57 49

Output 30 31 32 33 34 35 36 37

# 65 49 99 75 57 45 67 55

Output 38 39 3A 3B 3C 3D 3E 3F

# 63 71 69 85 39 59 53 73

Output 40 41 42 43 44 45 46 47

# 51 83 65 89 43 55 65 61

Output 48 49 4A 4B 4C 4D 4E 4F

# 77 53 87 71 53 33 71 67

Output 50 51 52 53 54 55 56 57

# 87 59 85 57 75 59 41 49

Output 58 59 5A 5B 5C 5D 5E 5F

# 65 101 59 63 61 69 39 55

Output 60 61 62 63 64 65 66 67

# 61 61 47 55 69 89 47 83

Output 68 69 6A 6B 6C 6D 6E 6F

# 67 59 57 41 91 79 73 45

Output 70 71 72 73 74 75 76 77

# 57 53 59 55 69 53 103 63

Output 78 79 7A 7B 7C 7D 7E 7F

# 47 43 53 81 51 75 73 89

Table 1. The number of possible input states for each 7-bit output

notation and # denotes the corresponding possible input state count. Leftmost
bit of the 7 bits in hexadecimal notation(exclude the leading 0 from the 8 bits)
is the first output bit.

In the ideal case, all the counts should be equal to (or, at least near) 26 = 64.
But as we see in Table , this is not the case. It is quite irregular. Number as
big as 103 appears and number as small as 29 also appears. So this shows the
potential of this structure leaking information.

For example, let us look at the following list of all 13-bit input states that
give the 7-bit output stream 0x09 = 0001001. As given by the table, there are
29 such states.



1101000000100

0011000000100

1011000000100

0111000000100

0110101110100

0110100011100

0110100101010

1101000000110

0011000000110

1011000000110

0111000000110

0110101110110

0110100011110

0000011111110

0000011100001

0000000110001

0110101110001

0110101110101

0110100011101

0110101110011

1101000001011

0011000001011

1011000001011

0111000001011

0110010001011

1110010001011

0110100101011

0110101110111

0110100011111

We find that, with probability 28/29, only one of the bits 4, 5, and 6 is equal
to 1. In particular, sum of the three bits is equal to 1 with probability 28/29.
Anderson information leakage theory is applicable to this structure. Therefore,
applying a nonlinear filter having good cryptographic properties to a CA and
using cells of large relative shifts, as suggested in [0], does not necessarily prevent
Anderson information leakage.

6 Checking the vulnerability of a given NF-LFSM

In this section, we shall give a general method for checking whether or not a given
NF-LFSM allows reduction to a vulnerable NF-LFSR. Since CA and LFSR are
subclasses of LFSM, our method applies even to NF-LFSR. That is, we can
check whether the nonlinear filter to an NF-LFSR may be rewritten in a form
that shows information leakage.

Let us be given an NF-LFSM defined by a matrix M of size n and a nonlinear
filter f . Denote by L the companion matrix of M and write

Z(L) = {Z ∈ GL(n) | ZL = LZ}

for the centralizer of L.

For a given companion matrix L, it is easy to write down Z(L) more explicitly.
The following lemma may be proved through a straightforward application of
ZL = LZ.

Lemma 1. For the companion matrix L given by (3), the centralizer Z(L) con-

sists of elements Z = (zi,j)
n−1
i,j=0 ∈ GL(n) satisfying

zi+1,0 = a0zi,n−1,

zi+1,1 = a1zi,n−1 ⊕ zi,0,

zi+1,2 = a2zi,n−1 ⊕ zi,1,

...

zi+1,n−1 = an−1zi,n−1 ⊕ zi,n−2

for all 0 ≤ i < n − 1.



The important implication of this lemma is that every entry of a Z ∈ Z(L) may
be written as a linear sum of the terms belonging to its first row in a uniform
way. For example,

Z
(





0 1 0
0 0 1
a b c





)

=











x y z
az x ⊕ bz y ⊕ cz

ay ⊕ acz az ⊕ by ⊕ bcz x ⊕ bz ⊕ cy ⊕ cz



 ∈ GL(3)







.

Now, fix any matrix T̄ satisfying T̄MT̄−1 = L. It is an easy exercise in
linear algebra to show that the set of all T satisfying (7) is given by Z(L)T̄ :=
{ZT̄ | Z ∈ Z(L)}. And since Z ∈ Z(L) if and only if Z−1 ∈ Z(L), we have the
following proposition.

Proposition 3. The set of all T−1 satisfying (7) is given by

T̄−1Z(L) := {T̄−1Z | Z ∈ Z(L)}.

We are now ready to give a general method for checking whether or not
a given NF-LFSM allows reduction to a vulnerable NF-LFSR. If a nonlinear
filter applied to an LFSR uses a small number of variables and if those variables
correspond to LFSR cells that are close to each other, then such an NF-LFSR is
vulnerable to Anderson information leakage. Otherwise, the NF-LFSR is highly
immune to information leakage. Hence, for a given NF-LFSM, it suffices to check
the possibility of finding a T , for which the filter g = f◦T−1 given by Proposition
uses variables from a small clustered set.

Decide on a (small) number s < n. If it is possible to choose T so that
all variables used by g falls within some s consecutive LFSR cells, we shall
conclude that there is a high probability that the NF-LFSM yields to Anderson
information leakage. Otherwise we shall presume that the NF-LFSM does not
leak information.

Procedure for checking vulnerability.

1. From the matrix M of size n, defining the LFSM, calculate its characteristic
polynomial and the associated LFSR L.

2. Fix any matrix T̄ satisfying T̄MT̄−1 = L. Using the idea of (13) is one way
to do this.

3. Write Z(L) in the form given by Lemma , so that all entries of lower rows
are expressed as linear combinations of the first row terms. We shall denote
the first row terms by x0, . . . , xn−1.

4. Recalling Proposition , multiply T̄−1 to the general element of Z(L) obtained
in the previous step to express the general T−1. All entries of the general
T−1 will again be linear combinations of xj .

⋆. Let r be the number of rows used by f . Note that from the general expression
of T−1, which is an n× n array of linear sums over xj , only the r rows that
that correspond to variables used by the nonlinear filter f will have any
significance.



5. Remove all rows not corresponding to variables used by f .
⋆. Now, suppose that for some explicit nontrivial values of the variables xj ,

all the remaining entries evaluate to zero, except for those contained in the
first s columns. Then g = f ◦ T−1 would used only s variables for the T−1

evaluated at the explicit values.
6. Temporarily remove the first s columns from the remaining array of T−1

entries.
7. Check whether setting all remaining entries to zero yields a nontrivial solu-

tion.
8. If a nontrivial solution is found, conclude that the NF-LFSM allows reduction

to a vulnerable NF-LFSR.
9. Otherwise, bring back the array of linear sums obtained after Step 5.

10. Unless we’ve tried all possible consecutive s columns, (temporarily) remove
the next set of s consecutive columns and go back to Step 7.

11. If no nontrivial solution is found, conclude that the NF-LFSM resists An-
derson information leakage.

Notice that at Step 7, we have a set of r×(n−s) equations in n variables. For
most interesting values of r and s, the number of equations would be larger than
the number of variables. But our (small number of) testings show that nontrivial
solutions do occur from time to time.

We close this section by adding that the complexity of this process can easily
be seen to be of polynomial order in n.

7 Conclusion

We have seen that an LFSM (or a CA) is intimately connected to an LFSR
by the simple relation (9). This structure allows one to realize an LFSM using
an LFSR and a linear transformation. Since an LFSR is much simpler than an
LFSM, this will have implications on the security of any system that (iteratively)
uses an LFSM as one of its building blocks, and has used it assuming that it is
more complex than an LFSR.

An example of such an attempt has been examined in this paper. Using a
CA in place of an LFSR in an attempt to remove Anderson information leakage
from a nonlinear filter model has failed.

We have also given a general method for checking whether or not a given
NF-LFSM allows reduction to an NF-LFSR which is vulnerable to information
leakage.

References

1. Ross Anderson, Searching for the optimum correlation attack. Proceedings of FSE,
LNCS 1008, pp. 137–143, Springer-Verlag, 1995.
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A Explanation for Fact 1

Let us denote by E, a vector space over a field K. We have gathered some well-
known facts from linear algebra in the following theorem. Basic definitions and
proofs may be found in standard textbooks (for example, [0]).

Theorem 1. Let φ : E → E be a linear transformation. Then the following

statements hold.

1. There exists monic polynomials of positive degree p1, . . . , pt ∈ K[x] and φ-

cyclic subspaces E1, . . . , Et of E such that E = E1⊕· · ·⊕Et and p1|p2| · · · |pt.

2. The sequence p1, . . . , pt is uniquely determined by E and φ. (This is called

the invariant factors of φ.)
3. If E is a φ-cyclic space and φ has minimal polynomial p(x) of degree r, then

dimK E = r and there exists an ordered basis of E relative to which the

matrix of φ is the companion matrix of p(x).
4. The characteristic polynomial of φ is the product of its invariant factors.

From these statements, we may easily obtain the following corollary, stated
in terms of matrices.



Corollary 1. Let A be an n× n matrix with entries in the field K. If the char-

acteristic polynomial of A is irreducible, then the matrix A is similar to the

companion matrix of the characteristic polynomial.

To make it easier for those without a mathematical background and to make
everything explicit, we shall explain this corollary, giving out some basic defini-
tions.

The companion matrix of a monic polynomial p(x) = a0 + a1x + · · · +
an−1x

n−1 + xn ∈ K[x] is usually defined to be the matrix




















0 0 0 · · · 0 −a0

1 0 0 · · · 0 −a1

0 1 0 · · · 0 −a2

...
...

...
...

... 0
...

0 0 · · · 0 1 −an−1





















.

We can see that the form given by (3) is the transpose of this one, if we take
into consideration the fact that we were dealing with the binary field there.

Now, let p(x) be the characteristic polynomial of a square matrix A and let
B be the companion matrix of p(x). Corollary states that if p(x) is irreducible,
then there exists some invertible matrix C satisfying

CAC−1 = B.

Notice that we may take the transpose of both sides to obtain

(CT )−1AT CT = BT .

It is clear that the characteristic polynomial of A is equal to that of AT . Hence,
Fact 1 follows.

B Matrix M defining the CA

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



C Matrix T

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0

1 1 0 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0

0 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0

0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0

0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1

D Matrix T
−1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0

1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0

1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 0

1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0

1 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1

E Remarks on further developments

Here, we have gathered some remarks on what other implications the basic idea
of this paper might have.

Remark 3. The arguments of this paper need not be constrained to the binary
field. An LFSM which uses cells representing elements of any finite field can be
realized using an LFSR over the same finite field.

Remark 4. One can deduce from Fact 1 that any two square matrices with a
common irreducible characteristic polynomial are related by an invertible matrix.
So even though we have focused on the relationship between an LFSM and an
LFSR, the arguments of this paper can be applied in realizing an LFSM using
a different (and maybe simpler) LFSM.



Remark 5. Those familiar with linear algebra will know that it is easy to extend
the idea of this paper to the case when the characteristic polynomial of an LFSM
is not irreducible. In such a case, the resulting realization will use several LFSR’s
whose sizes add up to the size of the original LFSM.

Remark 6. One can view the idea of this paper from a different direction and
use it in realizing an LFSR with an LFSM. In this case, we can exploit our
freedom over the choice of transition matrixes. So, for example, applying it to
an NF-LFSR, one can turn any nonlinear filter of high resiliency into a filter
having correlation of degree one.

Remark 7. In a way, Anderson information leakage is fundamentally due to the
fact that inputs to different variables of the filter is supplied by sequences that
are just small shifts of each other. This paper shows that as long as LFSM’s
are used, this is unavoidable. So it might be a good idea to look at nonlinear

feedback shift registers now.


