On Linear Approximation of Modulo Sum

Alexander Maximov
Department of Information Technology
Lund University, Box 118, SE-22100 Lund, Sweden
e-mail: movax@it.lth.se

Abstract

The general case for a linear approximation of the form " $X_{1}+\cdots+X_{k} \bmod 2^{n}$ " \rightarrow " $X_{1} \oplus \cdots \oplus X_{k} \oplus N$ " is investigated, where the variables and operations are n-bit based, and the noise variable N is introduced due to the approximation. An efficient and practical algorithm of complexity $O\left(n \cdot 2^{3(k-1)}\right)$ to calculate the probability $\operatorname{Pr}\{N\}$ is given, and in some cases it can be reduced to $O\left(2^{k-2}\right)$.

1 Introduction

Linear approximations of nonlinear blocks in a cipher is a common tool for cryptanalysis. One of the most typical approximations is the substitution of the arithmetical sum modulo 2^{n} (\boxplus) with the XOR-operation (\oplus) of the input variables. We introduce a noise variable N and write: $X_{1} \boxplus \cdots \boxplus X_{k}=X_{1} \oplus \cdots \oplus X_{k} \oplus N$. For a distinguishing attack the bias of a linear combination of noise variables can be calculated if their distributions are known. For the considered approximation the distribution of N can be calculated in two ways:

$$
\text { I. for } X_{1}=0 \ldots 2^{n}-1
$$

\ddots.

$$
\begin{aligned}
& \text { for } X_{k}=0 \ldots 2^{n}-1 \\
& \quad \operatorname{Dist}_{N}\left[\left(X_{1} \boxplus \cdots \boxplus X_{k}\right) \oplus\right.
\end{aligned}
$$

$$
\left.\left(X_{1} \oplus \cdots \oplus X_{k}\right)\right]++
$$

II. for $C=0 \ldots 2^{n}-1 \quad \leftarrow O\left(c \cdot 2^{n}\right)$

$$
\operatorname{Dist}_{N}[\mathrm{C}]=\operatorname{ProbOfN}(C) ;
$$

where the function $\operatorname{ProbOfN}(C)$ calculates the corresponding probability (see Section 2). Note that we deal with integer-valued distribution tables, i.e., $\operatorname{Pr}\{N=C\}=\operatorname{Dist}_{N}[C] / 2^{k \cdot n}$.

2 The Function ProbOfN(C)

Let $C=\overline{c_{n} \ldots c_{2} 0}$ (note that $\operatorname{Pr}\{N=$ $\left.\left.\overline{c_{n} \ldots c_{2} 1}\right\}=0\right)$. Then:

$$
\operatorname{ProbOfN}(C)=(11 \ldots 1) \times \prod_{i=n}^{2} \mathbf{T}_{c_{i}} \times \mathbf{S}_{\mathbf{0}}
$$

where $\mathbf{T}_{\mathbf{0}}, \mathbf{T}_{\mathbf{1}}$, and $\mathbf{S}_{\mathbf{0}}$ are fixed matrices. The algorithm to construct the matrices $\mathbf{T}_{\mathbf{0}}, \mathbf{T}_{\mathbf{1}}$, and $\mathbf{S}_{\mathbf{0}}$ is given below.

```
Initialization:
    \(\mathbf{S}_{\mathbf{0}}=(\mathbf{0})-\) is of size \(\left(2^{k-1} \times 1\right)\)
    \(\mathbf{T}_{\mathbf{0}}=\mathbf{T}_{\mathbf{1}}=(\mathbf{0})-\) is of size \(\left(2^{k-1} \times 2^{k-1}\right)\)
Algorithm 1: \(\mathbf{S}_{\mathbf{o}}\) - construction
    1. for \(X=0\) to \(2^{k}-1\)
    2. \(\mathbf{S}_{\mathbf{0}}\left[\left\lfloor\frac{\# X}{2}\right\rfloor\right]+=1\)
Algorithm 2: \(\mathbf{T}_{\mathbf{0}}, \mathbf{T}_{\mathbf{1}}\) - construction
    1. for \(C=0\) to \(2^{k-2}-1\)
    2. for \(X=0\) to \(2^{k}-1\)
    3. \(\quad \mathbf{T}_{\mathbf{0}}\left[C+\left\lfloor\frac{\# X}{2}\right\rfloor\right][2 C]++\),
    4. \(\quad \mathbf{T}_{\mathbf{1}}\left[C+\left\lfloor\frac{\#^{2} X+1}{2}\right\rfloor\right][2 C+1]++;\)
```

where $\# X$ is the Hamming weight of X.

3 Example

Assume that $n=5$ and $k=3$, i.e., $N=$ $\left(X_{1} \boxplus X_{2} \boxplus X_{3}\right) \oplus\left(X_{1} \oplus X_{2} \oplus X_{3}\right)$. Then:
$\mathbf{T}_{\mathbf{0}}=\left(\begin{array}{llll}4 & 0 & 0 & 0 \\ 4 & 0 & 4 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \mathbf{T}_{\mathbf{1}}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 6 & 0 & 1 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1\end{array}\right) \mathbf{S}_{\mathbf{0}}=\left(\begin{array}{l}4 \\ 4 \\ 0 \\ 0\end{array}\right)$.
Let $C=\overline{10110}$, then $\operatorname{ProbOfN}(C)=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right) \times$
$\mathbf{T}_{\mathbf{1}} \times \mathbf{T}_{\mathbf{0}} \times \mathbf{T}_{\mathbf{1}} \times \mathbf{T}_{\mathbf{1}} \times \mathbf{S}_{\mathbf{0}}$, and $\Rightarrow \operatorname{Pr}\{N=$ $\overline{10110}\}=1536 / 2^{3 \cdot 5}=0.046875$.

4 Optimization Ideas

If n is not very large, say $n=32$ bits, then optimization can be done in the following way.
Represent $C=\overline{A B 0}$, where $A=\overline{c_{32} \ldots c_{16}}$ and $B=\overline{c_{15} \ldots c_{2}}$. Then create two tables of vectors: $R_{\text {Left }}[A]=\left(\begin{array}{ll}1 & 1 \ldots 1\end{array}\right) \times \prod_{i=32}^{16} \mathbf{T}_{c_{i}}$ and $R_{\text {Right }}[B]=\prod_{i=15}^{2} \mathbf{T}_{c_{i}} \times \mathbf{S}_{\mathbf{0}}$, for all A and B. Then the probability $\operatorname{Pr}\{N=C\}$ is just a scalar product $R_{\text {Left }}\left[\overline{c_{32} \cdots c_{16}}\right] \times$ $R_{\text {Right }}\left[\overline{c_{15} \cdots c_{2}}\right]$, and the time complexity is $O\left(2^{k-2}\right)$. This idea of partitioning can be extended to larger n as well.

