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Abstract. This paper presents the results of a preliminary analysis of
the stream cipher Mugi. We study the nonlinear component of this cipher
and identify several potential weaknesses in its design. While we can not
break the full Mugi design, we show that it is extremely sensitive to
small variations. For example, it is possible to recover the full 1216-bit
state of the cipher and the original 128-bit secret key using just 56 words
of known stream and in 214 steps of analysis if the cipher outputs any
state word which is different than the one used in the actual design.
If the linear part is eliminated from the design, then the secret non-
linear 192-bit state can be recovered given only three output words and
in just 232 steps. If it is kept in the design but in a simplified form,
then the scheme can be broken by an attack which is slightly faster than
exhaustive search.
Keywords: Cryptanalysis, Stream ciphers, Mugi.

1 Introduction

Mugi is a fast 128-bit key stream cipher [4] designed for efficient software
and hardware implementations (achieves speeds which are 2-3 times faster than
Rijndael in hardware and slightly faster in software). The cipher was selected
for standardization by the Japanese government project CRYPTREC and is also
one of the two proposed ISO stream cipher standards.

Previous analysis of Mugi given by its designers in [1] concentrated on linear
cryptanalysis and resynchronization attacks. A recent work by Golic [3] studied
only the linear component of the cipher. No security flaw of the full cipher has
been reported so far.
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In this paper we study the non-linear component of this cipher, and identify
several potential weaknesses in its design. However we do not make any claim
as to the security of the full Mugi which remains unbroken.

This paper is organized as follows: in Sect. 2 we describe the cipher Mugi,
in Sect. 3 we describe two attacks on its non-linear component, and Sect. 4
concludes the paper.

2 Description of Mugi

The design of Mugi is based on the design philosophy proposed by J. Daemen
and C. Clapp in their stream cipher Panama [2]. The internal state of the cipher
at time t consists of two parts: a linearly changed large buffer b(t), and a non-
linearly evolving shorter state a(t). See Fig. 1 for a schematic description. The
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Fig. 1. The evolution of the Mugi state.

cipher works in steps called rounds. At each round the internal state is updated
and one of its three 64-bit words is produced as output. The evolution of the
buffer which consists of sixteen 64-bit words happens in a LFSR-like slow fashion,
together with a 64-bit feedback from the nonlinear state at each round:

b(t+1) = λ(b(t), a(t)),

or more explicitly:

b
(t+1)
j = b

(t)
j−1(j 6= 0, 4, 10)
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b
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9 ⊕ (b

(t)
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The evolution of the state a(t) is essentially a block cipher-like invertible process,
in which two 64-bit words coming from the buffer are used as subkeys:

a(t+1) = ρ(a(t), b(t)),
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or more explicitly:

a0
(t+1) = a1

(t)

a1
(t+1) = a2

(t) ⊕ F (a1
(t), b4

(t)) ⊕ C1

a2
(t+1) = a0

(t) ⊕ F (a1
(t), b10

(t)
≪ 17)⊕ C2 ,

where C1, C2 are known constants. The F function reuses an S-box and MDS of
the AES as shown in Fig. 2. The output function of Mugi is very simple:
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Fig. 2. The F-function.

Output[t] = a
(t)
2 ,

i.e. one of the three 64-bit words in the internal state is given as output prior to
the evaluation of the round t.

3 Cryptanalysis of the Two Variants of Mugi

In this section we cryptanalyse several variants of Mugi.

3.1 Change in the output function

The output function of Mugi outputs the 64-bit word a
(t)
2 before the tth round.

In this section we show that Mugi is very sensitive to small changes in the

output function. For example, if the output would consist of the same word a
(t)
2

but after the evaluation of the round t (or equivalently the word a
(t+1)
1 ), then

the full cipher could be easily broken with practical complexity. In general, for
any choice of a output word other than the one used in the actual design (i.e.,

either a
(t)
0 or a

(t)
1 ) the cipher can be easily broken.

We denote by the Greek letters α, β, γ, δ, ǫ an intermediate value a
(t)
1 which is

used as the input to the two F -functions in each round. Suppose that Output[t] =

3



a
(t)
1 . Let us make several important observations. The first observation is that

a
(t)
1 = a

(t+1)
0 and thus we know the word that updates the buffer at each round.

This would allow us to run the buffer update function λ(·) symbolically and write
linear equations for the buffer bits, including those that enter the non-linear ρ

function as ”sub-keys”. The second observation is that the word a
(t)
1 is used as

the input to both F -functions of the round. The final observation is that we can
write the following equation:

α ⊕ δ = F (β, b
(t+1)
10 ≪ 17) ⊕ F (γ, b

(t+2)
4 ). (1)

In this equation α, β, γ and δ are words from the output stream and are thus
known to the attacker (see also Fig. 3). Let us denote the inverse of the MDS
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Fig. 3. The attack path.

and the byte swap layers by M−1 and the eight S-box layer by S. By applying
the inverse of the linear layer of F to both sides of the equation we can get the
simplified equation:

M−1(α ⊕ δ) = S(β ⊕ (b
(t+1)
10 ≪ 17)) ⊕ S(γ ⊕ b

(t+2)
4 ). (2)

which decomposes into 8 independent equations in the 8 bit values of each S-box.
One of the possible ways to use this equation is to look for points in the output
stream in which at least one of the bytes of M−1(α⊕ δ) is zero. For a particular
S-box this would lead to a simpler equation:

S(β ⊕ (b
(t+1)
10 ≪ 17)) = S(γ ⊕ b

(t+2)
4 ), (3)
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which further simplifies to:

(b
(t+1)
10 ≪ 17) ⊕ b

(t+2)
4 = β ⊕ γ. (4)

This is an 8-bit linear constraint on the bits of the buffer. It is sufficient to gather
about 1024/8 = 128 such equations in order to get a system of linear equations
for all the buffer bits. The probability that at least one zero value occurs in each
64-bit block is 1 − (1 − 1/256)8 ≈ 2−5. Thus given about 25 · 128 = 212 output
words the attacker would expect to obtain a solvable system of equations and
reconstruct the full 1024-bit buffer. Knowing the buffer at some round t and the

output words a
(t−1)
1 , a

(t)
1 , a

(t+1)
1 the attacker can recover the state a(t) as follows:

(a
(t)
0 , a

(t)
1 , a

(t)
2 ) = (a

(t−1)
1 , a

(t)
1 , F (a

(t)
1 , b

(t)
4 ) ⊕ a

(t+1)
1 ).

Since all the steps in the cipher are invertible, knowing the buffer and the state at
some point t enables the attacker to run the cipher both forwards and backwards.
By running the cipher backwards the attacker can recover the initial 128-bit
secret key.

The total complexity of this attack is O(212) words of known stream (about
215 bytes) and O(230) steps to solve a system of 210 equations. The same attack

would work for the case Output[t] = a
(t)
0 .

An important remark is that the attack did not use any properties of the
S-box, and thus can work even when the S-box is unknown or key-dependent.
The attack will first recover the buffer using the technique described above and
then derive the unknown S-boxes from Eq. 2 by writing a set of equations of the
form

S(c1) ⊕ S(c2) = c3, (5)

where c1, c2, c3 are known values. Given k + 3 output stream words the attacker
can write 8k equation for the unknown S-box. He will need O(256) 64-bit outputs
due to a ”coupon collector”-like argument in order to write and solve a system
of linear equations in terms of the entries of the unknown S-box. Note that in
this attack it is important that the S-box is invertible, since otherwise we can
write Eq. (4) only probabilistically.

Another observation is that we can use the ”buffer elimination” equations
from [3] to attack this variant of Mugi with even smaller data and time com-
plexity, since we will not need to spend O(230) operations in order to solve the
system of linear equations.

The equations are as follows (t ≥ 48, and <32 stands for cyclic 32-bit rotation
of a 64-bit word to the left):

a
(t)
1 ⊕ a

(t−48)
1 ⊕ F−1(a

(t+1)
1 ⊕ a

(t)
2 ⊕ C1) ⊕ F−1(a

(t−47)
1 ⊕ a

(t−48)
2 ⊕ C1) =

a
(t−6)
1 ⊕ a

(t−10)
1 ⊕ a

(t−14)
1 ⊕ a

(t−18)
1 ⊕ a

(t−26)
1 ⊕ a

(t−30)
1 ⊕ a

(t−34)
1 ⊕ a

(t−38)
1

⊕<32a
(t−26)
1 ⊕<32 a

(t−42)
1
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a
(t)
1 ⊕ a

(t−48)
1 ⊕ F−1(a

(t−1)
1 ⊕ a

(t+1)
2 ⊕ C2) ⊕ F−1(a

(t−49)
1 ⊕ a

(t−47)
2 ⊕ C2) =

<17a
(t−12)
1 ⊕<17 a

(t−16)
1 ⊕<17 a

(t−32)
1 ⊕<17 a

(t−44)
1 ⊕<49 a

(t−16)
1

⊕<49a
(t−20)
1 ⊕<49 a

(t−32)
1 ⊕<49 a

(t−36)
1

One notices two interesting properties of these two equations: there are only
two instances of a2 in each equation and they are 48 time steps appart in both

equations. Thus if we assume that the sequence a
(t)
1 is known, those equations

reduce to simpler equations:

F−1(a
(t)
2 ⊕ C′

1) ⊕ F−1(a
(t−48)
2 ⊕ C′′

1 ) = const1 (6)

F−1(a
(t)
2 ⊕ C′

2) ⊕ F−1(a
(t−48)
2 ⊕ C′′

2 ) = const2 (7)

in which all the quantities are known except for the two unknowns a
(t)
2 and

a
(t−48)
2 . If we denote x = M−1(a

(t)
2 ) and y = M−1(a

(t−48)
2 ), then we can take

care of the linear mapping, and write further simplified equations:

S1(x) ⊕ S2(y) = const1 (8)

S3(x) ⊕ S4(y) = const2 (9)

where S-boxes S1, S2, S3, S4 are known and are derived from S−1 and the known

constants. By solving the system we derive the full words a
(t)
2 and a

(t−48)
2 in just

8 ·28 = 211 steps. Repeating this procedure about eight times for t, t+1, . . . , t+7

we find eight consecutive words a
(t)
2 , a

(t+1)
2 , . . . , a

(t+7)
2 , which allows us to directly

derive the bits of the buffer without solving a system of linear equations. The
complexity of this approach is about 214 very simple steps and it uses about 56
output words and negligible memory3. This second attack uses the knowledge of
the S-boxes and the special properties of the buffer update function, which were
not important in our first attack.

3.2 Attacking the Non-linear part of Mugi

In this section we present an attack that efficiently recovers the 192-bit non-
linear state of the cipher when part of the buffer is known to the attacker. It

turns out that it is sufficient to know only two words of the buffer b
(t)
4 and b

(t)
10

in order to mount this attack. The attack uses only 3 output words and has
a complexity of O(232) steps. Note that the cipher is unchanged, including the

original output function of Mugi: Output[t] = a
(t)
2 .

3 The attack can be done even faster in only 26 steps, if we are allowed to do a single
precomputation of 232 steps in order to produce a table that would occupy 232 bytes
and would store the solution for the system of equations (8) and (9).

6



a 0

(t+1)

a 0

t

10

(t+1)
b

b10

(t)

FF

b 4

FF
α

β

b 4

(t)

(t+1)

a
(t)

(t+2)

2

2a

Fig. 4. The loop in the ρ function.

The attacker can consider the following loop in the ρ function (see also Fig. 4):

F (α, b
(t)
4 ) ⊕ a

(t)
2 = β (10)

F (β, b
(t+1)
10 ) ⊕ a

(t+2)
2 = α. (11)

Here the a
(t)
2 , a

(t+2)
2 and the keys b

(t)
4 , b

(t+1)
10 are known. Then we have a system

of two non-linear but simple one-round equations with two variables α and β.
In order to find the solution of the system the attacker may proceed as follows:

1. Guess the first four bytes of β (denoted 0,1,2,3, with 232 possibilities). Here
we enumerate the bytes of Fig. 2 from left to right, starting from 0.

2. For each possibility, find the middle four bytes (2,3,4,5) of α.
3. At this stage, we know two bytes (number 2,3) at the input and at the output

of the first MDS at round t. The first two bytes (number 0,1) of the input
can be found from a system of linear equations:

{

x0 + x1 = c0

3 · x0 + x1 = c1,

where c0, c1 are known values computed from bytes 2,3 of input and output.
Knowing the new input bytes x0, x1 we can calculate the missing output
bytes y0, y1. As a result we will find two additional bytes of α and β and
thus we know bytes number 0,1,2,3,4,5 of these words. Due to the byte swap
after the MDS being an involution, we can get in a similar fashion a similar
set of constraints knowing bytes 4,5 at the input and the output of the second
MDS and solving a system of equations for the bytes 6,7 at the same round
t. As a result we completely recover α and β.

4. At this point we know 128 bits of the state a by knowing a
(t)
1 = α, and the

known output a
(t)
2 . The remaining 64 bits can be found as follows:

a
(t)
0 = F (α, b

(t)
4 ) ⊕ a

(t+1)
2 .

We see that given two buffer words and 3 output words, we can completely
recover the 192-bit secret state a(t) in O(232) simple steps. If this attack has to

7



be performed multiple times for example as part of another attack on the full
cipher – it can be sped up by precomputation.

3.3 Mixing one Buffer Word per Round

For Mugi it is crucial that two 64-bit buffer words are mixed at each round,
while only a single 64-bit word is given as output. In this section we present
an attack that recovers the full secret state of the cipher (both the state a(t)

and the buffer b(t)) when only one word is mixed per round. The rest of the
cipher structure is kept intact. The complexity of this attack is equivalent to
O(2126.5) key searching steps steps, but the similarity between this complexity
and exhaustive key search is accidental since the complexity of our attack would
remain the same even if Mugi had much larger keys4. Note that this is much
faster than the alternative type of exhaustive search over the 192-bit state and
the 1024-bit buffer.

Consider a variant of Mugi in which both F -functions of each round share
a common key5, for example and without loss of generality, b

(t)
4 . We could reuse

the previous attack by guessing the two buffer words b
(t)
4 , b

(t+1)
4 and recovering

the state a(t) in O(2160) steps. However there is a much faster direct attack:

1. At round t we know word a
(t)
2 and we guess the remaining parts of the

non-linear state: a
(t)
0 , a

(t)
1 (a 128-bit guess).

2. We find the buffer word b
(t)
4 used as the key in round t from the equation:

F (a
(t)
1 , b

(t)
4 ) ⊕ a

(t)
0 = a

(t+1)
2 ,

in which all values except for the key are either guessed or known from the
output stream.

3. We use the newly recovered key to compute the unknown word a
(t+1)
1 of the

next state:
a
(t+1)
1 = F (a

(t)
1 , b

(t)
4 ) ⊕ a

(t)
2 .

4. Go to step 2, and repeat it 16 times for the following rounds till we know the
full 16 word buffer. Once we start reusing buffer words we can check them
for possible contradictions.

Note that since at each step we know the full non-linear state, we know the
update function of the buffer and we can thus run the buffer update-function

4 This complexity is about 3 times faster than exhaustive search of the actual 128-bit
key of Mugi ; to verify each guessed key, Mugi has to perform 48 initial key setup
rounds, whereas our attack verifies or discards a guessed pair of buffer words after
only 16 rounds.

5 The attack can also tolerate a construction in which given a buffer word b the keys
of the round are derived via known and easy to invert permutations: k1 = f(b), k2 =
g(b). For example, a rotation of the buffer word by 17 as used in Mugi would not
make the attack any harder.
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λ(·) symbolically. The attack uses 18 output stream words, and its complexity
is equivalent to 16

48 · 2128 key searching steps . The attack completely recovers
the 1024+192-bit internal state of the cipher, and by using the invertibility of
the operations we can also recover the 128-bit original secret key. The Table 1

Table 1. Our attacks on the non-linear component of Mugi.

Cipher Variant Known Streama Time Complexity The Attack Recovers

Change in the output functionb O(212) O(230) full 192+1024 state
Change in the output functionc 56 O(214) full 192+1024 state

Attack on non-linear component 3 O(232) 192 bits of a(t)

One buffer word per round 18 O(2126.4) full 192+1024 state

Exhaustive search 2 O(2128) full 192+1024 state

a Expressed in 64-bit words.
b The same complexities even if S-boxes are unknown or key-dependent.
c Using the buffer elimination observation from [3] and the knowledge of the S-boxes.

summarizes the results of our attacks on the non-linear component of Mugi.

4 Conclusions

In this paper we have identified several potential weaknesses of Mugi:

– The output function reveals 1/3 of the state without any masking. It would
be better to reveal fewer bits which are a more complex function of the
current state.

– The mixing affects only 4 bytes per round. It would be better to mix all the
8 bytes simultaneously.

– Knowledge of the middle word allows for very powerful attacks to be mounted.
However, this attack is avoided by the actual design.

– The feedback from the nonlinear state is added to the buffer in a linear way.
It would be better to avoid this additional linearity.

In spite of these potential weaknesses, the full Mugi is still unbroken. The two
factors that make our attacks impractical on the real Mugi is the large size of
the buffer and the fact that the cipher mixes two key-words per-round while it
outputs only a single word.
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