
Two Linear Distinguishing Attacks on VMPC and RC4A

and Weakness of RC4 Family of Stream Ciphers.

Alexander Maximov

Dept. of Information Technology, Lund University, Sweden
P.O. Box 118, 221 00 Lund, Sweden

movax@it.lth.se

Abstract. At FSE 2004 two new stream ciphers VMPC and RC4A have been proposed.
VMPC is a generalisation of the stream cipher RC4, whereas RC4A is an attempt to in-
crease the security of RC4 by introducing an additional permuter in the design. This paper
is the first work presenting attacks on VMPC and RC4A. We propose two linear distin-
guishing attacks, one on VMPC of complexity 254, and one on RC4A of complexity 258. We
investigate the RC4 family of stream ciphers and show some theoretical weaknesses of such
constructions.

Keywords: RC4, VMPC, RC4A, cryptanalysis, linear distinguishing attack.

1 Introduction

Stream ciphers are very important cryptographic primitives. Many new designs appear at different
conferences and proceedings every year. In 1987, Ron Rivest from RSA Data Security, Inc. made
a design of a byte oriented stream cipher called RC4 [1]. This cipher found its application in
many Internet and security protocols. The design was kept secret up to 1994, when the alleged
specification of RC4 was leaked for the first time [2]. Since that time many cryptanalysis attempts
were done on RC4 [3–7].

At FSE 2004, a new stream cipher VMPC [8] was proposed by Bartosz Zoltak, which appeared
to be a modification of the RC4 stream cipher. In cryptanalysis, a linear distinguishing attack is
one of the most common attacks on stream ciphers. In the paper [8] it was claimed that VMPC is
designed especially to resist distinguishing attacks.

At the same conference, FSE 2004, another cipher RC4A [9] was proposed by Souradyuti Paul
and Bart Preneel. This cipher is another modification of RC4.

In our paper we point out a general theoretical weakness of such ciphers, which, in some
cases, can tell us without additional calculations whether a new construction is weak against
distinguishing attacks. We also investigate VMPC and RC4A in particular and find two linear
distinguishing attacks on them. VMPC can be distinguished from random using around 254 bytes
of the keystream, whereas the attack on RC4A needs only 258 bytes. This is the first paper that
proposes attacks on VMPC and RC4A.

This paper is organized as follows. In Section 2 we describe RC4, RC4A, and the VMPC ciphers.
In Section 3 we study digraphs on an instance of VMPC, and then we demonstrate a theoretical
weakness of the RC4 family of stream ciphers in general. We propose our distinguishers for both
VMPC and RC4A in Sections 4 and 5. Finally, we summarize the results and make our conclusions
in Section 6.

1.1 Notations

The algorithms VMPC, RC4A and RC4 are byte oriented stream ciphers. For notation purposes
we consider VMPC-n, RC4A-n, and RC4-n to be n-bit oriented ciphers, i.e., the originals are when
n = 8. Therefore, in the design of these ciphers, + means addition modulo 2n. For simplicity in
formulas, let q be the size of permuters used in these ciphers, i.e.

q = 2n. (1)



The ciphers have an internal state consisting of one or two permuters of length q, and a few
iterators. The idea of these designs is derived from the RC4 stream cipher, therefore, we call
ciphers with a structure similar to RC4 as the RC4 family of stream ciphers. We denote by Ot the
n-bit output symbol at time t. When a permuter P [·] is applied k times, e.g., P [P [. . . P [x] . . .]],
then, for simplicity, we sometimes denote it as P k[x].

1.2 Preliminaries: A Linear Distinguishing Attack

In a linear distinguishing attack one can observe a keystream of some length (known plaintext
attack), and give an answer: whether the stream comes from the considered cipher, or from a truly
random source. Distinguishers are usually based on statistical analysis of the given stream. At any
point t in the stream we observe b linear combinations, the joint value of which is called a sample
at time t. If the stream is completely random, then the sample is from the random distribution
denoted as DRandom. If the stream is the keystream from the considered cipher, then the sample
is from the cipher distribution denoted as DCipher.

To give an answer whether the given stream is from DRandom or DCipher one has to collect
N samples from the stream at different points. These N samples form an empirical distribution,
named also type and denoted as DType. If the distance from DType to DCipher is less than the
distance to DRandom, then we conclude that the stream is from the cipher, otherwise it is decided
to be from a random source.

The distance between two distributions is given as

δ = |DA − DB| =
∑

all x

|Pr{x|x ∈ DA} − Pr{x|x ∈ DB}|. (2)

From statistical analysis the following fact is well known. The closer the distributions DCipher

and DRandom are to each other, the larger the number of samples N should be, in order to
distinguish with a negligible probability of error. The distance ε = |DCipher − DRandom| is then
called the bias. The bias and the number of required samples N , from which we form our type
DType, are related by the formula N = const

ε2
, where the constant influences on the probability of

the decision error. For more details we refer to [10]. However, the following relation is enough to
have a rather negligible probability of error, and we use this formula in our paper.

N =
1

ε2
(3)

1.3 Cryptanalysis Assumptions

We start our analysis of the RC4 family of stream ciphers by making a few reasonable assumptions.

(1) We assume that the initialisation procedure is perfect, i.e., all internal variables (except known
iterators) are from the uniform distribution. In practice this is not true, but we make this
assumption as long as we do not investigate the initialisation procedures;

(2) In our distinguishers we construct a type DType by collecting samples from the given keystream.
Each derived sample at time t is from some local distribution of the keystream. We assume
that at any time the internal state of a cipher is uniformly distributed and we don’t have any
knowledge about it. This assumption will be used to investigate different local distributions in
the next sections. In our simulations we checked that the internal state of VMPC is roughly
uniformly distributed. But for RC4A the internal state is not uniformly distributed;

(3) We consider that adjacent samples are independent. In the real life it is not true, because
between two consecutive samples the internal states of a cipher are dependent. It means that
samples might have a strong dependency, which may influence on the resulting type DType.
To reduce these dependencies we suggest to skip few samples before accept one, then the
consecutive adjacent samples will be much less dependent on each other.



2 Descriptions of VMPC-n, RC4-n, and RC4A-n

The stream cipher RC4-n [1] was designed by Ron Rivest in 1987. It produces an infinite
pseudo-random sequence of n-bit symbols, which is, actually, the keystream. Encryption is then
performed in a typical way for stream ciphers: Ciphertext = Plaintext ⊕ Keystream. The
structure of RC4-n is shown in Figure 1(left).

The stream cipher VMPC-n [8] was proposed at FSE 2004 by Bartosz Zoltak. This cipher
is also byte oriented (n = 8), and is a generalised version of RC4-n. The structure of VMPC-n is
shown in Figure 1(right).

The stream cipher RC4A-n[9] was proposed at FSE 2004 by Souradyuti Paul and Bart
Preneel. This cipher is an attempt to hide the correlation between the internal states and the
keystream. The authors suggested to introduce a second permuter in the design. The structure of
RC4A-n is shown in Figure 1(bottom).

Internal variables:

i, j – integers ∈ [0 . . . q − 1]
P [0 . . . q− 1] – a permuter of integers 0 . . . q− 1
The RC4-n cipher

1. P [·] – are initialised with the secret key
i = j = 0

2. Loop until get enough n-bit symbols
| i + +
| j+ = P [b]
| swap(P [i], P [j])
| output ← P [P [i] + P [j]]

Internal variables:

i, j – integers ∈ [0 . . . q − 1]
P [0 . . . q− 1] – a permuter of integers 0 . . . q− 1
The VMPC-n cipher
1. j, P [·] – are initialised with the secret key

i = 0
2. Loop until get enough n-bit symbols

| j = P [j + P [i]]
| output ← P [P [P [j]] + 1]
| swap(P [i], P [j])
| i + +

Internal variables:

i, j1, j2 – integers ∈ [0 . . . q − 1]
P1[0 . . . q − 1], P2[0 . . . q − 1] – two permuters of integers 0 . . . q − 1
The RC4A-n cipher
1. P1[·], P2[·] – are initialised with the secret key

i = j1 = j2 = 0
2. Loop until get enough n-bit symbols

| i + +
| j1+ = P1[i]
| swap(P1[i], P1[j1])
| output ← P2[P1[i] + P1[j1]]
| j2+ = P2[i]
| swap(P2[i], P2[j2])
| output ← P1[P2[i] + P2[j2]]

Fig. 1. The structures of RC4-n (left), VMPC-n (right), and RC4A-n (bottom) ciphers.

3 Investigation of the RC4 Family of Stream Ciphers

In this section we approximate different local distributions of the accessible keystream in the RC4
family of stream ciphers, with the assumptions that were made in Section 1.3. Since in the real
cipher the internal state is not from the uniform distribution, the real local distribution differs from
our approximation. However, in practice we will show that this does not make our distinguishers
worse.

3.1 Digraphs Approach, on the Instance of VMPC-n

In this subsection we give the idea of how a distinguisher for VMPC can be built. In the previous
work [5] the cipher RC4-n was analysed. The authors suggested to observe two consecutive output



symbols Ot, Ot+1, and the known variable i jointly. For RC4-5 they could calculate theoretical
probabilities Pr{(i, Ot = x, Ot+1 = y)}, for all possible n3 values of the triple (i, x, y) (let us
denote such distribution as D(i,Ot,Ot+1)). But for RC4-8 they could only approximate the bias for
the distribution above due to the high complexity of calculations, and show that a distinguisher
needs around 230.6 samples (the required length of the plaintext to know).

We use a similar idea to create a distinguisher for VMPC-n. For this purpose we investigate
the pair (Ot, Ot+1) in the following scheme.

i – known value at time t
j, P [·] – are from a random source

1. Ot = P [P 2[j] + 1]
2. swap(P [i], P [j])
3. j′ = j + P [i + 1]
4. Ot+1 = P [P 3[j′] + 1]

Below we give the explicit algorithm to calculate the approximated distribution table D(i,Ot,Ot+1).
For each value i, in each cell of a table T we want to store an integer number T [i, x, y] of possible
pairs (i, P [·]), which cause the corresponding output pair (Ot = x, Ot+1 = y). It means, that the
probability of any triple (i, Ot, Ot+1) is then calculated as:

Pr{(i, Ot = x, Ot+1 = y)} =
T [i, x, y]

q · q!
. (4)

Algorithm 1: Recursive construction of the approximated distribution table D(i,Ot,Ot+1)

Prepare the permuter: P [i] = ∞ at all positions, i.e., all cells of the permuter are undefined.
In the algorithm the operation define P [i] means that for the cell i in the permuter P [·] we
need to try all possible values 0 . . . (q − 1). Note, we cannot select a value which has been
already used in another cell of the permuter in a previous step. Before making a step back by
the recursion, restore the value P [i] = ∞. In the case when the cell P [i] was already defined
(is not ∞) due to previous steps, then we just go to the next step directly.
Do the following steps recursively:
· for all i = 0 . . . q − 1;
· for all j = 0 . . . q − 1;
· define P [j];
· define P 2[j];
· define P [P 2[j] + 1] ⇒ remember x = P [P 2[j] + 1];
· define P [i];
· swap(P [i], P [j]);
· define P [i + 1] ⇒ calculate j ′ = j + P [i + 1];
· define P [j′], then P 2[j′], then P 3[j′];
· define P [P 3[j] + 1] ⇒ remember y = P [P 3[j] + 1];
· T [i, x, y]+ = (q−r)!, where r is the actual number of currently defined cells in the permuter

P [·].

As we can see from the algorithm, its complexity is O(211n) 1. In our simulations we could
manage to calculate the approximation of D(i,Ot,Ot+1) only for the reduced version VMPC-4. The
bias of such table appeared to be around ε ≈ 2−8.7. It means that we can distinguish VMPC-4
from random having plaintext of length around 218 4-bits symbols. For notation purposes, let
DVMPC−n

(i,Ot,Ot+1) be the distribution D(i,Ot,Ot+1) for VMPC-n, and similar for DRC4−n

(i,Ot,Ot+1).

The calculation of a similar distribution table for VMPC-8 meets computational difficulties,
as well as for RC4-8 in [5]. One of the ideas in [5] was to approximate the biases from small n’s to
a larger n, but we decided not to go this way. Instead, in the next sections we will present only
precise theoretical results on VMPC-8, and on the RC4 family of stream ciphers in general.

1 The complexity to construct such a table with a similar algorithm for RC4-n is O(26n) [5].



3.2 Theoretical Weakness of the RC4 Family of Stream Ciphers

The recursive Algorithm 1 is trivial and slow, but we use it to show the further theoretical results.
We prove that the approximated distribution table D(i,Ot,Ot+1) cannot be the uniform distribu-
tion when n is larger than some threshold n0. Moreover, we prove that each probability of the
approximated distribution D(i,Ot,Ot+1) differs from the corresponding probability in the case of a
random source. In other words, the approximated distribution D(i,Ot,Ot+1) is biased and we find
the lower bound of the bias εmin.

Theorem 1. For VMPC-n, where n ≥ 8, under the assumptions made in Section 1.3, the follow-
ing hold.

1. Each probability Pr{(i, Ot = x, Ot+1 = y)} 6= 1/q3 (in a random case it should be 1/q3).
2. The bias |DRandom − DVMPC−n

(i,Ot,Ot+1)| is bounded by

q−8n ≤ εmin =
|δmin| · q · (q − 9)!

q!
≤ ε = |DRandom − DVMPC−n

(i,Ot,Ot+1)
|, (5)

where |δmin| is the minimum value, such that

(q − 1)(q − 2) · . . . · (q − 8) + δmin ≡ 0 (mod q).

3. For VMPC-8, we have εmin ≈ 2−56.8.

Proof:
1) Consider Algorithm 1. In the last step the value of r, the number of currently placed positions
in the permuter, can be at most 9. It means that when the algorithm is finished, each cell in
DVMPC−n

(i,Ot,Ot+1) can be written in the form k · (q − 9)!, for some integer number k.

On the other hand, for a truly random sequence, the probability must be Pr{(i, Ot, Ot+1)} = 1/q3.

From (4) it follows that k·(q−9)!
q·q! must be equal to 1

q3 , i.e.,

k must be equal to
q · (q − 1) · . . . · (q − 8)

q2
. (6)

Since k is an integer, then q must divide (q − 1) · . . . · (q − 8). It is easy to show that starting from
n ≥ 8 this is not true.
2) We now try to choose k such that Pr{(i, Ot, Ot+1)} is as close to 1/q3 as possible. Let |δmin| be
the smallest value such that (q − 1) · . . . · (q − 8) + δmin is divisible by q. Then Pr{(i, Ot, Ot+1)} =
1
q3 ± q·|δmin|·(q−9)!

q3·q! . The minimum value of |DRandom − DVMPC−n

(i,Ot,Ot+1)| is then derived as

εmin = q3 ·
q · |δmin| · (q − 9)!

q3 · q!
=

|δmin| · q · (q − 9)!

q!
. (7)

3) for VMPC-8, the minimum δmin is 128. Hence, the lower bound for the bias is εmin ≈ 2−56.8.
ut

For RC4-n a maximum of 6 positions can be fixed, if we use a similar algorithm. Hence, all cells
of the distribution table DRC4−n

(i,Ot,Ot+1) can be written in the form k · (q − 6)!. By similar arguments

as above, we conclude:

Corollary 1. For RC4-n, n ≥ 4, under the assumptions made in Section 1.3, the following hold.

1. Each probability in DRC4−n

(i,Ot,Ot+1) 6= 1/q3;

2. The minimum value |DRandom − DRC4−n

(i,Ot,Ot+1)
| is bounded by

q−5n ≤ εmin =
|δmin| · q · (q − 6)!

q!
≤ ε = |DRandom − DRC4−n

(i,Ot,Ot+1)
|, (8)

where |δmin| is the minimum value, such that

(q − 1)(q − 2) · . . . · (q − 5) + δmin ≡ 0 (mod q);



3. For RC4-n, n = 4, . . . , 8, we have the following lower bounds.

n=4 n=5 n=6 n=7 n=8
δmin +8 −8 −8 −8 −120
εmin 2−15.46 2−21.28 2−26.65 2−31.83 2−33.01

ut

The above theorem shows us the way how one can think when designing a new cipher from the
RC4 family of stream ciphers to avoid these weaknesses. For the case of VMPC-8, for instance,
we can say that the structure seem to be weak in advance, without deep additional investigations
of the cipher.

On the contrary, for RC4A-8 our theorem gave us a very small lower bound, so that a hypo-
thetical distinguisher would be slower than an exhaustive search. It means that this cipher would
resist distinguishing attacks better than, for example, VMPC-8 or RC4-8. Note, these conclusions
were made with the assumptions from Section 1.3. However, in the next sections we investigate
digraphs for both ciphers VMPC-n and RC4A-n in detail.

4 Our Distinguisher for VMPC-n

4.1 What the probability that Ot = Ot+1 = 0, when i = 0 and j = 1, should be?

If VMPC-n would be a truly random generator, then the answer to the question of this sec-
tion would be 1/q2, because when i and j are fixed, then Pr{Ot = 0, Ot+1 = 0|i = 0, j =
1, Random source} = 1/q2. In the case of VMPC-n this is not true. The only case when the de-
sired outputs can be produced is depicted in Figure 2 (left). All the other permuters will lead to
other pairs of outputs (Ot, Ot+1) 6= (0, 0). As an example, in Figure 2 (right) we show one of the
cases, which contradicts the desired conditions.

0 1 2

0 1 2

PSfrag replacements

swap(P [i], P [j])

Case 1: P [j] = j

0 = Ot = P [P 2[j] + 1]

Effect: z 6= 0, 1

# Permuters = (q − 4)
� ��� �

choose z

· 1�������

z+1

·(q − 4)!

i j

z

z

j′ = j + P [i + 1] = 1 + z
0 = Ot+1 = P [P 3[j′] + 1]
⇒ P 3[j′] + 1 m.b. = 2
⇒ P [1 + z] m.b. = 2
⇒ Effect: z 6= −1, 0, 1, 2

... ...

xy y+1

... ...

xy y+1 0 1

0 1

PSfrag replacements

swap(P [i], P [j])

Case 2: P [j] 6= j, i, i − 1

0 = Ot = P [P 2[j] + 1]

# Permuters = 0 (cannot exist)

i j

z

z

j′ = j + P [i + 1] = 1 + z
0 = Ot+1 = P [P 3[j′] + 1]
⇒ P 3[j′] + 1 m.b. = y + 1
⇒ j′ m.b. = y + 1 = z + 1
⇒ y = z – a contradiction!

Fig. 2. Condition: Ot = Ot+1 = 0, i = 0, j = 1. The only case when the condition is satisfied (left), and
one of the cases when it is not (right).

By this small investigation we have shown that

Pr{Ot = Ot+1 = 0|i = 0, j = 1, VMPC-n} =
(q − 4)(q − 4)!

q!
=

q − 4

q(q − 1)(q − 2)(q − 3)
≈ 1/q3

is significantly smaller compared to Pr{Ot = Ot+1 = 0|i = 0, j = 1, Random source} = 1/q2.
If we now assume that for the other values of j the probability Pr{Ot = Ot+1 = 0|i = 0, j 6=
1, VMPC-n} ≈ 1/q2 – like in a random case, then we can derive that Pr{Ot = Ot+1 = 0|i = 0} is
equal to ( 1

q
· 1

q3 + q−1
q

· 1
q2 ) (in a random case it should be 1/q2). Then, we have a bias ε ≈ 2−3n,



and our hypothetical distinguisher needs to observe the event Ot = Ot+1 = i = 0 from around 26n

samples (27n bytes of the keystream). It means that VMPC-8 can be distinguished from random
having around 256 bytes of keystream. But this estimated bias is still too rough for VMPC-8, and
in the next section we show how to compute the exact probability Pr{Ot = Ot+1 = 0|i = 0} for
VMPC-8.

4.2 Calculating Pr{Ot = Ot+1 = 0|i = 0}, when j and P [·] are random.

We could calculate the complete distribution table D(i,Ot=x,Ot+1=y) for VMPC-4, and the bias
appeared to be ε ≈ 2−8.7. Unfortunately, we could not apply Algorithm 1 for VMPC-8, because
the complexity is 288 – infeasible for a common PC. Instead, we propose to consider only two
events {Ot = Ot+1 = 0} and its complement for i = 0. We distinguish between the following two
binary distributions:

DVMPC−n =

(

Pr{Ot = Ot+1 = 0}
1 − Pr{Ot = Ot+1 = 0}

)∣

∣

∣

∣

i=0

. and DRandom =

(

1/q2

1 − 1/q2

)∣

∣

∣

∣

i=0

(9)

Here we give the algorithm to calculate the probability Pr{Ot = Ot+1 = 0|i = 0}.

Algorithm 2: Recursive computation of the probability Pr{Ot = Ot+1 = 0|i = 0}
We use the same operation define P [i] as in Algorithm 1.
Do the following steps recursively:
· for all j = 0 . . . q − 1;
· define P [j], then P 2[j];
· Since Ot = 0, then fix the position P [P 2[j]+1] = 0. If this position is already defined (6= ∞),

and the value is not 0, or pointer to 0 is already used, then track back by the recursion;
· define P [i = 0];
· swap(P [i], P [j]);
· set P [i + 1] = P [1], if possible, otherwise return by recursion;
· calculate j′ = j + P [i + 1] which is the same as j + P [1];
· Since Ot+1 = 0, and 0 is already placed in the permuter P [·], then we know the value

P 3[j′] + 1, hence, we also know the value P 3[j′] = c. We can calculate the number of
permuters of size q, where P 3[j′] = c, and r positions are fixed from the previous steps, by
the subalgorithm of complexity O(q), given in Appendix A.

The Algorithm 2 has complexity O(25n), i.e., to calculate Pr{Ot = Ot+1 = 0|i = 0} for
VMPC-8 we need to make only 240 operations. After simulation we got the following result.

Theorem 2. For VMPC-8, under the assumptions made in Section 1.3,

Pr{Ot = Ot+1 = 0|i = 0} =
15938227062862998000

256 · 4096374767995023500000
,

and the bias is ε ≈ 2 · 2−23.98322 ≈ 2−23. I.e., we can distinguish VMPC-8 from random having
around 246 samples, or 28 ·246 = 254 bytes of the keystream, when the two events from the equation
(9) are considered. The cipher and random distributions are the following,

DRandom =

(

2−16

1 − 2−16

)∣

∣

∣

∣

i=0

, DVMPC−8 =

(

2−16 − 2−23.98

1 − 2−16 + 2−23.98

)∣

∣

∣

∣

i=0

. (10)

ut



4.3 Simulations of the Attack on VMPC-n

Our theoretical distinguisher from the previous subsection is based on a few assumptions from
Section 1.3. First of all, by simulations we have checked the distribution of the internal state
of VMPC-n for different values of n, and we did not find any noticeable anomalies. From this
we conclude that the internal state in real is distributed close to the uniform distribution, and
our theoretical distinguisher should work. Secondly, we can argue that the samples are quite
independent. It happens because each sample is connected to the known variable i, and the distance
between two samples (for a fixed i) is q rounds of the internal loop.

Theorem 2 says that the complexity of the attack on VMPC-8 is O(254), and, due to such a
high complexity, we could not perform simulations of our attack on this cipher. Instead, we could
perform simulations on the reduced version VMPC-4, and show the attack in practice.

VMPC-4 has one permuter of size 16, and the internal indices i and j are taken modulo 16. In
our simulations we made N = 234 iterations and from 234 received samples we have constructed
the type (empirical distribution) with probabilities Pr{Ot = x, Ot+1 = y|i}. Below we show this
table (type) partly.

N = 234 i=0 i=1 . . .
x ⇒ 0 1 2 . . . 0 1 2 . . .

To get the probability of the event (Ot = x, Ot+1 = y)|i the corresponding cell should
be divided by 162. In the case of a random source each such event has the probability
1/162.

y ⇒ 0 0.92474 0.99866 1.00432 0.99287 0.99086 0.99890
1 1.00085 0.98815 1.01204 0.99309 0.99656 0.99068
2 1.00519 1.00569 1.00343 . . . 0.99496 1.06880 1.06524 . . . . . .
3 1.00631 0.99999 0.99562 1.00080 0.99260 0.99767
...

...
...

...
...

...
...

15 0.99744 0.98926 1.00845 1.00052 0.99124 0.99495
This table represents the type DType and we can see that many probabilities are far away from

1/162, and the most biased probability is in the cell (0, 0), which corresponds to Pr{Ot = Ot+1 =
0|i = 0} = 0.924744

162 . When the type (the table with probabilities) is derived, one can analyze two
possible distinguishers for VMPC-4.

(1) In the first scenario we consider the whole distribution table, i.e., we consider all events of the
form (i, Ot = x, Ot+1 = y). The probability of each event in this case is 1/163. I.e., each cell
of the table (type) should be divided by 1/163.
The bias of the received type is ε0 = 2−8.679648, which is close to the theoretical value calculated
in the previous section ε = 2−8.7. However, we could not calculate a theoretical bias for VMPC-
8, therefore, we consider the second scenario;

(2) In this scenario we observe only two events {Ot = Ot+1 = 0|i = 0, the others} – as in (9). As
we have mentioned, the probability of the event (Ot = Ot+1 = 0)|i = 0 is much lower than the
corresponding probability in the case of a random source. In this example, the received bias
appears to be ε0 = 2 · 1.0−0.924744

162 ≈ 2−10.73205, which, again, is close to the theoretical value
ε = 2−10.755716 (calculated in a similar way as for VMPC-8 in Theorem 2). For other values
of n the simulation results are presented in the following table.

n=3 n=4 n=5 n=6 n=7 n=8
Theoretical bias, ε 2−7.551 2−10.756 2−13.871 2−16.934 2−19.967 2−22.98

Simulations of the Attack on VMPC-n
Number of rounds made, N0 230 230 230 235 — —

The real bias, ε0 2−7.558 2−10.732 2−13.931 2−16.912 — —

Our simulations show that the attack on VMPC-n works in practice. We have also shown that
the dependency of the adjacent samples does not influence much on the type.



5 Our Distinguisher for RC4A-n

5.1 Building a Distinguisher

In this section we investigate the cipher RC4A-n (see Figure 1(bottom)), and propose our dis-
tinguisher for RC4A-8. We again idealize the situation by the preliminary assumptions from Sec-
tion 1.3, i.e., at any time t the values j1, j2, P1[·], and P2[·] are considered from the uniform
distribution, and unknown for us. We would like to investigate the following scheme.

i – known value at time t-even
j1, j2, P1[·], P2[·] – are from a random source

1. Ot = P2[P1[i] + P1[j1]]
2. swap(P2[i], P2[j2])
3. Ot+1 = . . .
4. Ot+2 = P2[P1[i + 1] + P1[j1 + P1[i + 1]]]

For cryptanalysis of RC4A-n, we use ideas as before. Our methodology of finding anomalies for
both VMPC-n and RC4A-n was just to consider the distribution tables like D(i,Ot,Ot+2) for small
values of n, using an Algorithm 1-like procedure. If some anomaly is found then we concentrate
on them in particular for larger values of n, and try to understand why anomalies exist.

For RC4A-n we have noticed that Pr{Ot = Ot+2| i is even} 6= 1/q, i.e., does not correspond to
the random distribution, whereas the other probabilities Pr{Ot 6= Ot+2| i is even} are equal to each
other, but not equal to 1/q. From the other hand, all probabilities Pr{Ot = Ot+2| i is odd} = 1/q
– correspond to the random distribution. So, our target is to calculate the probabilities Pr{Ot =
Ot+2| i is even} for RC4A-8. We have used a similar idea as in the Algorithm 2, but much simpler.
Our optimized search algorithm to find all such probabilities has complexity O(26n). The result
of this work is the following.

Theorem 3. For RC4A-n, under the assumptions made in Section 1.3, consider the following
vector of events, and its random distribution,

Events =















Ot = Ot+2|i = 0
Ot = Ot+2|i = 2

...
Ot = Ot+2|i = q − 2

other cases















, DRandom =















1/q2

1/q2

...
1/q2

1 − 1/(2q)















. (11)

For RC4A-8, the bias DRC4A−8 is ε ≈ 2 · 2−30.05. Hence, our distinguisher needs around 258 bytes
of the keystream. ut

5.2 Checking the Assumptions

By simulations we found that the internal state of RC4A-n is not close to the uniform distribution.
We could clearly see these anomalies running simulations many times for different n each time
sampling from at least N = 230 rounds of the loop. To begin counting anomalies, we would like
to note that the internal variables j1, P1[·] are updated independently from j2, P2[·] as follows.

One-Round-Update for j∗, P∗[·], where ∗ is 1 or 2
1. i + +;
2. j∗+ = P∗[i]
3. swap(P∗[i], P∗[j∗])



It means that all anomalies found for j1, P1[·] are true for j2, P2[·] as well.
We found an event for which the probability is far from the probability of this event in the case

of a random source. In particular, Pr{j1 = i + 1} ≈ q−1
q2 , when in the random case it should be

1/q. Other probabilities are Pr{j1|i, j1 6= i + 1} ≈ q2−q+1
q2(q−1) . For example, for RC4A-4, it appeared

that Pr{j1 = i+1} ≈ 0.05859375, and the others are Pr{j1|i, j1 6= i} ≈ 0.06276042 – the difference
is noticeable. Some other less notable non-uniformities in the internal state also were found.

5.3 Simulations of the Attack on RC4A-n

Despite finding the non-uniformity of the internal state of RC4A-n we make a set of simulations
to see how our distinguisher behaves itself. We will consider the attack scenario as in Theorem 3.

n=3 n=4 n=5 n=6 n=7 n=8
Theoretical bias, ε 2−10.014 2−14.005 2−18.001 2−22.00 2−26.00 2−29.05

Simulations of the Attack on RC4A-n
Number of rounds made, N0 230 230 234 240 240 —

The real bias, ε0 2−8.9181 2−12.2703 2−15.073 2−18.042 2−20.025 —

Note that the number of actual samples N0 in our simulations is larger than 1/ε2
0. From (3) it

means that we have distinguished the cipher with a very small probability of error, and the real
theoretical bias without pre-assumptions should be close to what we get in our simulations. From
the table above we see that the bias in practice (when the internal state is not from the unoform
distribution) is larger than the approximated value of the bias (the uniformly distributed internal
state), for n = 3, . . . , 7. The same behaviour of the distinguisher we expect for n = 8 as well.
Since we could not perform simulations for n = 8, we decided to leave theoretical bias as the lower
bound of the attack, i.e., ε = 2−29.05 for n = 8, the complexity is O(258). However, in the real life
we expect this bias to be even larger, and complexity of the attack lower.

6 Results and Conclusions

In this paper we have shown some theoretical weaknesses of the RC4 family of stream ciphers. We
have also investigated recently suggested stream ciphers VMPC-n and RC4A-n, and found linear
distinguishing attacks on them. They are regarded as academic attacks which show weak places
in these ciphers. The summarizing table of our results is below:

Theoretical Our Distinguishers
Cipher Lower Bound for ε, Complexity (# of symbols)

n = 8 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
RC4-n (1987) 2−33 (Corr.1) — — — — — 230.6 (from [5])
VMPC-n (2004) 2−56.8 (Thr.1) 223 ∗ 229 235 241 248 254

RC4A-n (2004) — 218 228 236 244 252 258

The distinguisher for VMPC-8 that we propose is the following 2:

Distinguisher for VMPC-8:

1. Observe N = 254 output bytes. Calculate the number
L of occurences such that a = Ot = Ot+1 = 0.

2. Calculate two distances:
λRandom = |2−16 − 28 · L/N |
λVMPC = |(2−16 − 2−23.98322)− 28 · L/N |

3. If λRandom > λVMPC then keystream of VMPC-8,
else a random sequence.

2 The distinguisher for RC4A-8 is in a similar fashion as for VMPC-8.
∗ In the first scenario from Subsection 4.3 the attack complexity for VMPC-4 is O(218).



If the internal state of a cipher from the RC4 family is uniformly distributed, then, based
on our discussions in Section 3, we conclude that such ciphers are not very secure. When the
internal state is non-uniformly distributed then the real bias would more likely be larger rather
than smaller, and the complexity of the attack would be lower, in most cases. That effect we could
observe on the example of RC4A-n. It seems that the security level of such constructions depends
more on the degree of the recursive relations between output symbols and internal states, rather
than on the length of the permuter(s).

One of the solutions to protect against of such distinguishing attacks is to increase the number
of accesses to the permuter(s) in the loop. This solution will increase the relation complexity
between adjacent outputs. Another solution is to discard some output symbols before to accept
one. Unfortunately, both the suggestions significantly decrease the speed of these ciphers – the
main purpose of such designs (speed) is then destroyed.

Acknowledgements

We thank Willi Meier for his useful suggestions on this research direction that made this paper
possible. We also thank Thomas Johansson and anonymous reviewers for their editing advises and
critical comments.

References

1. N. Smart. Cryptography: An Introduction, 2003.
2. B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley and

Sons, New York, 2nd edition, 1996.
3. J.D. Golić. Linear statistical weakness of alleged RC4 keystream generator. In W. Fumy, editor,

Advances in Cryptology—EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages
226–238. Springer-Verlag, 1997.

4. L.R. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege. Analysis methods for (alleged)
RC4. In K. Ohta and D. Pei, editors, Advances in Cryptology—ASIACRYPT’98, volume 1998 of
Lecture Notes in Computer Science, pages 327–341. Springer-Verlag, 1998.

5. S. R. Fluhrer and D. A. McGrew. Statistical analysis of the alleged RC4 keystream generator. In
B. Schneier, editor, Fast Software Encryption 2000, volume 1978 of Lecture Notes in Computer Science,
pages 19–30. Springer-Verlag, 2000.

6. I. Mantin and A. Shamir. Practical attack on broadcast RC4. In M. Matsui, editor, Fast Software

Encryption 2001, volume 2355 of Lecture Notes in Computer Science, pages 152–164. Springer-Verlag,
2001.

7. S. Paul and B. Preneel. Analysis of non-fortuitous predictive states of the RC4 keystream generator.
In T. Johansson and S. Maitra, editors, Progress in Cryptology—INDOCRYPT 2003, volume 2904 of
Lecture Notes in Computer Science, pages 52–67. Springer-Verlag, 2003.

8. B. Zoltak. VMPC one-way function and stream cipher. In B. Roy and W. Meier, editors, Fast Software

Encryption 2004, volume 3017 of Lecture Notes in Computer Science, pages 210–225. Springer-Verlag,
2004.

9. S. Paul and B. Preneel. A new weakness in the RC4 keystream generator and an approach to improve
the security of the cipher. In B. Roy and W. Meier, editors, Fast Software Encryption 2004, volume
3017 of Lecture Notes in Computer Science, pages 245–259. Springer-Verlag, 2004.

10. D. Coppersmith, S. Halevi, and C.S. Jutla. Cryptanalysis of stream ciphers with linear masking. In
M. Yung, editor, Advances in Cryptology—CRYPTO 2002, volume 2442 of Lecture Notes in Computer

Science, pages 515–532. Springer-Verlag, 2002.

0
The work described in this paper has been supported in part by Grant VR 621-2001-2149, in part by the Graduate School in Personal

Computing and Communication PCC++, and in part by the European Commission through the IST Program under Contract IST-2002-

507932 ECRYPT.

The information in this document reflects only the author’s views, is provided as is and no guarantee or warranty is given that the

information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.



Appendix A: Subalgorithm for Algorithm 2

Problem statement: We are given a permuter template of size q, where r positions are already
placed, whereas the rest are undefined. We want to calculate the number of permuters satisfying
the given template, such that P 3[j′] = c, where j′ and c are some known positions in the permuter.

...

g h

a)

b)

c)

d)

f)

g)

e)

2)

1)

PSfrag replacements

dist=3− lg − lh

t1

t1

t1

t1t1

t2

t2

Count t1 of such

Count t2 of such

∞ ∞

∞∞

Fig. 3. Possibilities to connect g and h, used in subalgorithm.

Sub-Algorithm:a

1. Go forward by the path j ′ → P [j′] → P 2[j′] → P 3[j′], as much as possible, but not more
then 3 steps. Let g be the point in this path where we have stopped, and lg be the number
of steps we made (from 0 to 3).

2. Go backward by the path c → P−1[c] → P−2[c] → P−3[c], as much as possible, but not
more then 3 steps. Let h be the point in the path where we have stoped, and lh be the
number of steps we made (from 0 to 3).

3. if (lg = 3 and g 6= c) or (lh = 3 and h 6= j′) then return 0;
if (lg = 3 and g = c) or (lh = 3 and h = j′) then return (q − r)!;
if (lg + lh ≥ 3) return 0;

4. Count the number t1 of positions x 6= g, h in the permuter P [·] for which P [x] = P−1[x] =
∞ (see Fig. 3(1)).
Count the number t2 of positions x 6= g, h, for which P [x] 6= ∞, g, h, and P−1[x] = P 2[x] =
∞ (see Fig. 3(2)).

5. Now there could be 7 possibilities to connect positions g and h, and they are depicted in
Figure 3(a–g):
a) g = h, lg + lh = 0 ⇒ add (q − r − 1)! combinations;
b) g = h, lg + lh = 0, t1 ≥ 2 ⇒ add t1(t1 − 1)(q − r − 3)! combinations;
c) g = h, lg + lh = 0 ⇒ add t2(q − r − 2)! combinations;
d) g 6= h, lg + lh = 2 ⇒ add (q − r − 1)! combinations;
e) g 6= h, lg + lh = 1 ⇒ add t1(q − r − 2)! combinations;
f) g 6= h, lg + lh = 0, t1 ≥ 2 ⇒ add t1(t1 − 1)(q − r − 3)! combinations;
g) g 6= h, lg + lh = 0 ⇒ add t2(q − r − 2)! combinations;

a The complexity of the subalgorithm is O(q)


