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Abstract. In this paper we introduce the notion of impossible fault anal-
ysis, and present an impossible fault analysis of RC4, whose complexity
221 is smaller than the previously best known attack of Hoch and Shamir
(226), along with an even faster fault analysis of RC4, based on different
ideas, with complexity smaller than 216.

1 Introduction

RC4 is a stream cipher designed by Ron Rivest in 1987, and used by RSADSI in
their products. It was never officially published, but a reverse-engineered copy of
the code appeared anonymously in the sci.crypt newsgroup in 1994. Nowadays,
RC4 is one of the most widely used stream ciphers in a wide range of applications.

Fault analysis was introduced in 1996, when an attack on implementations of
RSA and other public key algorithms was described [3]. Shortly after, differential
fault analysis of secret key cryptosystems such as DES has followed [2]. These
attacks can be made in practice, and various techniques have been described
that induce faults during cryptographic computations [1, 9, 14, 16].

Various observations were made on the design and properties of RC4 since
its publication, e.g., in [5–7, 10, 12, 13, 15], however till recently no fault analysis
was performed. In a recent paper [8] Hoch and Shamir study fault analytic
attacks against various stream ciphers, including RC4. Their results show that
the initial state of RC4 can be recovered given 226 bytes of stream with about
216 key setups, and 226 steps of analysis.

In this paper we present the notion of impossible fault analysis, which uses
faults to force the internal state of the stream cipher to become an impossible
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Attack #Faults Data #Rekey Time Space

Hoch and Shamir [8] 216 226 216 226 216

This paper:
Impossible Fault Analysis 216 221 – online (221) 28

Differential Fault Analysis 210 216 210 216 210

Table 1. Summary of the Results for Finding the Initial States

state, i.e., a state that can never occur in a regular use of the cipher. We use this
notion to force RC4 to enter impossible states that were first observed by Hal
Finney in [4], and were later described with additional properties in [11]. Once
the internal state falls into Finney’s impossible states, the output stream become
a copy (actually 255 interleaved copies) of the internal state — a phenomena
which is very unexpected. In order to fall to these state we need only 221 bytes
of stream (without any additional key setups), and once we fall into Finney’s
states, the recovery of the internal state is one of the simplest ever described for
any cipher, as the internal state is simply copied into the output stream.

We then describe another, more standard, fault analytic attack against RC4,
which require less than 216 stream bytes with less than a thousand (or a few
thousands) key setups, and whose analysis time complexity is also lower than
216. However, because the assumptions used by the two attacks are different, it
is perhaps not clear which attack would be more efficient in practice.

A summary of our results, and of the previously published results is given in
Table 1.

The paper is organized as follows: In Section 2 we give a short description
of RC4. In Section 3 we describe the notion of impossible fault analysis and the
application to RC4. In Section 4 we describe the best known fault analysis of
RC4, and in Section 5 we summarize the paper.

2 A Brief Description of RC4

For the discussion of this paper it suffices to describe the step function of RC4.
The key setup is very similar, but is not necessary for our analysis.

RC4’s internal state consists of two indices i and j, and an array S of size
256. In a real computation of RC4, this array is always a permutation of all the
values from 0 to 255. The content of the S array is the result of the key schedule,
while i and j are always set to 0 by the key schedule. Each step of RC4 is then
as follows

i ++
j += S[i]
swap the values of S[i] and S[j]
Output S[S[i] + S[j]]



3 Impossible Fault Analysis of RC4

In [4] Hal Finney presented the following family of internal states of RC4, where

j = i + 1, and S[j] = 1. (1)

He observed that if an internal state is a member of this family at some step,
then all the next and prior states are also in this family, as if the internal state
is in the family, then the value 1 is swapped with the next value, and i and j are
incremented by 1. In his thesis, Itsik Mantin [11] also observes that due to these
swaps, every 255 steps the array S is rotated by one byte, but remains with the
same circular order of byte values, and that every 255 states, the index of the
output byte repeats (as it is just the sum of the two entries pointed by i and j,
i.e., the first repeats every 255 states, and the other is always 1). As a result of
these two observations, the output stream takes the same entry from the array
every 255 output bytes, but the byte values are already rotated, making the new
value of the entry after 255 states being the next value (that was in the next
entry), and any further 255th byte in the output stream being the next value of
the internal state in a cyclic order. We thus receive 255 interleaved streams, each
of them is a copy of the internal state with a (possibly) different starting value.
It is easy to see that once we fall into these states, it is very easy to identify that
we fell into these states, and also very easy to deduce the content of the internal
state (due to an additional property it is even easy to know which is the first
value in the S array, thus to know the exact location of each value in the array,
not only the relative order).

However, the key schedule of RC4 sets i = j = 0 causing these states to
be impossible, thus these states can never appear in real RC4 streams, and we
cannot expect to fall into these states in our analysis.4

Fortunately, for the purposes of this paper, fault analysis can make the im-
possible possible, by modifying the indices i or j, or even the content of the S
array. Therefore, if a fault occurs during the computation of RC4, it may occur
that the resulting internal state becomes a member of this impossible family,
and once the internal state is a member of the family, it is very easy to deduce
the internal state by looking at the output stream.

For the attack we assume that faults are injected into either register i or
register j at any time the attacker wishes. Once a fault modifies the internal
state to become one of Finney’s states, it is very easy to identify this fact after
several hundred bytes (after two or three bytes from each interleaved cycle are
given, i.e., after a total of about 500 or 700 bytes). However, as we show below,
the identification of non-Finney states can be made much earlier.

We first observe that the probability of falling into Finney’s states by a fault
in i or j is 2−16, because the two equalities defining Finney’s states in Eq. (1)
compare a total of 16 bits, where
4 Some RC4 variants with modified key schedule may allow this family of states to

occurs for some fraction (usually about 2−16) of the keys. In such cases, this fraction
of the keys form a class of weak keys, in which the initial state is being copied to
the output stream.



1. If the fault is in i, the probability that S[j] = 1 holds is 2−8, and the
probability that the new i is set to j − 1 is also 2−8.

2. If the fault is in j, the probability that S[i + 1] = 1 holds is 2−8, and the
probability that the new j is set to i + 1 is also 2−8.

Therefore, we expect that the internal states will fall to Finney’s states after
about 216 faults are induced.

Once a fault is induced, we would like to identify as soon as possible if the
internal state is a Finney’s state or not. We observe that Finney’s states have
the property that the consecutive (or close) output states fetch the output bytes
from different locations in the S array (because a different value is added to the 1
to form the index of the output byte), and that the array is a permutation of all
the 256 values from 0 to 255. So usually close bytes of the output stream should
be distinct, though, bytes that were swapped already with the prior location in
the array may appear a second time. Therefore, we expect that a collision of
two bytes of the output stream should occur after about 80 bytes of the output
stream, while in the case of non-Finney’s states a collision should occur after
less than 20 bytes due to the birthday paradox (we verified this behavior by a
simulation).5

Based on these observations, we use the following procedure for identifying
whether a state is a Finney’s state or not:

1. For each new output byte check whether the byte value already appeared
since the last fault.

2. If not, process the next byte (goto step 1).
3. If this byte value already appeared at least once.

Denote the number of bytes since the last fault by n.
(a) If n < 30, the state is most probably not a Finney’s state.
(b) If 30 ≤ n < 40 and this is the second collision, or if 40 ≤ n < 50 and this

is the third collision, (etc., with a few additional similar tests designed
to distinguish between the two cases), then the state is most probably
not a Finney’s state.6

5 A short approximate calculation of the case of Finney’s states is as follows. We
ignore the case where the colliding output byte has value 1, since it is rare, and
affects the result only marginally. Then, (when the output is not 1) a collision of a
byte a states after the fault and another byte b states after the fault can occur only if
S[ia]+S[ja] = S[ib]+S[jb]+1 and ia ≤ S[ia]+S[ja] ≤ ib (in a cyclic manner, where
ix and jx are the values of the registers x states after the fault). The probability
of the first equation to hold is 1/256, while the probability of the second equation
is (b − a)/256. Therefore, under some independence assumptions, the probability
that a collision occurs within the first L bytes after the fault is approximated by∑

0≤a<b<L
(1/256)((b−a)/256) which is about L3/(3·217). By forcing this probability

to be about 1 we get that L ≈ 73, and by forcing it to be about 1/2 we get that
L ≈ 58. We expect that accurate computation will show slightly higher values.

6 Our actual simulation used a slightly different set of thresholds, but for simplicity
of the description we present a rounded version.



(c) If n > 255, check the relation to the 255th preceding byte, and (unless
one of these two values is 1) verify that they are different, and that no
other earlier pair of this kind appeared with a combination of the first
value with another second value, or the second value with another first
value. If such a pair appeared, the state is not a Finney’s state.

(d) If n > 600, the state is most probably a Finney’s state.
(e) Otherwise, process the next byte (goto step 1).

4. Once the state is identified as either (most probably) a Finney’s state, or
(most probably) not a Finney’s state, the algorithm stops and outputs this
information (for the rest of the attack, we will not distinguish between a
most probable identification or an absolute identification).

The attack is thus as follows: start encryption with RC4 with some un-
known key, and apply the procedure repeatedly, as many times as required, till
a Finney’s state is identified. Each time the procedure identifies a non-Finney’s
state, inject a new fault to either i or j before the next application of the pro-
cedure. Once the procedure identifies a Finney’s state, there are a few options

1. The simplest but slow method is to process extra 255 · 256 bytes, and select
one of the interleaved cycles as the internal state.

2. A much faster method is to use the information we already got about con-
secutive values in the internal state to recover the full state.

3. In both cases the assignment of the cycle to the exact location in the S array
can be done using information obtained at time that the output byte is taken
from either location i or location j (i.e., S[i] + S[j] is either i or j), in which
the outputs are easily identified, e.g., when S[i] + S[j] = i then the output
byte is necessarily 1.

Once the internal state is obtained at some point in time, it is easy to find the
current values of i and j, and then to process the states backwards till the prior
fault. It is also possible to identify the prior value of the faulty register by careful
analysis of the prior bytes of the output stream (i.e., given the internal state, one
of the two registers, and the output byte, it is easy to recover the value of the
other register), thus enabling the attacker to obtain the key-dependent initial
state.

The attacker can deduce the key from this initial state, e.g., with the tech-
nique described in section A.2 of [11].

We programmed most parts of this attack, and verified that it works and
that the expected number of required bytes of the output stream is about 221

(i.e., the average number of bytes required for recognition of a non-Finney’s
state is not far from 32). In all our tests, our simulation of the attack always
identified Finney’s states correctly, and was not sensitive to whether the faults
were induced in register i or register j (in fact, even if the attacker have no
control on the selection of the register in which the fault is induced, and even if
each fault is induced on one of the registers at random, still the attacker will be
able to recover the initial state without additional complexity).



This attack have various variants: The faults can also be injected to the S
array, but then if the fault is injected at a random location in the array, the
probability to get a Finney’s state is only 2−24 (i.e., i = j − 1 occurs with
probability 2−8, the fault occurs at the new j with probability 2−8, and the
fault modifies this location to a value 1 with probability 2−8). An additional
problem in this case is that the fault change the content of the S array quite
rapidly, making it difficult to follow the changes backwards to the initial state
once a Finney’s state occurs (a solution to this latter problem is to make a new
key setup once in a while, like is made is [8] and in the next section).

Once we make fault in the array, it is possible to replace usage of the value 1
in the attack by two consecutive 2’s in the following way

j = i + 2, and S[j − 1] = S[j] = 2,

or with 3’s

j = i + 3, and S[j − 2] = S[j − 1] = S[j] = 3,

or similarly with larger values. The probability to reach such states is smaller,
but once they appear, the internal state is copied to the output in the same way
as in Finney’s states.

If we assume a stronger fault model than we did, in which the attacker can
induce the faults and select the exact new value of the register (i or j or an
entry of the S array), the attack would be much faster (but then we assume that
there exists an even more efficient attack designed specifically for this stronger
model).

Finally, as in Finney’s states the output stream repeats with known period,
it may be possible to mount a ciphertext only attack where the attacker is given
the ciphertext rather than the output stream. Given a known statistics of the
plaintext (e.g., the knowledge that the plaintext is written in English), these
attacks would required much longer streams for the identification of Finney’s
internal states, but once these states are identified, the combined knowledge on
the statistics of the plaintext’s language and the properties of the internal state
may leak full information on the plaintext and on the initial state (this attack
may be applicable in cases where a smartcard encrypts using RC4 while being
at the possession of the attacker).

4 A Differential Fault Analysis of RC4

This attack makes use of the fact that each step of RC4 accesses only three bytes
of the S array. In this section we present the main ideas behind this attack, as
there are some delicate cases where a more complicated handling should be
performed, which we will not describe here. We first collect the following data

1. Process a non-faulty stream
(a) Perform a key setup with the unknown key



(b) Run RC4 256 steps, keeping the output stream for later analysis. Call
this output stream R.

2. Process the following 256 times with l being set from 0 to 255, giving 256
output streams of length about 30
(a) Perform a key setup with the unknown key
(b) Make a fault in S[l]
(c) Run RC4 30 steps, keeping the output stream for later analysis. Call this

output stream Ol.
3. Repeat again but with the fault being injected after 30 steps of RC4, calling

the output streams Tl, and keeping longer output streams in the Tl’s.
4. Possibly repeat again with a few additional such sets.

Evidently, the first byte of all the Ol’s, except for three of them, are the
same as in the real stream R. The identification of these three streams leak
the values of i, j, and S[i] + S[j], but not which is which. Evidently, the value
of i is always known, thus it remains only to identify which is j and which is
S[i] + S[j]. We continue doing so for the following bytes of the output streams
(ignoring streams Ol which already had earlier faults). This technique can be
called cascade guessing.

Now, in any location in the stream, whichever of the two values is j, we can
subtract the previous j from the new j and get S[i], then testing whether we
already know that this value appears in another location in the array, allowing
us to discard many wrong cases. Similarly, the other value is S[i] + S[j], and
by knowing the output byte (of the real stream R) we know the content of the
location pointed by this value S[i] + S[j], which also allows us to make a test
for a contradiction. In addition, also S[j] is observed, and can also be tested for
a contradiction. Due to the birthday paradox, we expect to get a contradiction
after an average of less than 20 observed bytes, i.e., after processing about 7
bytes of the output stream. Therefore, the analysis for finding the internal state
should find a considerable number of bytes of the internal state with a small
complexity.

However, as the faults (made before the first step of RC4) become more and
more distant from the analyzed bytes (computed after several steps of RC4), the
identification of the three values become less and less successful, due to earlier
effects of these faults on the streams. This problem have several solutions: one
of them is to have several sets with faults made at different times (like the
Tl’s mentioned above). Another solution is to make a more delicate analysis
and use the faulty streams to recover more information on the key (as the faults
changed the state slightly, different bytes may be reached from these streams). Or
alternatively, it is possible to allow the algorithm to ignore some unknown values
during the computation, and continue to the next stream byte. A combination of
these methods can recover a large majority of the bytes of the internal state with
a relatively small complexity, after which much simpler analysis can complete
the full content of the internal state.

The complexity of this attack is bounded by 216 using a total of less than
216 stream bytes (with less than a thousand, only a few thousands, key setups).



5 Summary

In this paper we presented two fault attacks on RC4. The first introduces the
notion of impossible fault analysis, and shows how to apply it with complexity
smaller than of previously published fault attacks against RC4. The second at-
tack uses more key setups and analyzes the difference behavior of the key stream
once the internal states is modified due to faults. This later attack is currently
the fastest known fault analysis of RC4.
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